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Abstract 
This paper presents a method for 3D visualization of the molecule based on the lattice vector 

quantization (LVQ). The 3D visualization of the molecules involes executing a merging procedure 

for the corresponding raw data. The whole procedure makes use of LVQ for designing the 

codebook. The merging procedure includes calculating the average of the blocks and comparing 

the values to a threshold. We also use the iso-contours plot to display the molecules. We use the 

hydrogen fluoride (HF ) and water ( 2H O ) molecules in our experiments. The experimental 

results are given through the histograms and LVQ plots. 

Keywords: vector quantization, lattices, merging, tree structure, molecule,  

MED (molecules electron density) 

 

 

 

Résumé 
Cet article présente une méthode pour la visualisation 3D de molécules basée sur la quantification 

vectorielle avec lattices (réseaux réguliers de points). La visualisation 3D de molécules nécessite 

l’exécution d’une procedure qui fusionnent les données. La procédure de fusion implique le calcul 

de moyennes et d’erreurs sur les blocs, et des comparaisons à un seuil. Nous utilisons également 

des iso-contours pour afficher les molécules. Nous utilisons pour mos experiences, les molécules

HF et d’eau ( 2H O ). Les résultats des expériences sont données avec des histogrammes et des 

images résultats (visualisations de molécules)  

Mots-clés :quantification vectorielle, lattices (réseaux réguliers de points), fusion,  

structure d’arbres, molécules, champ de densité électronique 
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1. INTRODUCTION  

The context is about the computer modeling of organic molecules in biochemistry. The vector 

quantization (VQ) is commonly used in telecommunication or compression for the representation 

of data. Here we want to use the VQ for the 3D visualization of organic molecules. The problem is  

how to find a good criterion to process the raw data. In practice, the raw data are spread out in the 

electronic density map that corresponds to the molecule. By using the VQ, we want to merge the 

3D space in cells whose size will be function of the local density of the points. Exactly we will use 

an approach based on a tree-structured lattice VQ. Exactly, we plan to use a merging VQ method 

for the visualization of the molecules. 

 

This paper mainly contains three chapters. The following chapter is the background that mainly 

describes currently fashion lattice for VQ such as the cubic lattice and some basic principles. The 

approaches and implementation we employed are introduced in the second chapter. The third 

chapter introduces the results of the experiments of different steps. Some conclusions and future 

works are illustrated in the last chapter. 
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2. BIBLIOGRAPHY  

2.1. Scalar Quantization  

Quantization is the heart of analog-to-digital conversion. In its simplest form, a quantizer observes 

a single number and selects the nearest approximating value from a predetermined finite set of 

allowed numerical values. Ordinarily the input value is analog; that is, it may take on any value 

from a continuous range of possible amplitudes; furthermore, the output is digital, being uniquely 

specified by an integer in the set{1,2,3,..., }N , whereN is the size of the set of output values. 

More precisely, we define an N-point scalar (one-dimensional) quantizerQ as a mappingQ : 

C→ℝ whereℝ is the real line and 

1 2 3{ , , ,..., }NC y y y y= ⊂ ℝ                       (1) 

is the output set or codebook with size| |C N= . The output valuesiy , are sometimes referred to 

as output levels, output points, or reproduction values. 

 

 

Fig.1 Example of Scalar Quantization 

For example: in Fig.1, the input isx , and 0 1{ , ..., }iy y y is the output set or codebook. 

0 1{ , ..., }id d d this set is the boder of the decision cells. 
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We define the resolution or code rate,r , of a scalar quantizer as 2logr N= bit/simples
 
which 

measures the number of bits needed to uniquely specify the quantized value. The resolution 

indicates the accuracy with which the original analog amplitude is described. Specifically, ifr is 

an integer, one could assign to eachiy  a unique binaryr -tuple (by coding the valuesiy  into 

binary vectors in an invertible manner). We define the transmission rate,R , of the quantizer as the 

number of bits transmitted per sample to describe the waveform [1].  

2.2. Vector Quantization  

VQ has been investigated extensively in recent years. Let ( ) : ( (1),..., ( ))x n x x n be a n-component 

source vector with joint probability density function (PDF) ( )Xp x . A VQ of dimensionN and 

sizeL is defined as a function that maps a vector x into one ofL reproduction vectors1,..., ny y

belonging to k
ℝ . We have: 

                            : kQ D→ℝ  

( )x Q x y→ =  

WhereD , the set of reproduction vectors or codewords, is the codebook. This chart implicitly 

determines a partition of k
ℝ in L non-overlapping Voronoi regionsiC defined by the equation 

(where
1/

1
( ) ( | | )

pk p
p ii

L x x
=

= ∑ is the norm):    

2 2

/ ( )

( ) ( ),

k
i

i
i j

x Q x y
C

L x y L x y j i

 ∈ = =  − ≤ − ∀ ≠  

ℝ
            (2) 

The total distortion [per dimension] is given by:  

2 2
1

1 1
{ ( ( ))} ( ) ( )

i

L

i XC
i

D E L X Q X L x y p x dx
k k =

= − = −∑∫           (3) 
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In this transmission and storage context, a binary word or index ic of length ib bits is assigned to 

each codewordiy
 
[1]. 

 

 

Fig.2 principle of vector quantization [2] 

For example, in Fig.2, the Voronoi cellsiC divides the input space into several small spaces, we 

use iy stands for the cell iC .  

 

 

Fig.3 diagram of vector quantizer [2] 
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In this diagram, when the input vectorx is coming, the encoder scans the codebookD , and find 

the closest vectoriy for the input. Then it just stores the index ofiy , and sends the index to the 

decoder. When the decoder received the indexi , it scans the codebookD , which is the same 

codebook as before. After that, it finds the vector in the codebook, and sends the outputiy
.
 

 

2.3. Codebook Design 

2.3.1. The LBG （（（（Linde,Buzo,Gray））））method 

 

Fig.4 scheme operating in the LBG algorithm  

LBG algorithm [2] is a optimal method for the codebook design from a training sequence. As the 

Fig.4 shows, the algorithm starts with a training sequence (TS). After a long reduplicate 

processing, the codebook will be optimized. 

 

There are two defects, one is the computation that is very large. Another is because this algorithm 



 

can just produce an optimal codebook for the TS

optimized. 

 

2.4. Lattice Description  

The LVQ is based on the lattices. We are going to describe the lattices. At the beginning, the 

lattices were defined to solve 

problem, and the covering problem.

 

2.4.1. Sphere packing problem

The classical sphere packing problem, still unsolved even today

find out how densely a large number of identical spheres can be packed together. The cubes fit 

together with no waste space in between, we can fill essentially one 

But spheres do not fit together so well as cubes, and there is always some wasted space in 

between. 

                    

Fig.5 two views of the most familiar sphere packing

Two views of the most familiar sphere packing, in which the cente

lattice. This is the packing usually found in fruit stands, in piles of cannon balls on war m

or in crystalline argon. The spheres occupy 0.7405… of the space, and each sphere touches 12 

others. (b) shows only the centers of the spheres (the open circles). These centers are obtained by 
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n just produce an optimal codebook for the TS, if we change the TS, the VQ is no longer 

Lattice Description   

he LVQ is based on the lattices. We are going to describe the lattices. At the beginning, the 

lattices were defined to solve mathematical problems like sphere packing problem, kissing number 

covering problem. 

Sphere packing problem 

assical sphere packing problem, still unsolved even today for high space dimension

find out how densely a large number of identical spheres can be packed together. The cubes fit 

together with no waste space in between, we can fill essentially one hundred percent of the space. 

But spheres do not fit together so well as cubes, and there is always some wasted space in 

wo views of the most familiar sphere packing [9]  

Two views of the most familiar sphere packing, in which the centers form the face

lattice. This is the packing usually found in fruit stands, in piles of cannon balls on war m

or in crystalline argon. The spheres occupy 0.7405… of the space, and each sphere touches 12 

others. (b) shows only the centers of the spheres (the open circles). These centers are obtained by 

the VQ is no longer 

he LVQ is based on the lattices. We are going to describe the lattices. At the beginning, the 

problems like sphere packing problem, kissing number 

space dimensions, is to 

find out how densely a large number of identical spheres can be packed together. The cubes fit 

hundred percent of the space. 

But spheres do not fit together so well as cubes, and there is always some wasted space in 

 

rs form the face-centered (fcc) 

lattice. This is the packing usually found in fruit stands, in piles of cannon balls on war memorials, 

or in crystalline argon. The spheres occupy 0.7405… of the space, and each sphere touches 12 

others. (b) shows only the centers of the spheres (the open circles). These centers are obtained by 



 

taking those points of the cubic lattice

packing radius is ρ [9].  

 

2.4.2. Kissing number problem

In three dimensions this asks how many billiard balls can be arranged so that they all just touch, or 

kiss, another billiard ball of the same size. The difficulty 

unique; in fact there are infinitely many ways to arrange 12 billiard balls around another. For 

example, if the 12 balls are placed at position corresponding to the vertices of a regular 

icosahedron concentric with the

many all be moved freely [8]. 

 
2.4.3. The covering problem

Another problem is a kind of dual to the pack

to cover n-dimensional Euclidean space with equal overlapping spheres.

              

Fig.6 Covering the plane with circles. In (a) the centers belong to the square lattice

belong to the hexagonal lattice (b) is a more efficient or thinner covering

In three dimensions the best covering known, which Bambah showed is opti

tree-dimensional lattice coverings, is the body

surprising, since the densest lattice packing is a different lattice, the fcc lattice. In fact the bcc is 
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taking those points of the cubic lattice3Z whose coordinates add up to an even number.

issing number problem 

In three dimensions this asks how many billiard balls can be arranged so that they all just touch, or 

kiss, another billiard ball of the same size. The difficulty arises because the arrangement is not 

unique; in fact there are infinitely many ways to arrange 12 billiard balls around another. For 

example, if the 12 balls are placed at position corresponding to the vertices of a regular 

icosahedron concentric with the central ball, the twelve outer balls do not touch each other and 

  

The covering problem 

Another problem is a kind of dual to the packing problem, and asks for the most economical way 

dimensional Euclidean space with equal overlapping spheres. 

 

Fig.6 Covering the plane with circles. In (a) the centers belong to the square lattice

belong to the hexagonal lattice (b) is a more efficient or thinner covering

  

n three dimensions the best covering known, which Bambah showed is opti

dimensional lattice coverings, is the body-centered cubic lattice. This is at first sight 

surprising, since the densest lattice packing is a different lattice, the fcc lattice. In fact the bcc is 

whose coordinates add up to an even number. The 

In three dimensions this asks how many billiard balls can be arranged so that they all just touch, or 

arises because the arrangement is not 

unique; in fact there are infinitely many ways to arrange 12 billiard balls around another. For 

example, if the 12 balls are placed at position corresponding to the vertices of a regular 

central ball, the twelve outer balls do not touch each other and 

ing problem, and asks for the most economical way 

 

Fig.6 Covering the plane with circles. In (a) the centers belong to the square lattice2Z , in (b) they 

belong to the hexagonal lattice (b) is a more efficient or thinner covering [8]. 

n three dimensions the best covering known, which Bambah showed is optimal among 

centered cubic lattice. This is at first sight 

surprising, since the densest lattice packing is a different lattice, the fcc lattice. In fact the bcc is 
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the dual of the fcc lattice. The covering radius isR  [8]. 

 
2.4.4. Important lattices for the VQ 

Some lattices are important for the VQ because fast quantizing algorithms have been defined for 

them. 

·The lattice nZ  

The set of integers…,-2,-1,0,1,2,3,…is denoted by Z, and  

                     1{( ,..., ) : }n
n iZ x x x Z= ∈                            (4) 

is the n-dimensional cubic or integer lattice. (2Z is better called the square lattice, as seen in 

ordinary graph paper.) Kissing numberτ =2n, and the minimal vectors are (0,…,-1,..,0). The 

packing radiusρ =1/2, the covering radius R= π /2=ρ n , the density 2 n
nV −∆ = and the 

center density 2 nδ −= . Thus Z has density∆ =1, but the densities of2Z , 3Z and 4Z are only / 4π

=0.785…, / 6π =0.524… and 2 / 32π =0.328… . A typical deep hole is (1/2,1/2,…,1/2), and the 

Voronoi cell are cubes. nZ is self-dual. Its group consists of all permutations and sigh changes of 

the coordinates, and has order2 !n n .  

 

·The lattice nA  

For 1n ≥ ,    1
0 1 0{( , ,..., ) : ... 0}n n

n nA x x x Z x x+= ∈ + + =                     (5) 

which uses n+1 coordinates to define an n-dimensional lattice. 

 

Of course 1A Z≅ . 2A is equivalent(or similar) to the familiar hexagonal lattice. The hexagonal 

lattice may be spanned by the vectors (1,0) and (-1/2, 3 /2). Both 3A  and 3D are equivalent to 

the face-centered cubic lattice (of fcc), illustrated in every chemistry textbook, and found in the 

pyramids of oranges on any fruit stand. The lattice dual to nA is  

                        *

0

([ ] )
n

n n
i

A i A
=

= +∪                                (6) 
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both *
3A and *

3D are equivalent to the body-centered cubic lattice (or bcc), also familiar from 

chemistry. 

 

·The lattice nD  

For 3n ≥ ,      1 1{( ,..., ) : ... }n
n n nD x x Z x x even= ∈ + +  ,                   (7) 

or in other words nD is obtained by coloring the points ofZn alternately red and white with a 

checkerboard coloring, and taking the red points. nD  is sometimes called the checkerboard 

lattice. [9] 

 
2.4.5. The fast quantizing algorithms 

The algorithm for finding the closest point ofnZ to an arbitrary point nx R∈ is particularly simple. 

For a real number x, let 

                           ( )f x = closest integer tox . 

In case of a tie, choose the integer with the smallest absolute value. For 1( ,..., ) n
nx x x R= ∈ , let 

                           1( ) ( ( ),..., ( ))nf x f x f x= . 

For the flowing use we also define( )g x , which is the same as( )f x except that the worst 

coordinate ofx (that furthest from an integer) is rounded the wrong way. In case of a tie, the 

coordinate with the lowest subscript is rounded the wrong way [10].   

····Algorithm 1: to find the closet point ofZn to x. 

Given nX R∈ , the closest point ofZn is f(x). (If x is equidistant from two or more points ofZn , 

this procedure finds the one with the smallest norm). To see that the procedure works, let

1( ,..., )nu u u= be any point ofZn . Then 
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2

1

( ) ( )
n

i i
i

N u x u x
=

− = −∑                          (8) 

which is minimized by choosing ( )i iu f x= for 1,...,i n= . 

·Algorithm 2: to find the closet point ofnD to x. 

Given nx R∈ , the closest point of nD is whichever of f(x) and g(x) has an even sum of coordinates. 

If x is equidistant from two or more points ofnD this procedure produces a nearest point having 

the smallest norm. 

 

The procedure works because f(x) is the closest point of nZ to x and g(x) is the next closest. f(x) 

and g(x) differ by 1 in exactly one coordinate, and so precisely one of ( )if x∑ and ( )ig x is 

even and the other is odd. 

·Algorithm 3: to find the closet point ofnA to x. 

Step1. Given 1nx R +∈ , computes is x=∑ and replace x by 

                ' (1,1,...,1)
1

s
x x

n
= − ×

+
                                 (9) 

Step2. Calculate ' '
0( ') ( ),..., ( ))nf x f x f x= and the deficiency '( )if x∆ =∑  

Step3. Sort the 'x in order of increasing values of '( )ixδ . We obtain a rearrangement of the number

0,1,...,n say 0,..., ni i , such that 

                ' '
01/ 2 ( ) ... ( )i inx xδ δ− ≤ ≤ ≤                               (10) 

Step4. if∆ =0, ( ')f x is the closest point ofnA to x. 

If ∆ >0, the closest point is obtained by subtracking 1 form the coordinates ' '
0 1( ),..., ( )i if x f x ∆−  

If ∆ <0, the closest point is obtained by adding 1 to the coordinates ' '
1( ),..., ( )in if x f x ∆−  
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2.5. The Lattice VQ (LVQ) 

The LVQ [3][4][5](lattice vector quantization) has been successfully introduced in order to 

overcome the LBG-type algorithm [6] drawbacks. The encoding, based on rounding and scaling 

operations, is simple and independent of the codebook size. There is no need to seek among all the 

reproduction vectors, and practically no norms are computed. Because of the predefined structure 

of the lattice, there is no need to transmit the codebook and no training procedure is required to 

design it. But a lattice can only optimally quantize uniform source and, because of its infinite size, 

it has to truncate to index the codewords. Thus the LVQ of a non-uniform source becomes 

complex. We distinguish the different steps: 

 

1. The lattice choice which defines the space filling advantage (the property is linked with the 

sphere packing problem) of the LVQ. Some best lattices are known for the dimensions 2, 4, 8, 16 

and 24, because they offer the smallest distorsion when quantizing an uniform source associated 

with the lattice kZ , kD , 8E and 16Λ , are the main criterion for the selection; 

 

2. The determination of the codebook shape. When truncating the lattice, the aim is to map the 

most probable distribution of the vector source. The number of the remaining lattice points in the 

codebook depends on the allocated rate; 

 

3. The source normalization. The fast quantization algorithm is used, once the source 

normalization has been achieved. We can describe this operation as a projection of the input 

vectors into the truncated lattice volume. A scaling function takes place before the quantization 

module. 

 

4. The labeling of the lattice codebook points. If the encoding step is simpler with a lattice, the last 

step of indexing the codewords becomes complicated when the codebook size is large. The index 

has to be calculated, and the methods aim to realize the best tradeoff between the calculation cost 

and the conversion table storage. If no training procedure has been required yet, it is ususally used 
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in order to carry out the entropic index associated with the lattice points.  

 

The inverse quantization procedure consists in decoding the received index, finding the 

corresponding lattice point and re-normalizing it. 

 

The choice of the metric2L (respectively 1L ) permits to shape the codebook into an hyper-sphere 

(respectively an hyper-pyramid) and to count the points. As a result the basic LVQ is only adapted 

for symmetric and Gaussian (respectively Laplacian) source distributions which map such a 

codebook. This restrictive modelization of the source offers some accurate and sophisticated 

methods to achieve the LVQ design, but the well-perform condition collapses considering a 

complex source coding at low bit rate. With the TSLVQ, based on an embedding lattice strategy, 

simple procedures are implemented to overcome these drawbacks.[7] 

 

2.6. Tree-Structured LVQ (TSLVQ) 

We are going to use a particular LVQ, namely the TSLVQ. So we will describe it. 

2.6.1. Hierarchical set of embedded lattices 

The goal is to use the hierarchical set of embedded lattices which is achieved such as it is possible 

to embed a lower scale truncated lattice into a cell of the next higher scale truncated lattice. So the 

scaling factor between two consecutive lattices of the hierarchy isb (see Fig.7).  
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Fig.7 hierarchical set corresponding to the squared lattice (b=3) [7] 

2.6.2. Quantization procedure 

The principles of the quantization are: [7] 

1. a source vector is projected into a first truncated lattice; 

2. to get a finer quantization, another lower scale truncated lattice is embedded into the Voronoi 

cell where lies the input vector; 

3. the previous operation can be repeated. Obviously it is more convenient to deal with the input 

vector scale than to use several lattices with different scales. 

The Fig.8 illustrates the resulting multi-stage quantization procedure using successive scaling and 

translating operators. We have: 

·the scaling factor used to project the input vector x into the first truncated lattice: 

                         
2max

b
F

L

ρ×=                                      (11) 

where 2maxL is the maximal 2L norm of x, this constant energy can be estimated from a training 

sequence. So all the inputs are projected into a hyper-sphere whose radius equalsb ρ× because: 
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         2 2 2 2 22

1 1 2max

( )
( ) ( ) ( )

k k

i i
i i

L X
F x F x b b

L
ρ ρ

= =

× = × = × × ≤ ×∑ ∑               (12) 

·in the normalized space, the scaling factor used to project each translated vector into the next 

truncated lattice of the hierarchy: b. 

·the reproduction vector of the truncated lattice for the j-th stage: jy . 

 

The final value of the reproduction vector associated with x will be: 

                         
1

1 j

j
j

y
y

F b −= ×∑                                 (13) 

where j points out the number of the stage. Note that at each step the same fast quantization 

algorithm is used.  

 

(a) the principle of the TSLVQ [7] 

 

(b) 

Fig.8 Quantization scheme 

In Fig.7, we use different lattices with different scales. In Fig.8, for the different stages, we use the 

same lattice with the same scale, but different input vectors with different scales.  

2.7. Tree-structured Codebook 

2.7.1. Tree-structured codebook 
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The codebook has a B-ray tree structure, where B corresponds to the number of points of the basic 

truncated lattice. Each lattice point (i.e. each reproduction vector) and its Voronoi cell are 

associated with a tree node. The 0 vector and the whole source space are associated with the root 

tree. The possible children of a node are the points of the lattice which is embedded into the parent 

Voronoi cell. A stage in the tree corresponds with a scale in the lattice hierarchy: the deeper is the 

tree, the finer is the resolution. The final codebook is the set of terminal nodes or leaves.[7] 

2.7.2. Unbalanced tree-structured codebook 

Two classical strategies have been explored in order to design an unbalanced tree according to a 

distortion v.s rate tradeoff: a tree pruning, or a tree growing approach. It aims to split the vector 

space region where the distortion is high, and to avoid simultaneously a prohibitive cost in rate.[7] 

To our work, we are going to use a tree pruning procedure to design an unbalanced tree-structured 

codebook which is adapted for the visualization of the molecule data. 

3. 3D VISUALIZATION OF MOLECULES USING 

VQ 

3.1. Description of Testing Data 

At the beginning of the experiment, we should choose the appropriate testing data, it is described 

as follows. 

3.1.1. General presentation 

A molecular property of great interest to chemists is the electronic charge densityρ . MED 

(molecular electron density),( )rρ , is a real, non-negative and continuous scalar function of the 

position vector r. Further, it can also be determined experimentally using a combination of X-ray 

and neutron diffraction experiments. MED is also employed as a basic variable in the density 

functional formalism. It is a usual practice to plot contour maps of ( )rρ for its visual 

interpretation. However, for quantitative characterization of this scalar field, one has to take 

recourse to locating and characterizing the respective CP’s (critical points). The structure and 
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reactive sites of a molecule can be well-described by MED and its associated scalar fields such as 

its Laplacian ( 2 ( )rρ∇ ) and energy-density distribution. Bader et al. pioneered such studies and 

have successfully employed the topography of( )rρ for an exhaustive study of molecular 

structures. Their investigations have revealed that a bond in a molecule is generally represented by 

a saddle in ( )rρ . Other parameters such as bond ellipticity and bond orders which are expressed 

respectively in terms of eigenvalues and MED values at bond CP are also quite useful in the study 

of phenomena like charge delocalization and have been applied for a wide variety of aromatic 

systems. The position of the bond CP has been used as a measure of its polarity. In summary, 

MED has been widely used for the study of molecular structure. [11] 

 

In fact, the electron density is nowadays regarded as the fundamental observable of the molecular 

universe.[12][13] We have a example for the hydrogen fluoride (HF ) molecule as follows: 

 

Fig.9 (density distribution of theHF molecule) 
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3.1.2. How is the data produced 

Data is in our case produced by computation. Density functional theory (DFT) was used to solve 

self-consistently the time-independent Schrödinger equation within the Gaussian quantum 

chemistry computational package [14]. The calculations require an initial structure that is 

represented in Cartesian coordinates in an input file which can be constructed with a number of 

graphical molecular building and visualization tools. Following energy minimization of the input 

geometry, the electron density is obtained from single point calculations.  

 

The Gaussian computational quantum chemistry package is a popular simulation package due to 

the fact that it is implementing a wide variety of computational approaches such as semi-empirical, 

Hartree-Fock (HF), DFT (density function theory), and several correlated post-HF methods. 

Gaussian can be used to model molecular energies and structures (transition states, reaction 

products), molecular orbitals, atomic charges and electrostatic potential, vibrational frequencies, 

and NMR (nuclear magnetic resonance) properties. Calculations can be carried out on systems in 

the gas phase or in solution, and in their ground state or in an excited state. Gaussian was used to 

calculate the electron densities of some test molecules. 

 

In the last few years, methods based on Density Functional Theory have gained steadily in 

popularity [15]. The best DFT methods achieve significantly greater accuracy than Hartree-Fock 

theory at only a modest increase in computational cost. They do so by including some of the 

effects of electron correlation much less expensively than traditional correlated methods.  

 

DFT methods compute electron correlation via general functionals, i.e. functions of the electron 

density. DFT functionals partition the electronic energy into several components which are 

computed separately: kinetic energy, the electron-nuclear interaction, the Coulomb repulsion, and 

an exchange-correlation term accounting for the electron-electron interaction divided into separate 

exchange and correlation components.  
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3.1.3. Data format 

The cube file describes volumetric data as well as atom positions, it originates from the Gaussian 

software package. The file consists of a header which includes the atom information and the size 

as well as orientation of the volumetric data. This is followed by the volumetric data, one scalar 

per voxel element. All aspects of the file are text (human readable), originally the numerical 

values were 5 wide for integers that started each header line (after the first) and floating point 

values were formatted 12.6, that is, 12 characters wide with 6 decimal places.  

 

The first two lines of the header are comments, they are generally ignored by parsing packages or 

used as two default labels. The third line has the number of atoms included in the file followed by 

the position of the origin of the volumetric data. The next three lines give the number of voxels 

along each axis (x, y, z) followed by the axis vector. Note this means the volume need not be 

aligned with the coordinate axis, indeed it also means it may be sheared although most volumettric 

packages won't support that. The length of each vector is the length of the side of the voxel thus 

allowing non cubic volumes. If the sign of the number of voxels in a dimension is positive then 

the units are Angstroms, if negative then Bohr. The last section in the header is one line for each 

atom consisting of 5 numbers, the first is the atom number, second (un-used), the last three are the 

x,y,z coordinates of the atom center. 

Example 

In the following example the volumetric data is a 40 by 40 by 40 grid, each voxel is 0.283459 

units wide and the volume is aligned with the coordinate axis. There are three atoms. 

 

CPMD CUBE FILE [16].  

OUTER LOOP: X, MIDDLE LOOP: Y, INNER LOOP: Z 

    3    0.000000    0.000000    0.000000 

   40    0.283459    0.000000    0.000000 

   40    0.000000    0.283459    0.000000 

   40    0.000000    0.000000    0.283459 

    8    0.000000    5.570575    5.669178    5.593517 
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    1    0.000000    5.562867    5.669178    7.428055 

    1    0.000000    7.340606    5.669178    5.111259 

-0.25568E-04  0.59213E-05  0.81068E-05  0.10868E-04  0.11313E-04  0.35999E-05 

      :             :             :           :            :            : 

      :             :             :           :            :            : 

      :             :             :           :            :            : 

        In this case there will be 40 x 40 x 40 floating point values 

      :             :             :           :            :            : 

      :             :             :           :            :            : 

      :             :             :           :            :            : 

 

3.2. First Visualization 

We take theHF and 2H O molecules for the example. 

 

                           Fig.10.1 (HF molecule) 
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                           Fig.10.2 (2H O  molecule) 

In Fig.10, we can see the shape of the two molecules very clearly. The Fig.10.1 shows a plane at 

x=29 in the Cartesian coordinates for the HF. Accordingly, the Fig.10.2 displays the plane at z=29 

for he 2H O . With different colors, it means the different electron density distribution (EDD). So, 

for the 2H O molecule, the highest density occurs around the Oxygen (O ) atom. 
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                             Fig.11.1 (HF molecule) 

 

                            Fig.11.2 2H O molecule 

In Fig.11, we can use the iso-surface (density) plot to display the molecule. Around the molecule, 

there are some iso-contours which is at [ 0.1 0.05 0.02 0.005 0.002] with the density equals 0.20. 

 



 

22 

 

 

                            Fig.12.1 HF  

 

Fig.12.2 2H O  
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In Fig.12, we combine the Fig.10 and Fig.11. We create a slice and set the iso-contours equals [1.6 

1 0.5 0.2 0.1 0.05 0.02 0.005 0.002].  

 

3.3. The Flow Chart of The Method 

In this part, we will introduce what we plan to do. 

3.3.1. The flow chart of the method 

After preparing for the testing data, we need do some necessary tasks to processing the data. As 

follows, we give the flow char of the method: 

 

 

Fig.13 the whole procedure 

For example, we load the density of the HF molecule. Therefore, we get a 57*57*57 3D matrix. 

And then, we should extend the matrix to the 81*81*81, because in the next processing, every 

13i−  blocks will be merged into one. So the length of the matrix in each direction must be the 

multiple of 3. We can give a more clear explanation in the next section. 

 

3.3.2. The chart of the merging processing 
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Fig.14 the procedure of merging 

The procedure for one loop is as follows: 

1. The input is a 1 1 13 *3 *3i i i− − −  matrix, we call it as A
kd , we sum the every 23i−  blocks, then 

calculating the average
A
kB

j

d
d

k
= ∑
∑

, we can get a 2 2 23 *3 *3i i i− − −  matrix. 
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Fig.15 the procedure of summing 

2. We calculate the error: B A
k j ke d d= − . 

3. If all the values of ke in one block (see Fig.16) are smaller than the threshold, we will merge 

the blocks into a big block; on the contrary, if one of the ke
 
is bigger than the threshold, we 

will keep the density value unchanged. 

 

Fig.16 merging or not merging  

4. We get a new 3D matrix, and continue the next loop. 



 

26 

 

 

Fig.17 tree structure of merging 

 

4. EXPERIMENTS AND RESULTS  

4.1. Set Up For The Merging Algorithm 
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Fig.18.1 error distribution forHF  

In Fig.18.1, we can see the distribution of ke . The threshold of the 4th level of the merging 

processing is 0.1; the threshold of the 3rd level of the merging processing is 0.01. So we can 

deduce that the threshold of the 2nd level is 0.001.  
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Fig.18.2 error distribution for 2H O  

In Fig.18.2, we can see the distribution of 'ie (the error distribution for 2H O ). The threshold of 

the fourth level of the merging processing is 0.2; the threshold of the third level of the merging 

processing is 0.02. So we can deduce that the threshold of the second level is 0.002.  

 

4.2. The Results 

4.2.1. The visualization of the original density 
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Fig.19.1 (the plot of density distribution ofHF ) 

 

 

Fig.19.2 (the plot of density distribution of2H O ) 

In Fig.18, we can observe that most of the values of density are very small. Therefore, for 

visualizing the original density, we just visualize the points whose values are higher than a 

threshold. For theHF molecule, the threshold is 0.35. For the2H O molecule, the threshold is 0.75. 

Fig.19.1 and Fig.19.2 are the visualization of the original density. 
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4.2.2. The visualization of the first and second merging 

 

 

 

Fig.20 the first and second the merging procedure forHF  

Fig.20 shows the plot for the merging procedure using the cubic lattice (HF ).  
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Fig.21 the first and second level of the merging procedure for 2H O  

Fig.21 shows the plot for the merging procedure using the cubic lattice ( 2H O ).  

 



 

32 

 

4.2.3. The visualization of the third merging  

 

Fig.22.1 (the slice atx =29 of the third merging procedure forHF ) 

 

Fig.22.2 (the slice ofz =29 of the third merging procedure for2H O ) 



 

33 

 

In Fig.22, there are three types of cubic. The smallest cubic stands for that the values of the 

density in the cubic are very high. Accordingly, the values of the density in the biggest cubic are 

very small. 

 

4.3. Conclusion and Future works 

Several experiments were done in this paper. Our contribution mostly focuses on using the LVQ to 

visualize the molecule using a merging procedure. 

 

There are 2 steps in the experiment. The first step is to get the testing data, and understand the 

format of the data. Then we should display the distribution of the testing data. In the procedure, 

we use theHF and 2H O molecules in our experiments and analyze the distribution by using the 

histograms. The second step is to find a method for merging the matrix. We calculate the mean of 

the small block, judging merging or not. So in each level we get a bigger block until the procedure 

stops.   

 

Therefore, it is easy for us to analysis the density distribution of the molecule. And it helps us to 

find the regularity. So it’s a good method to deal with the molecule. Certainly, we can do more 

work in the future. For example, we can lead a new parameter which describes the distance 

between the two points that takes into account of the procedure, or improve the criterion of the 

merging processing. 
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