
Mojette Transform with non classical cubic
lattices

Sen LIU

25th August 2013

Master Multimedia and Data Management (MDM)
Superviser: Nicolas Normand, Vincent Ricordel

1



Abstract

Nowadays projection technologies are more and more frequently used
and noticed, especially in medical tomography and network packets trans-
fer. But all these technologies are based on the ordinary square or cubic
lattices. In this thesis, we will propose a new way of Mojette transform
in which the hexagonal lattice will be used. At the beginning, we will
introduce some basic knowledge related to our topic. They are Dirac and
Spline 0 Mojette transform and their back projection as well as the funda-
mental definitions and properties about the lattices in both 2-Dimension
and 3-Dimension. And then we will address the method of generating
the Farey Series in hexagonal lattice which will be used as the discrete
directions of the projections. And we will also represent the algorithm of
Dirac and Spline 0 Mojette transform in hexagonal lattice. Eventually,
we will show the results of experiments which compare the projected bins
in hexagonal lattice with those in square lattice and ground truth.

Keyword: Mojette transform, hexagonal lattice, Farey Series.
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Résumé

Aujourd’hui, les technologies de projection sont de plus en plus fré-
quemment utilisés et remarqué, en particulier dans la tomographie médi-
cale et réseau de transfert de paquets. Mais toutes ces technologies sont
basées sur la place ordinaire ou réseaux cubiques. Dans cette thèse, nous
allons proposer une nouvelle façon de Mojette transformation dans la-
quelle le réseau hexagonal sera utiliser. Au début, nous allons introduire
quelques notions de base relatives à notre sujet. Ils sont Dirac et Spline 0
Mojette transformation, leur projection et les définitions et propriétés fon-
damentales sur les réseaux dans tous les deux 2-Dimension et 3-Dimension.
Et puis nous aborderons la méthode de génération de la Série Farey en
réseau hexagonal qui sont les directions discrètes des projections. Et nous
allons aussi représenter l’algorithme de Dirac et Spline 0 Mojette trans-
formée en réseau hexagonal. Finalement, nous allons montrer les résultats
des essais qui comparent les bins en réseau hexagonale avec ceux en réseau
carré et le données réalité.

Mots-clés : Mojette transform, réseau hexagonal, Série de Farey
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1 Introduction

1.1 IRCCyn Lab and IVC Team
IRCCyN, which stands for Institut de Recherche en Communications et Cy-

bernetique de Nantes, is a Joint Research Unit, and it has been recognized and
granted by the CNRS for more than 40 years. It consists of several research
teams. One of them is the Image and video-communication (IVC) research
group which focuses on digital multimedia processing and analysis.

Most of the processes of digital multimedia processing are studied in our
group, from the data acquisition to its visualization, including data transmission
coding or storage.

A wide range of research areas are covered around three main lines of work,
namely perception, communication and representation.

1.2 Aspects of the topic
The Mojette Transform is defined as a discrete exact Radon transform. The

direct and inverse Mojette Transforms have been proposed for the cubic lattice.

The project aims at explore them with non classical cubic lattices, for example
with the hexagonal lattices in dimension2, or with orthorhombic lattices in
dimension 3.

We all know that the distances between the vertices and gravity centroids in
cubic lattices are much greater than the ones between the edges and gravity
centroids in the hexagonal lattices. The goal of the topic is to see if there is a
significant improvement when we change the lattices of the Mojette Transform
in dimension2 and dimension 3. And in this thesis, we will not only introduce
the way of computing Farey Series1 in Hexagonal lattice compared to just in
Square lattice, but also introduce the methods of projection in Hexagonal lattice.
At the end of the thesis, we will express the results of experiments which are
compared with both the ordinary Square lattice and the ground truth.

In order to achieve the mentioned goals, some knowledge is required such as
the knowledge about the Mojette Transform and also the information about the
lattice. The following sections will focus on the details of the knowledge, and it
will be helpful for us to understand the topic.

1see the book, note for mark
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2 Bibliography

2.1 Mojette Transform
The Mojette transform is an exact, discrete form of the Radon transform

defined for specific ’rational’ projection angles. Like the classical Radon trans-
form, the Mojette transform represents the image as a set of projections. How-
ever, the Mojette transform has an exact inverse from a finite number of discrete
projections (as few as 1 depending on the angle set). The rational projec-
tion angles θi are defined by a set of discrete vectors(pi and qi) as tan θi =
qi/pi. These vectors must respect the condition that pi and qi are coprime (i.e.
gcd(pi, qi) = 1) and since tan is π − periodic, qi is restricted to be positive
expect for the case (pi, qi) = (1, 0).

Another principle difference from the classical Radon transform is the sampling
rate on each projection, which is no longer constant but depends on the chosen
angle as 1/

√
p2i + q2i . The number of bins B(i) for each projection depends on

the chosen direction vector (pi, qi), and for a P ×Q image is found to be

B(i) = (Q− 1)|pi|+ (P − 1)|qi|+ 1, (1)

The computational complexity of the Mojette transform for a P × Q image
with I projections is O(PQI).

2.1.1 Direct Transform

2 kinds of Mojette transform are used now: the Dirac Mojette Transform
and the Spline Mojette Transform. In the following paragraphs these 2 kinds of
Mojette transform will be discussed.

Dirac Mojette Transform The dirac Mojette transform, in general form,
can be expressed as follows:

[Mf ](b, pi, qi) = projδpi,qi(b) =

+∞∑
k=−∞

+∞∑
l=−∞

f(k, l)∆(b+ kqi − pil︸ ︷︷ ︸
n

), (2)

where (k, l) defines the location of an image pixel, b is the index of a bin and
∆(n) is the Kronecker delta function equal to 1 when n = 0 and zero otherwise.
The equation b = −kqi + pil represents the line of projection, i.e. the set of
projected pixels. ∆(b + kqi − pil) is therefore equal to 1 only for those pixels
which are on the projection line.

From (2), we can see that the transform domain of an image is a set of
projections where each element (called a bin as in tomography) corresponds to
the sum of the pixels centered on the line of projection. The details can be seen
in Figure 1
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Figure 1 – The Dirac Mojette Transform
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Spline 0 Mojette Transform In dirac Mojette transform, we can see that
the projected bins are only the sum of the pixels that their centers are in the
projection lines. The bins only have the information of the center points in the
projection line. This is not good for both robustness and performance. But
actually the projection goes not only through the centers of the pixels, but also
the other parts of the them. Thus, the spline 0 Mojette transform is proposed.
It not only consider the center pixels in the projection, but also combine them
with the other pixels in the projection line.

The Spline 0 Mojette transform is given by:

M0f(k, l) =Mδf(k, l) ∗ kernel0(k, l, b, p, q), (3)

with

kernel0(0, 0, b, p, q) =


(111 . . . 1)︸ ︷︷ ︸

p

∗ (111 . . .)︸ ︷︷ ︸
q

if p and q both odd,

1
2 (111 . . . 1)︸ ︷︷ ︸

p

∗ (111 . . .)︸ ︷︷ ︸
q

∗(11) if either p or q even

(4)
whereMδf(k, l) refer to (2)
This transform projects each flat pixel and generates trapezoidal shapes onto
the projection as depicted in Figure 3
The example of spline 0 Mojette transform is shown in Figure 2

2.1.2 Inverse Transform

In this section, we will introduce 2 kinds of inverse transform. They are
Iterative Mojette reconstruction or traditional Mojette inverse tranform and
Exact filtered backprojection reconstruction.

Iterative Mojette reconstruction This reconstruction uses the transform
geometry and the fact that the number of pixels that contribute to each bin is
not constant. In some cases, a bin might correspond to a unique pixel in the
image, so this bin is then can be reconstructible. The reconstruction solves for
one pixel at a time and subtracts this value from the bins that include this pixel
in each of the projections.

After this bin update, the set of projections is the exact transform of the pixels
that are left to be reconstructed. The reconstruction propagates from the image
corners (where there is only one pixel value in the bins) to the center.

In order to achieve it, 2 assistance accounting images are projected with the
same set of projection angles and reconstructed simultaneously with the un-
known image. The pixels of the first image has the same value 1, referred to as

8
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Figure 4 – Mojette transform of the image f

the unitary image. The second is an index image, whose pixels are labeled in a
way that permits a fast access. In Figure 4 and Figure 5, 3 kinds of images are
shown.

Algorithm The whole algorithm of Iterative Mojette reconstruction is
show as follows:
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Input: n:pixel count, I:number of projections,Mpi,qif , ∀i ∈ [1 . . . I] : projections
Output: {(k, l): pixel value of the reconstructed image for each pixel k, l
while ∃b, i, a reconstructible bin inMpi,qi do

Find the unique pixel (k, l) projected ontoMpi,qif(b);
f(k, l)←Mpi,qif ;
Remove the contribution of pixel (x, y) in all projections
for i ← 1 to I do

b← qi × k − pi × l;
Mpi,qif(b)←Mpi,qif(b)− f(k, l)

endfor
endwhile

Exact filtered backprojection reconstruction is an exact method which
was discovered by Servieres et al.[7]. Given all I possible projections in the
P ×Q array, backprojection yields I − 1 times the original pixel value plus the
sum of the image.

Algorithm Here, an exact discrete backprojection filtering algorithm is
described for the case of the Dirac pixel model from a global backprojection
point of view[6]:

[M∗δproj(p,q)](k, l) =

+∞∑
i=−∞

+∞∑
j=−∞

∑
b∈B

δ(k− i)δ(l− j)×proj(b, p, q)∆(b+qi−pj),

(5)
From the Dirac-Mojette projection(equation (2)) and backprojection oper-

ators(equation (5)), we derive the value of the pixel (k, l) in the image (̃f)i
obtained by backprojecting the projection with angle (pi, qi):

f̃i(k, l) =
∑
k′

∑
l′

f(k′, l′)∆(qik − pil − qik′ + pil
′), (6)

This expression can be understood as the sum of pixels aligned with (k, l)
in the direction (pi, qi). Furthermore, considering a set SI of I projections
SI = {(pi, qi), 1 ≤ i ≤ I}, the backprojected value of pixel (k, l) becomes

f̃SI
(k, l) = If(k, l)

∑
k′ 6=k

∑
l′ 6=l

f(k′, l′)∆(qik − pil − qik′ + pil
′), (7)

However, only a finite (although large) number of projections can be con-
sidered due to the finite image size. If SI contains all the possible discrete
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angles on the compact support, f̃SI
(k, l) becomes

f̃SI
(k, l) = (I − 1)f(k, l) +

N∑
i=1

N∑
j=1

f(i, j)︸ ︷︷ ︸
S

, (8)

where S is the sum of all pixel values, also equal to the sum of each projection
bin values. The exact reconstruction scheme is

f(k, l) =
1

I − 1
[f̃SI

(k, l)− S], (9)

2.1.3 Farey Series

In the previous paragraphs, we talked about the discrete angles many time.
Here let us explain how to get these discrete angles. All the possible discrete
angles on a compact space are given by the Farey series corresponding to the
size of the reconstruction square. A Farey series of order N is the set of all ratios
in lowest terms between 0 and 1 whose denominators do not exceed N, arranged
in order of magnitude. For instance, F4 is the series { 01 ,

1
4 ,

1
3 ,

1
2 ,

2
3 ,

3
4 ,

1
1 , }. With

such a series, we have a set of discrete angles in the q
p form arranged in order

of magnitude between [0, π2 ]. Angles over [0, π] are obtained by symmetry. To
obtain all the discrete directions in an N × N image, a Farey series of order
(N − 1) is used with its symmetric values towards the first bisector and the
y-axis. The ratio’s denominator gives the p direction and the numerator gives
the q direction. The Figure 6 shows the angle in both 0 − π

4 and 0 − π. The
rest angles can be got from symmetry.

2.2 Lattices
2.2.1 Definition

First of all, let us give a definition of the lattice. Lattice is a regular repeating
arrangement of points in a certain dimension space. In crystallography these
lattices are usually called Bravais lattices[5][1][8][2]. In three dimensions, for
example, we can find three centers ν1, ν2, ν3, or generally n centers ν1, ν2, . . . , νn
for an n-dimensional lattice. The set of all these centers consists of the sums∑
kivi where the ki are integers.

The vectors ν1, . . . , νn are then called a basis for the lattice, The parallelotope
consisting of the points

θ1ν1 + . . .+ θnνn (0 ≤ θi < 1)

is a fundamental parallelotope. Figure 7 shows a two-dimensional lattice and
the fundamental parallelotope determined by the basis ν1, ν2. A fundamental
parallelotope is an example of a fundamental region for the lattice, that is, the
structure in the whole space will be built just by repeating many times of one

13



(a) The Farey Series, 0− π
4

(b) The Farey Series, 0− π

Figure 6 – The Farey Series
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Figure 8 – The hexagonal lattice.

lattice point in each copy. Figure 8 shows a hexagonal fundamental region for
a two-dimensional lattice.

There are many different ways of choosing a basis and a fundamental region
for a lattice Λ. But the volume of the fundamental region is uniquely determined
by Λ, and the square of this volume is called the determinant or discriminant
of the lattice. The simple formula for the determinant is as follows:

Let the coordinates of the basis vectors be:

ν1 = (ν11, ν12, . . . , ν1m),

ν2 = (ν21, ν22, . . . , ν2m),

. . .

νn = (νn1, νn2, . . . , νnm),

where m ≥ n (sometimes it is convenient to use m > n coordinates to describe
an n-dimensional lattice). The matrix

M =


ν11 ν12 . . . ν1m
ν21 ν22 . . . ν2m
...

...
. . .

...
νn1 νn2 . . . νnm

 , (10)
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is called a generator matrix for the lattice, and the lattice vectors consist of all
the vectors:

ξM , (11)

where ξ = (ξ1, . . . , ξn) is an arbitrary vector with integer components ξi. The
matrix

A = MM tr, (12)

where tr denote transpose, is called a Gram matrix for the lattice. The (i, j)th
entry of A is the inner product νi · νj . The determinant of Λ is then the
determinant of the matrix A,

det Λ = det A, (13)

if M is a square matrix this formula can be written as:

det Λ = (detM)2. (14)

Since we have the basic ideas about the lattice, now we can go to its ap-
plications or the problems that the lattices can solve. In the next section, we
will address not only the problems that involved the lattice but also the key
parameters that characterize the lattice.

2.2.2 Examples of problems involving lattices

Packing problem

The classical sphere problem is to find out how densely a large number
of identical spheres can be packed together. And what the lattice packing is
whether it has the properties that 0 is a center and that if there are spheres
with centers µ and ν then there are also spheres with centers µ+ ν and µ− ν.
In other words the set of centers forms an additive group. The Figure 9 shows
the different packing ways due to the different lattices.

Since we represent the mathmatical form of lattice in the previous section,
now we can give a precise definition of the density ∆ of a lattice packing:

∆ = percentage of the space that is occupied by the spheres (15)

=
volume of one sphere

volume of fundamental region

=
volume of one sphere

(det Λ)
1
2

(16)

And here there is a very important parameter–ρ, which is the radius of the
inscribed sphere. From the equation (16), we can see thatThe volume of one
sphere is the numerator of the equation. it is constrained by the value of ρ. So
finally, ρ will effect the result of the density ∆.
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(a) The square lattice packing (b) The hexagonal lattice packing

Figure 9 – The packing problems of different lattices

Kissing number problem

Another problem which is closely related to the packing problem is that
kissing number problem. An example for this problem is that how many billiard
balls can be arranged so that they all just touch, or "kiss", another billiard ball
of the same size in three dimensions.

More generally we may define the kissing number (usually denoted by τ )
of a sphere packing in any dimension to be the number of spheres that touch one
sphere. For a certain lattice packing τ is the same for every sphere, but for an
arbitrary packing τ may vary from one sphere to another. The n-dimensional
version of the kissing number problem asks for the greatest value of τ attained
by any packing of n-dimensional spheres. We now have the answers to the first
3 kinds of dimensions. In one-dimension the answers is 2. And the answers are
6 and 12 in two dimensions and three dimensions respectively.

Let us consider the kissing number problem in another way: how many
points can be placed on the surface of a sphere in n-dimensional space Rn so
that the angular separation between any two points is at least 60 ◦ shown as
Figure 10.

Thus the kissing number problem can be treated as a packing problem.
Rather than in Rn itself, the packing points are on the surface of a sphere in
Rn. So we can write down the following formula:

Ωn = {(x1, . . . , xn) ∈ Rn :
∑

x2i = 1}, (17)

17



C B
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Q

Figure 10 – The kissing number problem. If spheres A and B touch sphere
C, then the angular separation between the contact points P and Q, the angle
POQ, is at least 60 ◦. For if A touches B, the three centers form an equilateral
triangle.

We call a finite subset X of Ωn a spherical code, and say that X has minimal
angle φ if φ is the largest number for which

x · y ≤ cosφ for any x, y ∈X, x 6= y. (18)

We now generalize the kissing number problem by get , for given n and
φ, the maximal number A(n, φ) of points in a spherical code in Ωn of minimal
angle φ. For example, A(n, π/3) is the kissing number problem, and we have
seen that A(2, π/3) = 6, A(3, π/3) = 12, A(4, π/3) = 24 or 25, etc.

Covering problem

The third problem is a kind of dual to the packing problem, and asks for
the most economical way to cover n-dimensional Euclidean space with equal
overlapping spheres. Figure 11 shows two different ways to cover the plane with
overlapping circles. In (a) the centers of the circles belong to the square lattice
Z2, and in (b) to the hexagonal lattice. It is clear that (b) is a more efficient
covering than (a), since there is less overlap among the circles.

To make this precise we define the thickness Θ of a covering in the same
way as the density ∆ of a packing. Suppose an arrangement of spheres of radius
R covers Rn. If the centers form a lattice Λ then the thickness is defined by
following formular:

Θ = average numbers of spheres that contain a point of the space

=
volume of one sphere

(det Λ)1/2
=

VnR
n

(det Λ)1/2
, (19)
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Figure 11 – Covering the plane with circles. In (a) the centers belongs to the
square lattice Z2, in (b) they belong to the hexagonal lattice. (b) is a more
efficient or thinner covering.

Θ is also called the density or the sparsity of the covering. The thickness of
an arbitrary covering is defined in the same way as the density of an arbitrary
packing. Notice that we always have ∆ ≤ 1 ≤ Θ.

Sometimes we use normalized thickness to reduce the influence of different
volumes of spheres. The normalized thickness ( or center density ) θ is given by

θ =
Θ

Vn
(20)

The lattice coverings in Figure 11 have thickness Θ = π/2 = 1.5708 . . . and
Θ = 2π/3

√
3 = 1.2092 . . . respectively.

Then the covering problem asks for the thinnest covering of n-dimensional
space by spheres, i.e. for the covering with minimal thickness.

Conclusion of the section

In this section we have discussed 3 kinds of lattice problems– packing,
kissing number and covering problem. Here we do not give all the possible
problems of lattice (the other problems such as quantization problem, shortest
vector problem and so on). And also we know several parameters that can
characterize a lattice. As a conclusion, we show these parameters as follows:

minimal vectors: They are the minimal vectors to form the basis lattice.
Details and illustrations can been seen in Figure 7. They also form the generator
matrix, which is the mathematical representation of the lattice.
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Table 1 – The categories of the used lattices

Cubic Lattice Zn (n ≤ 3)
A3 or D3

A∗3 or D∗3
Diamond Lattice D2

Hexagonal Lattice A2

det Λ: It determine the volume of the fundamental region. According to
equation (16) and equation (19), det Λ can be used not only to solve the packing
problem, but also to solve the covering problem. It can be got from the Gram
Matrix.

∆: The density of the packing. The direct representation of the packing
ability of a lattice.

ρ: The radius of the inscribed sphere, which effects the solution to the
packing problem. It is the key parameter to represent the packing problem
according to (16).

τ : It means a sphere packing in any dimension to be the number of spheres
that touch one sphere.

R: The radius of the circumscribed sphere, which effects the solution to
the covering problem according to (19). A good packing is to maximize ρ and
minimize R[3].

2.2.3 Several important lattices and their illustrations

Since we know the problems and the key parameters of lattices, now we are
going to introduce the different kinds of lattices and the values of their key
parameters. There are several high space dimensional lattices mentioned in the
following content, but due to the domain of the topic, our space dimensions are
limited to the dimension ≤ 3.

The categories of the lattices that we are going to use are shown in TABLE 1.
The meaning of symbols Zn, An, A∗n and Dn will be described in the following
paragraphs.

The n-dimensional cubic lattice Zn The set of intergers, . . . ,−2,−1, 0, 1, 2, 3, . . .
is denoted by Z, and

Zn = {(x1, x2, . . . , xn) : xi ∈ Z}
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a1

a2

ϕ

Figure 12 – The Square Lattice. |a1|=|a2|2, ϕ=90 ◦. The square lattice is a Z2

lattice.

Figure 13 – The Cubic Lattice. |a| is all the same. The cubic lattice is a Z3

lattice.

is the n-dimensional cubic or integer lattice. For example, the Z2 lattice is the
square lattice. Its generator matrix is the identity matrix.
Key attributes:

Attribute Value
det Λ 1.
τ τ = 2n.

minimal vectors (0, . . . ,±1, . . . , 0).
ρ 1/2.
R

√
n/2.

∆ Vn2−n.

Illustrations Here we take Z2 and Z3 as an example. The Z2 lattice is a
square lattice shown as Figure 12. And the Z3 lattice is a cubic lattice shown
as Figure 13

2Here, ai ≡ vi, vi is the minimal vectors that we have shown in the previous section
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The n-dimensional lattice An The definition of lattice An is: For n ≥ 1,

An = {(x0, x1, . . . , xn) ∈ Zn+1 : x0 + x1 + . . .+ xn = 0}

which uses n+ 1 coordinates to define an n-dimensional lattice: An lies in the
hyperplane

∑
xi = 0 in Rn+1.

And its generator matrix is:

M =


−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1

 . (21)

And its two possible Gram matrix are:

A =



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 2 −1
0 0 0 . . . −1 2


, (22)

or

A =



2 1 1 . . . 1 1
1 2 1 . . . 1 1
1 1 2 . . . 1 1
...

...
...

. . .
...

...
1 1 1 . . . 2 1
1 1 1 . . . 1 2


. (23)

Key attributes3:

Attribute Value
det Λ n+1.
τ τ = n(n+ 1).

minimal vectors (1,−1, 0, . . . , 0).
ρ 1/

√
2.

R ρ{ 2a(n+1−a)
n+1 }

1
2 .

∆ unknown.

Illustrations For An lattices, there are two special cases in our topic.
That is – hexagonal lattice in dimension 2 and face-centered cubic in dimension
3. These two kinds of lattices will be introduced in the following paragraphs.

3 The value ’a’ in R is the integer part of (n+1)/2
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a1

a2

ϕ

Figure 14 – The Hexagonal Lattice. |a1|=|a2|, ϕ=120 ◦. The hexagonal lattice
is a A2 lattice.

The hexagonal lattice A2
4 is the hexagonal lattice as shown in Figure 8.

The hexagonal lattice may be spanned by the vectors (1, 0) and (− 1
2 ,
√
3
2 ), so

the generator which is an alternative to (21) is:

M =

(
1 0

− 1
2

√
3
2

)
. (24)

Key attributes:

Attribute Value
det Λ 3

4 .
τ τ = 6.

minimal vectors (±1, 0)and(± 1
2 ,±

√
3
2 ).

ρ 1
2 .

R 2ρ√
3
.

∆ π√
12

= 0.9069 . . ..

Illustrations The A2 lattice is a hexagonal lattice shown as Figure 14.

The face-centered cubic lattice A3 is a special case of An. Because A3

and D3 are equivalent, and called the face-centered cubic lattice (or fcc). The
simplest definition of D3 is: the fcc consists of the points (x, y, z), where x, y
and z are integers with an even sum. The generator matrix is:

M =

 −1 −1 0
1 −1 0
0 1 −1

 . (25)

Key attributes:
4Here is the A2 lattice, for A1, there is the equation A1

∼= Z1.
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(a) The common example of fcc

(b) The abstract show of fcc

Figure 15 – The Face-centered Lattice. |a| is all the same. The face-centered
cubic lattice is not only a A3 lattice, but also a D3 lattice.

Attribute Value
det Λ 4.
τ τ = 12.

minimal vectors all permutations of (±1,±1, 0).
ρ 1√

2
.

R ρ
√

2 = 1.
∆ π√

18
= 0.7405 . . ..

Illustrations The A3 lattice is a face-centered lattice shown as Figure 15.

The dual lattice A∗n The lattice dual to An is

A∗n =

n⋃
i=0

([i] +An), (26)

with generator matrix:

M =


1 −1 0 . . . 0 0
1 0 −1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 . . . −1 0
−n
n+1

1
n+1

1
n+1 . . . 1

n+1
1

n+1

 . (27)
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An equivalent definition uses either the Gram matrix:

A =


n −1 −1 . . . −1
−1 n −1 . . . −1
...

...
...

. . .
...

−1 −1 −1 . . . n

 . (28)

Key attributes:

Attribute Value
det Λ 1

n+1 .
τ 2 (n=1) or 2n+2 (n ≥ 2).

minimal vectors unknown.
ρ 1

2

√
n
n+1 .

R ρ
√

n+2
3 =

√
n(n+2)
12(n+1) .

δ n
n
2

2n(n+1)
n−1
2

.

Illustrations For A∗n lattices, there is one special case in our topic. That
is – body-centered lattice. This kind of lattice will be introduced in the following
paragraph.

The body-centered cubic lattice As a special case of A∗n, A
∗
3 and D∗3 are

equivalent to the body-centered cubic lattice ( or bbc). The definition is that :
the bcc consists of the points (x, y, z) where x, y and z are all even or all odd
integers. A generator matrix is:

M =

 2 0 0
0 2 0
1 1 1

 . (29)

Key attributes:

Attribute Value
det Λ 16.
τ 8.

minimal vectors (±1,±1,±1).
ρ

√
3
2 .

R ρ
√

5
3 =

√
5
2 .

∆ π
√
3

8 = 0.6802 . . ..

25



Figure 16 – The Body-centered Lattice. |a| is all the same. The body-centered
cubic lattice is not only a A∗3 lattice, but also a D∗3 lattice.

Illustrations The A∗3 lattice is a body-centered cubic lattice shown as
Figure 16.

The n-dimensional lattices Dn The definition of Dn is: For n ≥ 3,

Dn = {(x1, . . . , xn) ∈ Zn : x1 + . . .+ xn even},

or in other words Dn is obtained by coloring the points of Zn alternately red
and white with a checkerboard coloring, and taking the red points. So it is also
called checkerboard lattice. Its generator matrix is

M =


−1 −1 0 . . . 0 0
1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1

 (30)

Key attributes

Attribute Value
det Λ 4.
τ 2n(n− 1).

minimal vectors all permutations of (±1,±1, 0, . . . , 0).
ρ 1√

2
.

R ρ
√

2(n = 3) or ρ
√

n
2 .

δ 2
−(n+2)

2 .

Illustrations For Dn lattices, there are two special cases in our topic.
That is – diamond lattice in dimension 2 and face-centered cubic in dimension
3. The diamond lattice is shown as Figure 17, and the face-centered cubic is
shown as Figure 15.
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a1

a2
ϕ

Figure 17 – The Diamond Lattice. |a1| 6= |a2|, ϕ=45 ◦. The diamond lattice is
a D2 lattice.
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3 Works and Algrithms

3.1 Farey Series in Hexagonal Lattice
In bibliography, we have introduced the ordinary method of generating the

Farey Series. Since we have changed the lattice from square lattice to hexagonal
lattice, we also need to change the way of generating Farey Series. In general,
the Farey Series can be produced by the normal way but with the transform
from square lattice to hexagonal lattice. Let us start from the algorithm of
generating Farey Series.

Assume that p
q are the neighbor of ab and c

d in the Farey Series FN . And from
the definition of Farey Series, we can get the equation: p

q = a+c
b+d . We can see

that p
q is in lowest term. So there is an integer k that makes kp = a + c and

kq = b+d. Then we can get the value of c and d from c = kp−a and d = kq− b
respectively. Now we should get the value of k. In fact the value of k must give
a value of c

d which is as much close as possible to p
q . That means k must be

as large as possible subject to kq − b ≤ N . So k is the greatest integer which
is no greater than N+b

q . Then we get the equation (31). If we have given the
values of p, q, a, b in this subpart of Farey Series{ab ,

p
q ,

c
d}, we can get the next

squence c
d .

c = bN + b

q
cp− a,

d = bN + b

q
cq − b (31)

So the whole algorithm of generating Farey Series is as show in Table 2.

The previous method can generate an ordinary Farey Series. But here what we
need is to generate an hexagon based Farey Series. The key is the transformation
of the coordinate using Transform matrix (32), where p′ and q′ mean the Farey
Series in square lattice, p and q mean the Farey Series in hexagonal lattice.(

p

q

)
= H ×

(
p′

q′

)
, where H =

(
1 − 1

2

0
√
3
2

)
. (32)

From the algorithm that we gave in Table 2 and the equation (32), we can
get the Farey Series in hexagonal lattice, which can be seen in Fig 18.

The previously generated Farey Series is more like a parallelogram than an
hexagon. What will change if we insist to form an strict hexagonal Farey Series?
The idea is the same but the area should be also be modified. As shown in Fig
19, The whole area can be divide to the triangle area B and the square area A
and their symmetries.
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Table 2 – Algorithm of generating Farey Series

Input: N:the order of the Farey Series
Output: Fn Farey Series

a← 0;
b← 1;
p← 1;
q ← N ;
while p ≤ N do

Fn ← (a, b, p, q)
k ← bN+b

q c
(a, b)← (p, q)
(p, q)← (kp− a, kq − b)

endwhile

Figure 18 – The Farey Series F4 in hexagonal lattice
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O x

y

A
B

x− y +N = 0

Figure 19 – The illustration of area which form the hexagon after transform

It is not enough for us that just modified the area. The equation of the value
of k is also need to be changed. The value of k should be less or equal to the
line x − y + N = 0. So the value of k should be ba−b−Np−q c. So the algorithm
should also be changed to Table 3.

If we have finished all previously mentioned modification. The result should
be the same as shown in Fig 20 but with different order n.

3.2 Dirac Mojette Transform in Hexagonal Lattice
Since we have get the Farey Series in hexagonal lattice, we can use the knowledge
that mentioned in Bibliography part to do the Dirac Mojette transform[4]. It
is the same idea, but the points and directions are all in hexagon lattice. And
the example is shown as Fig 21. Here we do not address too much. The details
are written in the reference book. And the transformations of directions can be
seen in previous part as well as the transformations of points are in the following
chapter.

3.3 Spline0 Mojette Transform in Hexagonal Lattice
3.3.1 Transformation of the Points

From square lattice to hexagonal lattice, what we first need to do is change
the coordinates of points. A point in a plane has different coordinates according
to different lattices we used. Because all the computation that we use is based
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Table 3 – Algorithm of generating Farey Series (exactly hexagon)

Input: N:the order of the Farey Series
Output: Fn Farey Series

a← 0;
b← 1;
p← 1;
q ← N − 1;
while q − p ≤ N do

Fn ← (a, b, p, q)
k ← ba−b−Np−q c
(a, b)← (p, q)
(p, q)← (kp− a, kq − b)

endwhile

Figure 20 – The Farey Series F4 in hexagonal lattice (exactly hexagon)
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Figure 21 – The illustration of Dirac Mojette transform in hexagonal lattice

on square lattice while the expressions of parameters are in hexagonal lattice,
we need a way to transfer the values between them.

Here we use the same idea as we have used in previous sections–the transform-
ation matrix. The equation 33 is used for transform the hexagonal coordinate to
the square coordinate. And its reverse is equation 34 which used for transform
from square coordinate back to hexagonal coordinate. Note that

(
x
y

)
means the

coordinate in square lattice as well as
(
x′

y′

)
in hexagonal lattice. And in following

sections we will continue using this representation.(
x

y

)
= A×

(
x′

y′

)
, where A =

(
1 − 1

2

0
√
3
2

)
. (33)

(
x′

y′

)
= A−1 ×

(
x

y

)
, where A−1 =

(
1 −

√
3
3

0 2
√
3

3

)
. (34)

3.3.2 Method of Generating Kernel

As we have expressed in the Bibliography part, Spline 0 Mojette transform
need a kernel to convolution. In square lattice we can use the the projection
direction (p, q) to generate the convolution kernel. But we can not do it in
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(p′, q′)

1 3

2

x′

y′

o′

Figure 22 – The decomposition of an hexagon

the same way in hexagonal lattice cause the distance of Voronoi cell center has
changed.

Decomposition of Hexagons and Their Own Direction Here we use the
geometry method to compute the kernel. The elements of kernel is the length
in hexagon. So the goal is to get the length in an hexagon. But it is quite
complex to compute the length in an hexagon with a given direction (p, q). So
we decide to decompose an hexagon into 3 parts– the same 3 parallelograms but
with different orientations shown as in Fig 22. So we can compute the length
in parallelogram label 1, 2 and 3 respectively. And finally we sum these lengths
up to get the total length in hexagon.

But the question is how we can get the different lengths in different parallelo-
gram using just the parameter of direction (p′, q′)? Notice that for parallelogram
2, it is the rotation of 2π

3 at the center o′ of parallelogram 1. It is the same
for parallelogram 3, which is also the rotation of parallelogram 2. So we can
use the idea of coordinate rotation to compute the length in any direction while
considering only one parallelogram case.

Let start with the second parallelogram, which is the rotation of 2π
3 at the

center o′ of the first parallelogram. From equation (35), we can see that the
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Figure 23 – The rotation of the coordinate system in hexagonal grid

projection direction
(
p′

q′

)
should right multiply matrix T2. That means first

transfer from hexagonal lattice to square lattice and then rotate 2π
3 counter-

clockwisely and finally transfer from square lattice to hexagonal lattice. So we
can just use T2 right multiply with direction

(p′1
q′1

)
, which is the right direction for

the first parallelogram, to generate the correct direction
(p′2
q′2

)
for parallelogram

2.

For parallelogram 3, we can repeat the previous operation but use
(p′2
q′2

)
instead

of
(
p′

q′

)
. Then we can get the right direction

(p′3
q′3

)
for parallelogram 3.

T2 =

(
1

√
3
3

0 2
√
3

3

)
×
(

cos 2π
3 − sin 2π

3
sin 2π

3 cos 2π
3

)
×
(

1 − 1
2

0
√
3
2

)
=

(
−1 1
−1 0

)
(35)

So the question left now is how to get the initial value of
(p′1
q′1

)
from the given(

p′

q′

)
. The trick is the same. But the rotation angle changed from 2π

3 to π
2

shown in Fig 23. So the rotation matrix should change to T1, which is shown in
equation (36).
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T ′1 =

(
1

√
3
3

0 2
√
3

3

)
×
(

cos π2 − sin π
2

sin π
2 cos π2

)
×
(

1 − 1
2

0
√
3
2

)
=

√
3

3
× T1, where T1 =

(
1 −2
2 −1

)
(36)

It is ok that we have dropped the value
√
3
3 which strictly equal to the trans-

formation computation before T1, cause that the final goal is to get the direction.
We drop the value, but we did not change the direction.

But notice that since we did not follow the computation strictly, it probably
will cause the value of p′1 and q′1 non co-prime. So before we use

(p′1
q′1

)
to next

computation, we need to check if they are co-prime. If not, they need to be
divided by their greatest common divisor.

Example In order to be more clear about what we have said, we will give an
example: the original direction (p′, q′) for the hexagon is (1, 2). After we right
multiply T1 with its turn

(
1
2

)
, we can get the direction for the first parallelogram–(−3

0

)
, and its co-prime form is

(p′1
q′1

)
=
(−1

0

)
. And then we use it to right multiply

the matrix T2, we can get the direction for the second parallelogram:
(p′2
q′2

)
=
(
1
1

)
.

Finally we use
(
1
1

)
repeat the same operation as we did in getting

(p′2
q′2

)
, we get

the direction for the third parallelogram:
(p′3
q′3

)
=
(
0
1

)
.

Length in Parallelogram Since we have got the method for changing the
direction which adapt to different parallelogram, we can just consider one par-
allelogram for any direction (p′′, q′′) which means the parallelogram’s own dir-
ection after we use either T1 or T2 transformation matrix. Our goal is to get the
length in the parallelogram while we only know the information of the parallel-
ogram(the length of edges and its inner angles) and projection angle (p′′, q′′).
From Fig 24 we can get the formula (37) which using parameters like HA, HB
and l.

P (p′′, q′′, n, x) =


l, |x| ≤ HA
HB−|x|
HB−HA l, HA < |x| < HB

0, |x| ≥ HB

(37)

where l means the longest length in the parallelogram when given a direction
(p′′, q′′), which equals to CD in Fig 24.

Now we have already got the function. The question now is how to get those
parameters of the function such as HA, HB and l. Considering the direction
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Figure 24 – Case 1. q′′

p′′ ≥ 1 and p > 0, q > 0

(p′′, q′′) varies from 0 to π, we divided those directions into 5 cases to achieve
our final goal.

Case 1: q′′

p′′ ≥ 1 and p > 0, q > 05

Before we start to calculate the parameters, we first need to know that the
direction (p′′, q′′) are the direction in hexagonal lattice. The first thing that we
need to do is to transfer it into the direction in square lattice using equation
(32). And then we can get the direction (p, q) in square lattice.

From Fig 24, we can see that tan θ = q
p . At first , let us focus on the value

of l. We can suppose the edge IK equals value n. From the Trigonometric
Function we will know that the length of IJ =

√
3
2 n. Then we will get the

length l which equals to CD by equation (38).

l =

√
3

2
n× sin θ =

√
3

2
n×

√
p2 + q2

q
(38)

Next, we will consider the solution of HA. We can see that HA = OG and
2×OG is the height of the parallelogram DILC. So 2×HA× l is the area of
DILC. And the area of DILC equals to the area of the whole parallelogram
minus twice the area of triangle IKL. The area of whole parallelogram is√

3
2 n × n. The area of triangle IKL is (LJ + JK) × IJ/2. So we can get the

5Note: p′′ and q′′ here means the direction in hexagon lattice. p means the direction in
square lattice. From p′′ to p, we need the previously mentioned transform matrix H in (32).
This kind of representation of directions will still be used in the following 4 cases.
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Figure 25 – Case 2. q′′

p′′ < 1 and p > 0, q > 0

equation (39) to get the value of HA.

HA =
q

2
√
p2 + q2

[n− (

√
3np

2q
+
n

2
)] (39)

At last, we go to the value of HB. It is clear that HB = HA + AB.
So we only need to get the value of AB. In triangle DEF , ED equals to
AB, and DF equals to LK which we get the value in the solution of HA. So
ED/DF = sin θ = q/

√
p2 + q2. Then we can get the equation (40) to get the

value of AB.

AB =
q

2
√
p2 + q2

(

√
3np

2q
+
n

2
) (40)

Finally, we can get the value of l, HA and HB = HA+ AB from equation
(38), (39) and (40). With these parameters, we can give a solution of function
(37) when given a value of x. This is the end of Case 1.

Case 2: q′′

p′′ < 1 and p > 0, q > 0

From Fig 25, we can see that tan θ = q
p . And

CD
tan θ + CD√

3
= KD +DE = n.

Then we can get the value of CD = n/(pq +
√
3
3 ). Notice that l = CK = CD

sin θ .
So we can get the equation (41) to get the value of l.

l =
n
√
p2 + q2

p+
√
3
3 q

(41)
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Figure 26 – Case 3. q′′

|p′′| ≥ 1 and p < 0, q > 0

Next, it is HA. It is the same idea as we used in Case 1. The area of
parallelogram ICKM equals to the area of the whole parallelogram IEKN

subtract twice the area of triangle CEK. That means 2 × HA × l =
√
3
2 n

2 −
n× CD. Then we can get the equation (42).

HA =
n(
√

3p− q)
4
√
p2 + q2

(42)

At last, we go to the value of HB. It is the same as Case 1. We need to
know AB first. We know that AB = CG = JE, and JE/n = sin θ. So the
equation is (43).

AB =
nq√
p2 + q2

(43)

Finally, we can get the value of l, HA and HB = HA+ AB from equation
(41), (42) and (43). With these parameters, we can give a solution of function
(37) when given a value of x. This is the end of Case 2.

Case 3: q′′

|p′′| ≥ 1 and p < 0, q > 0

From Fig 26, we can see that tan θ = q
p , and sin θ = q√

p2+q2
. And we

also know that GF =
√
3
2 n because the angle ∠GEF = π/3 and GE = n. So
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l = CG = GF
sin θ . Then we can get the equation (44).

l =

√
3

2
n

√
p2 + q2

q
(44)

Next, it is different from Case 1 and 2. That is we need to get AB first, and

then use AB to get HA. Here we can see that CE = AB/ sin θ = AB

√
p2+q2

q

and CE also equals to CF − EF which equals GF p
q − n/2 = np

√
3

2q −
n
2 . Then

we can get the equation (45).

AB =
n(
√

3p− q)√
p2 + q2

(45)

At Last, we go to HA. We still use the relation of areas to get the value.
We know that 2×HA× l =

√
3
2 n× n− 2× 1

2 l×AB. Then we get the equation
(46).

HA =

√
3
2 n

2 − l ×AB
2l

=
3nq −

√
3pn

4
√
p2 + q2

(46)

Finally, we can get the value of l, HA and HB = HA+ AB from equation
(44), (46) and (45). With these parameters, we can give a solution of function
(37) when given a value of x. This is the end of Case 3.

Case 4: q′′

|p′′| < 1 and p < 0, q > 0

From Fig 27, we can see that tan θ = q
p , and sin θ = q√

p2+q2
. We at first

know that CE = CI × tan θ = n qp . Since we already know the value of CE,
we can get the value of FG from the equation CE

GF = CI
GI = CI

CI+CG = n

n+
√

3
3 FG

.

So FG = qn/(p − q
√

3/3). And we also can get the value of EI which equals
n/ cos θ = n

√
p2 + q2/p. Since we get the values of EI, FG and CE. We can

get the value l cause l/EI = FG/CE. So we get the equation (47) to compute
the value of l.

l =
n
√
p2 + q2

p−
√
3
3 q

(47)

39



O

H

A

B

C

F

G

E
D

I
θ

Figure 27 – Case 4. q′′

|p′′| < 1 and p < 0, q > 0

Next, it is like Case 3. Before we get the value of HA, we need to know the
value of AB which equals to CD. And CD = CI × sin θ. So the equation for
AB is (48).

AB =
nq√
p2 + q2

(48)

Finally, we can get the value of HA. The idea of area relationship is still
used. From the equation

√
3
2 n

2− l×AB = 2×HA× l, we can get the equation
(49) for HA.

HA =

√
3np− 3nq

4
√
p2 + q2

(49)

Finally, we can get the value of l, HA and HB = HA+ AB from equation
(47), (49) and (48). With these parameters, we can give a solution of function
(37) when given a value of x. This is the end of Case 4.

Case 5: q′′

p′′ ≥ 1 and p < 0, q > 0

From Fig 28, we can see that tan θ = q
p , and sin θ = q√

p2+q2
. We also know

that l = JC = JF/ sin θ. Then we get the equation (50) for l

l =
n
√

3
√
p2 + q2

2q
(50)
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Figure 28 – Case 5. q′′

p′′ ≥ 1 and p < 0, q > 0

Next, we need to know the value of AB. Notice that GF = n/2 = FC+CG,
while CG = CE/ sin θ, CE = AB and CF =

√
3
2 n × tan θ. So we can get the

value of AB by equation (51).

AB =
n(q −

√
3p)

2
√
p2 + q2

(51)

At last, we use the same idea as usual – the relationship of area to get the
value of HA. From the equation

√
3
2 n

2 − 2× 1
2 × l×AB = 2×HA× l. We get

the equation (52) for HA.

HA =
(q +

√
3p)n

4
√
p2 + q2

(52)

Finally, we can get the value of l, HA and HB = HA+ AB from equation
(50), (52) and (51). With these parameters, we can give a solution of function
(37) when given a value of x. This is the end of Case 5.

At the end, it is interesting that we only considered the direction with q > 0.
Cause the Farey Series we use only generates the directions in the range [0, π].

Length in Hexagon Now we have the function of the length in parallelo-
gram. Our job becomes how to combine the different lengths in different paral-
lelograms. We already know the direction (p′′, q′′) given the value (p′, q′). And
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Figure 29 – The decomposition of an hexagon

the value of n is also given6. The job now is to give different values of x accord-
ing to different parallelograms. From Fig 24 we can see that the value of x for
one parallelogram is the distance to the center point H in the 1-Dimension pro-
jections, which is equivalent to the distance between to projection angle (p′, q′)
and the centers of the parallelograms. It is more clearly in Fig 29.

Let us suggest that the function (37) as P (p′′, q′′, n, x). So the final function
for getting the length in an hexagon is (53).

L(x, y, p′, q′, k, l, n) = P (T (p′, q′), n, xdis1)+P (T (p′, q′), n, xdis1))+P (T (p′, q′), n, xdis1))
(53)

where

T (p′, q′) = Tr×
(
p′

q′

)
,where Tr = T1 if it is first parallelogram, otherwise Tr = T2

(54)
and the values of xdis1, xdis2 and xdis3 can be got from equation (55).

D(x, y, p′′, q′′, k, l) =
| − p× centerx + q × centery + b|√

p2 + q2
,where b = py − qx

(55)
6We will give the value of n in Section 3.4.3
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Figure 30 – The lines with direction (3, 1)(hexagonal direction) in the hexagon
at origin points

where the value of (x, y) means the point that the projection line qX−pY +
b = 0 go through. And for the value of (p, q), we use equation (32) to transfer
it from hexagonal lattice to square lattice.

And the value of (k, l) is the center coordinate of one hexagon that the
projection line go through. With the value of (k, l), we can get the center co-
ordinate (centerx, centery) of different 3 parallelogram. For parallelogram 1,
the center coordinate is (k′−1/6, l′+ 1/6). And for parallelogram 2 and 3, they
are (k′ − 1/6, l′ − 1/3) and (k′ + 1/3, l′ + 1/6). Here (k′, l′) is the coordinate
that transferred from square lattice coordinate (k, l) using equation (34).

Kernel Generating We have the function (53) to get the length in an hexagon
now. Our next step is to get the kernel. The generating of the kernel can be
considered as following: with a given direction (p′, q′). we can get how many
lines go through the original hexagon. It is clear to see Fig 30.

In Fig 30, there are 3 lines that go through the hexagon. With the function
we previously mentioned, we can easily get their lengths in the hexagon. And
these lengths consist of our kernel, that means kenerl = (length1, length2, length3).
But the question is how to determine the numbers of lines that go through the
hexagon? We can see that the kernel is self-symmetric. So we only need to get
half of the part of the kernel.
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Figure 31 – The area of needed hexagons for generating kernel

In Fig 31, the direction is (5, 4). We can see that only the triangle area OAB
might give an valid length (the length is greater than 0) in the hexagon at origin
point(the zero point o). That means we only need to check the direction (p′, q′)
which go through the point coordinate (x′, y′) in the range of p′y′ − q′x′ < 0
and 0 ≤ x′ < p. So only the points a1(4, 3), a2(3, 2) and a3(2, 1) satisfy the
restrictions.

After we found these points, we can use the function (53) to get the lengths
and use these lengths to generate the kernel. Before we generate the kernel,
the lengths we have got should be sorted twice. The first time is by descend
order d_order and the second time is by ascend order a_order. So the kernel
is [a_order, center_line, d_order]. The center_line is the length from the
line in the same direction but go through the origin point. And in order to get
the exactly result, we need to normalize the kernel by the equation (56), which
makes

∑
(kernel[1 : n]) = 1.

kernel[1 : n] =
kernel[i]∑n
i=1 kernel[i]

(56)

3.3.3 Convolution with the Kernel

Since we have got the kernel, we can use the same idea as we used in the Spline
0 Mojette transform in square lattice. We convolve the bins from the Dirac
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Figure 32 – Shepp-Logan phantom example. The size is 256× 256.

Mojette transform in hexagonal lattice with the kernel. And then we get the
bins for Spline 0 Mojette transform in hexagonal lattice.

3.4 Interpolation in Voronoi Cells
3.4.1 Shepp-Logan Phantom

The Shepp-Logan phantom[9] is consisted by 10 different ellipses. The gray
level in each ellipse is different. And all the information of each ellipse is given
such as the major axis, center and rotation angle θ.

Because every parameter is given, we can easily get the ground truth for com-
parison. It is quite useful when we want to compare the different transformation
methods either in 2-Dimension or in 3-Dimension. But here we only consider
the 2-D condition. Fig 32 shows the Shepp-Logan phantom of size 256× 256.

3.4.2 Shepp-Logan in Square Lattice

Since we have all the parameters of the 10 ellipses, we can easily draw the
ellipses in the plane. But how can we use the square lattice to represent those
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ellipses? Here we defined that the area of each Voronoi Cell is 1. And let us
suggest the density of ellipse (in this thesis, the density is the gray level of the
image) is v. If the whole cell is inside the ellipse, we can say that the area of
the Voronoi Cell, we can also say the Square, represents the exactly the same
value as the region in ellipse. So the value for the square is 1× v = v.

But in fact things do not go such easily. Not all of the squares are inside the
ellipse fully. As shown in Fig 33, the square labelled 1, 2, 3 are fully outside of
the ellipse border and 7, 8, 9 are fully inside the ellipse. So the value for them
is quite easy to get. They are 0 and v respectively. But for 4, 5 and 6 squares,
only a part of them inside the ellipse. What is the proper value for them?

One solution for them is to compute the area of region inside the ellipse. It
is quite accurate but hard to operate. And the computation is time-consuming.
Obviously, this is not a good idea for implementation.

Our other option is to split the square into small squares to check whether
the centers of the small squares are inside the ellipse. For any of them is inside
the ellipse, we increase the counter by 1. After the iteration of all small squares,
we check the value of counter which means the number of small squares that
are inside the ellipse. Let us suppose the value of counter is n. And the total
number of small squares are m. Then we get the suitable value for this cell:
value = nv

m . Notice that the value of m should be 1, 4, 16, 25, ... which are the
power of Natural Number. If we get a greater m, which means we divided the
square into more small squares, we will get more accurate result, but it will
spend more time to calculate the result.

Example It is easier for us to understand by an example. We still use Fig 33
as illustration. Here we split the square into 4 parts. So the value of m is 4.
There is no doubt for the small Squares 1, 2, 3 and 7, 8, 9. The values are either
0 or v. For the Square 4, we find 4 points are all inside the ellipse, including
the one on the border. So the value of Square 4 is 4/4 × v = v. And it is the
same for Square 5. But for Square 6, only one point are inside the ellipse. So
its value is 1/4× v = v

4 .

3.4.3 Shepp-Logan in Hexagonal Lattice

We face the same question when we change the lattice form square to hexagon.
In order to make a valid comparison with square lattice, we also assume the area
of an hexagon is 1. So here we can get the length of the edge in the parallelogram
which have not given in Section 3.3.2 and Equation 53. From the Fig 22, we
know the area of each parallelogram is 1/3 cause the area of the whole hexagon
is 1. We still suppose that the edge of the parallelogram is n. And we can
have the equation

√
3
2 n

2 = 1
3 . Then we get the value of n which equals to√

2
3
√
3
≈ 0.6204.
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Figure 33 – The method of fill the Shepp-Logan phantom with square lattice
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Figure 34 – The method of generating valid points in an hexagon

Since we get the value of n, we can know the center coordinate of each
hexagon. The idea is the same. We need to divide one hexagon into small
pieces. But we can not divide the hexagon into smaller hexagons(those smaller
hexagons should in the same size) like that we did in squares(one square into
smaller squares in same size). But we can split the hexagon into triangles in
same size.

As shown in Fig 34, the first level is 6 triangles which is shown in solid lines.
And the next level is 24 triangles with dotted lines. Notice that when we go to
the next level, one triangle can split to the same 4 triangles. So the number of
points should be 6× 4k−1, k > 1, where k is the level we want.

Since we have got the way of splitting the hexagon, now our goal is to find
the points for check if they are inside the ellipse. At first we think it is better
to choose the gravity centers of those triangles as we did in square lattice. But
it is hard to operate and we choose another simple but still effective way: find
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Figure 35 – The method of fill the Shepp-Logan phantom with hexagonal lattice

the points on the Median Line of those triangles. And the points locate exactly
on the middle of the those Median Line. Seen from Fig 34, for the first level 6
triangles, those points locate on Line AB and its horizontal symmetry. And for
the second level 24 triangles in dotted line, the points are on line CD and EF
and their horizontal symmetries.

After we get the coordinate of the points, we need to check if they are inside
the ellipse. The trick is the same as we did in square lattice. But the number
of points are not the same. Here the possible point numbers are 1, 6, 24, 96, ....
Then we can get the number of points which are inside the ellipse l, and its
total number of points m. we now get the suitable value for the hexagon cell:
value = lv

m , where v is the density or gray level as we mentioned in previous
section.

Example In order to get a better understanding, we will get an example.
The ellipse border and the hexagons are shown in Fig 35, We have labelled the
number of each hexagon on the left. For the values of those hexagons which are
completely outside or inside the ellipse are certain–0 for the former and v for the
latter. But for the Hexagon 1, 2, 3, ... and so on, a part of the hexagon region is
inside the ellipse. In this example, we only divide one hexagon into 6 triangles,
which means there are only 6 points need to be checked. Here we only take the
first 3 hexagons to calculate. For the first hexagon, there are 2 points inside the
ellipse, so the value is 2/6× v = v

3 . And for the second hexagon, there are still
2 point inside the ellipse. So the value is the same as the first one–v3 . But for
the third one, there is only one point inside. Its value is v

6 . And for saving the
time, we do not continue to other points. They are based on the same idea.
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3.5 Conclusion of the Jobs
In this section, we have addressed the works that we have done. We changed the
Farey Series from square lattice to hexagonal lattice and give the transformation
matrix to achieve the goal. Then we found that the Dirac Mojette transform
in hexagonal lattice is the same as the one in square lattice. So our job focused
on the Spline 0 Mojette transform. And then we gave the way of computing
the kernel for the convolution in Spline 0 Mojette transform. At last, we gave
the way that filling the values of the cells in both square lattice and hexagonal
lattice.
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4 Experiments

4.1 Getting Ground Truth
At the beginning of the experiments, we have to get the Ground Truth. Since we
have used the Shepp-Logan phantom to generate the testing data, all parameter
about the ellipses are known. Our job now is only to get the length inside each
ellipse and multiply the length with its density or gray level (In order to get a
better understand, we will use gray level to instead of density in the following
part).

But before we get the length in the ellipse, we need to know the expression of
the ellipse. In the paper of Shepp-Logan phantom, the author list 5 parameters
for each ellipse. They are center (cx, cy)–the coordinate of gravity center, Major
Axis a–the length of the major axis, Minor Axis b–the length of the minor axis,
θ–the rotation of the ellipse, and gray level–the density that we have mentioned
above.

With those parameters, we can address the expression of the ellipse like equa-
tion (57). And we also can get the function for a certain line. Because the
direction is the projection direction, and we know the certain point that the
line go through. So the function of the line is shown in equation (58).

[cos θ(x− cx) + sin θ(y − cy)]2

a2
+

[cos θ(y − cy)− sin θ(x− cx)]2

b2
= 1 (57)

qx− py + b = 0, (58)

where b = p× oy − q × ox, (ox, oy) is the coordinate of a given point.

With Function (57) and (58), we can the the intersection point(s). There are
3 cases. The first one is that there is no solution for the 2 functions, which
means that the intersection point of the ellipse and line does not exist. The
second one is that only one point exists. So the length in ellipse is 0. The
last one is that there are 2 intersection points, and the length in ellipse is the
distance between 2 points. As shown in Fig 36, the length in ellipse is AB and
also the distance between point A and B.

In Function 58, we mentioned that the value of (ox, oy) are given. We extract
those coordinates from the edge of the matrix. For example, a 256 × 256 im-
age, we start from coordinate (−127, 128) and go straightly down to coordinate
(−127,−127) and then go straightly right to (128,−127). The step of movement
is a parameter. If it is one, we can get totally 128 + 128− 1 = 511 coordinates.
So we can test 511 lines to get the ground truth distribution, which will be
used for comparison. And if the step is 0.5, the number of lines can increase to
(x+ y − 1) ∗ (1/steplength)− (1/steplength − 1) ∗ 2) = 1020, where x = y = 128.
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Figure 36 – The illustration of computing ground truth

Since we get the ground truth and the bins including bins of Dirac and Spline
0 in both square lattice and hexagonal lattice, we can compare them by Cor-
relation Coefficient(CC)7, which will check the linear relationship between the
data and the ground truth. The example of bins and ground truth are shown
as Fig 37.

4.2 The Experiments in Circles
4.2.1 The Effect of Valid Points

Let us start from an easy way. We do not test with the ellipses at first,
but we start with a circle. At the beginning, we will test the effect of the
number of valid points. As we mentioned at the last part of previous section,
in order to fill those cells we divide the hexagons or square into small pieces.
Here for square lattice we have tested the following numbers of valid points:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]. And for hexagonal lattice we have tested the
numbers like [1, 6, 24, 96, 384, 96∗42, 96∗43, 96∗44]. And the result are shown in
Fig 38. The y axis stands for the CC value of certain valid point number. The x
axis means the location in testing ranges(e.g. 1 mean the first number of testing
range [1, 4, 9, 16, 25...] or [1, 6, 24, 96, 384...] according to different lattices).

7In the following sections, we will use CC instead of Correlation Coefficient
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Figure 37 – The plotting of the bins
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Figure 38 – The effect of valid points
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(a) Results in square lattice
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(b) Result in hexagonal lattice

Figure 39 – The effect of different directions in both square and hexagonal lattice

Seen from the Fig 38, we can see that the CC values of hexagonal lattice
are totally higher than those of square lattice. And it is interesting that in
square lattice, the values drop with the increasing number of valid point. The
reason why it drops and why the hexagonal lattice is better maybe due to the
excellent perform of the hexagonal lattice on the previously mentioned Covering
and Packing problems.

4.2.2 The CC on Different Directions

In this experiment, we will test the CC by different directions which generate
by Farey Series. The Fig 39 shows the results of the experiment. We have gener-
ate the directions from 0 to π

2 (or 0 to 2π
3 in hexagonal lattice) by F (16), which

is the direction (p, q) ∈ [(1, 0), (16, 1), (15, 1), (14, 1)...(1, 1), (5, 8), (3, 5)...(0, 1)].
And of cause, those direction expressions are in their coordinate system. Before
using the direction in hexagonal lattice, we need to transform the directions into
ordinary square coordinate system by the transform matrix (32).

In Fig 39, y axis represents the CC value. And x axis means the location of
the projection direction in F (16). For example, the 1 means the first array in
F (16) which is (1, 0).

From the figure, we can see that the CC value of Spline 0 Mojette transform
in both square and hexagonal lattice are greater than those of Dirac Mojette
transform. It proves that the Spline 0 Mojette transform performs better than
Dirac Mojette transform either in square lattice or in hexagonal lattice. And it
is much more stable than those in Dirac.
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Figure 40 – The CC values of an ellipse in square lattice

Through we seen the values drop and increase sharply in both 2 figures, we
notice that the real difference in digits are not so great. The highest one in both
2 figures are nearly 1 and the lowest ones are around 0.92 and 0.95 respectively.
It is understandable that for a circle any direction is the same in getting the
length in it. And we also can see that the values in hexagonal lattice are
totally above those in square lattice, which also proves that hexagonal lattices
performs BETTER. We also notice that the highest value for both are in the
same direction – (1, 1) in their own coordinate system. It is interesting that the
CC values near (1, 1) drop and those near (1, 0) and (0, 1) get high CC value.
We have not got any exactly explanation for it yet. Maybe it is due to the
missing directions in Farey Series (Because they are discrete directions) or the
cell value in the border changes sharply.

4.3 The Experiments in One Ellipse
Since we have got the first results from the previous simple experiment. Now

we can go to a more complex one. In this experiment, we change the circle to
an ellipse which is the first ellipse in Shepp-Logan Phantom. We also need to
test the CC values in different directions. Here the same as we did in the last
experiment, we use F (16) as the directions from 0 to π

2 . The results are shown
in Fig 40 and 41.

In both Fig 40 and 41, y axis represents the CC value. And x axis means the
location of the projection direction in F (16). For example, the 1 means the first
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Figure 41 – The CC values of an ellipse in hexagonal lattice

array in F (16) which is (1, 0).

From the figures we can see that the Spline 0 Mojette transform performs
better than Dirac Mojette transform both in 2 lattices. And it is much more
stable. And for the directions in the first ten position of the Farey Series, the
CC values of square lattice are better than those of hexagonal lattices. But the
rest are the opposite. Although for both hexagonal lattice and square lattice,
they have their own strong aspect(directions), in general we can still say that
the hexagonal lattice plays BETTER perform.

4.4 The Experiments in Shepp-Logan Phantom
Now the warm-up is over. We need to go to the experiments on Shepp-

Logan Phantom. In this experiment, we change the single ellipse to the whole
10 ellipses of Shepp-Logan Phantom. The same as we did before, we need to
test the CC values in different directions. We still use F (16) to generate those
directions from 0 to π

2 . The results are shown in Fig 42 and 43.

In both Fig 42 and 43, y axis represents the CC value. And x axis means the
location of the projection direction in F (16). For example, the 75th direction
means the first array in F (16) which is (0, 1).

From the figures we can see that the Dirac Mojette transform really plays
bad. Its CC values are lower than those of Spline 0 in both 2 lattices obviously
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Figure 42 – The CC values of Shepp-Logan Phantom in square lattice
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Figure 43 – The CC values of Shepp-Logan Phantom in hexagonal lattice
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and more unstable. Compared with the result of the last experiment, we can
see that the trend of CC are totally the same. But we can also notice that the
CC value are lower than the last one because of the effect of multiple ellipses.
Although the average of the CC value are both reduced, but the CC in the best
projection direction (1, 1) in different respective coordinate system still keep
high value, which approximately equals to 1.

Comparing the 2 different data, we find that the CC values in hexagonal
lattices are all above 0.75, especially for Spline 0, the values are all above 0.8.
They are obviously higher than those in square lattice. Although it is the same
as we found in last experiment–the directions in first ten position of Farey Series
in square lattice got higher CC than those in hexagonal one, it can not change
the fact that hexagonal lattice really plays BETTER than square lattice. It is
even better in Shepp-Logan Phantom than in one single ellipse.

4.5 Conclusion of Experiments
In this section, we have addressed the way of getting ground truth. And we also
proposed the method of comparing the bins and ground truth using Correlation
Coefficient(CC). We have tested the result on three objects–one circle, one el-
lipse(the first ellipse in Shepp-Logan Phantom) and the Shepp-Logan Phantom.
In these experiments, we found that hexagonal lattice really play better in both
filling cells and the linear relationship with ground truth than square lattice.

58



5 Conclusion
In this thesis we have proposed a new way of Mojette transform using not

square but hexagonal lattice. In order to get a better understanding, we dis-
cussed 2 main knowledges that are strongly related to our topic at first. Then
we addressed the improved algorithm of generating Farey Series in hexagonal
lattice and its transformation matrix. And we represented the method of Dirac
and Spline 0 Mojette transform in hexagonal lattice. Especially in the Spline 0
Mojette transform, we have changed the algorithm of generating the kernel. We
also gave a way of computing the ground truth which is used in experiments and
how we compare the ground truth with our data. Finally during experiments
on 3 different object, we found that hexagonal lattice really play better in both
filling cells and the linear relationship with ground truth than square lattice.

Because of insufficient time, we did not go to back projection part of Mojette
transform. Our next step can focus on this part. Besides, we noticed that
the algorithm for generating kernel is quite complex, we need to find a way
to simplify it. And as we mentioned in experiments part, we have found the
unusual decreasing area of Correlation Coefficient value near the respective (1, 1)
direction in both square and hexagonal lattice. So this can be our another goal.
And finally, from the results of experiments we can see that both 2 lattices
have their own strong directions, which means in those directions the CC value
is better than another one. It is also interesting if we can combine 2 lattices
together to get a better performance.
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