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Abstract

This paper presents a method for 3D visualizatibthe molecule based on the lattice vector
guantization (LVQ). The 3D visualization of the moliles involes executing a merging procedure
for the corresponding raw data. The whole proceduekes use of LVQ for designing the

codebook. The merging procedure includes calcydtie average of the blocks and comparing

the values to a threshold. We also use the ismoostplot to display the molecules. We use the
hydrogen fluoride HF ) and water H,0) molecules in our experiments. The experimental
results are given through the histograms and L\Mgspl

Keywords: vector quantization, lattices, merging, treeduite, molecule,

MED (molecules electron density)

Résumeé

Cet article présente une méthode pour la visuais&D de molécules basée sur la quantification
vectorielle avec lattices (réseaux réguliers detgdi La visualisation 3D de molécules nécessite
I'exécution d’'une procedure qui fusionnent les dims La procédure de fusion implique le calcul
de moyennes et d’erreurs sur les blocs, et des a@igpns a un seuil. Nous utilisons également

des iso-contours pour afficher les molécules. Ndilsons pour mos experiences, les molécules
HF et d’eau H,0). Les résultats des expériences sont donnéesdegehistogrammes et des
images résultats (visualisations de molécules)

Mots-clés:quantification vectorielle, lattices (réseauxulgys de points), fusion,

structure d’arbres, molécules, champ de densitéréleque
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1. INTRODUCTION

The context is about the computer modeling of argamolecules in biochemistry. The vector
guantization (VQ) is commonly used in telecommutidgcaor compression for the representation
of data. Here we want to use the VQ for the 3Daligation of organic molecules. The problem is
how to find a good criterion to process the ravadat practice, the raw data are spread out in the
electronic density map that corresponds to the cotde By using the VQ, we want to merge the
3D space in cells whose size will be function & khcal density of the points. Exactly we will use
an approach based on a tree-structured latticeBx@ctly, we plan to use a merging VQ method

for the visualization of the molecules.

This paper mainly contains three chapters. Theviolg chapter is the background that mainly
describes currently fashion lattice for VQ suclirescubic lattice and some basic principles. The
approaches and implementation we employed aredinted in the second chapter. The third
chapter introduces the results of the experimehtifierent steps. Some conclusions and future

works are illustrated in the last chapter.



2.BIBLIOGRAPHY

2.1.Scalar Quantization

Quantization is the heart of analog-to-digital cersion. In its simplest form, a quantizer observes
a single number and selects the nearest approrignatilue from a predetermined finite set of
allowed numerical values. Ordinarily the input \&lis analog; that is, it may take on any value

from a continuous range of possible amplitudegh&more, the output is digital, being uniquely
specified by an integer in the §2, 3,...,N }, whereN is the size of the set of output values.
More precisely, we define an N-point scalar (omeetisional) quantiz€pas a mappin@:
R — CwhereR is the real line and

C={¥y ¥ ¥5--. Wy} OR (1)
is the output set or codebook with digef= N . The output valuey, , are sometimes referred to

as output levels, output points, or reproductiolies.

Q(x)=yi

4 v _—
o di T .
| |

Fig.1 Example of Scalar Quantization

For example: in Fig.1, the input i, and{yo, yl...,yi} is the output set or codebook.

{d,, d,..,d.} this set is the boder of the decision cells.
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We define the resolution or code rate,of a scalar quantizer s Iog2 N bit/simpleswhich

measures the number of bits needed to uniquelyifgpie quantized value. The resolution

indicates the accuracy with which the original agaamplitude is described. Specificallyr ik
an integer, one could assign to egcha unique binary -tuple (by coding the valugg into

binary vectors in an invertible manner). We defime transmission rat® , of the quantizer as the

number of bits transmitted per sample to desctibastaveform [1].

2.2.Vector Quantization

VQ has been investigated extensively in recentsydatx(n) : (x(1),...,X (h))be a n-component
source vector with joint probability density furwti (PDF)p, (X). A VQ of dimensiorN and
sizeL is defined as a function that maps a vector x orte ofL reproduction vectoryg,,...,Y,

belonging tdR* . We have:

Q:R¥ - D

X - Q(x)=y

WhereD, the set of reproduction vectors or codewordghés codebook. This chart implicitly

determines a partition & in L non-overlapping Voronoi regiofs defined by the equation

(wherel,(X) = (Zik:l| X |° )]Jp is the norm):

k —
c = XOR*/Q(X) =, o @)
L (X=y) s L,(x-y,),0j #i
The total distortion [per dimension] is given by:
1 C1le
D == E{L(X =QUO)} =+ [ L{X=9) P ) dx )
i=1



In this transmission and storage context, a bimaogd or indexc of lengthb bits is assigned to

each codewory; [1].

Fig.2 principle of vector quantization [2]

For example, in Fig.2, the Voronoi cellsdivides the input space into several small spaves,

usey, stands for the ce, .

channel
X i i yi
_ Encoding E Decoding D —>
Dictionary Dictionary
D D

Fig.3 diagram of vector quantizer [2]



In this diagram, when the input veciis coming, the encoder scans the codelidoland find

the closest vectay, for the input. Then it just stores the indexypf and sends the index to the

decoder. When the decoder received the indéixscans the codebodk, which is the same

codebook as before. After that, it finds the veatahe codebook, and sends the output

2.3.Codebook Design

2.3.1. TheLBG (Linde,Buzo,Gray) method

Initial codebook

T
_________ N/ |
[ [ '
: Classfication : :Iteratlon
Training sequence IT=TT-T"TT"TT"77 | process
: Optimisation | :
b e — — T__I I
|

Optimal codebook

Fig.4 scheme operating in the LBG algorithm

LBG algorithm [2] is a optimal method for the codek design from a training sequence. As the
Fig.4 shows, the algorithm starts with a traininggquence (TS). After a long reduplicate

processing, the codebook will be optimized.

There are two defects, one is the computationishatry large. Another is because this algorithm
5



can just produce an optimal codebook for the, if we change the TShe VQ is no longe

optimized.

2.4.Lattice Description

The LVQ is based on the lattices. We are going ®&ciilee the lattices. At the beginning,
lattices were defined to solmathematicaproblems like sphere packing problem, kissing nur
problem, and theovering problen

2.4.1. Sphere packing problen

The chssical sphere packing problem, still unsolved dwéiy for high space dimensics, is to
find out how densely a large number of identicdiesps can be packed together. The cub
together with no waste space in between, we chesilentially ondhundred percent of the spa
But spheres do not fit together so well as cubes, there is always some wasted spac

between.

Fig.5 o views of the most familiar sphere pact [9]
Two views of the most familiar sphere packing, inieth the cenirs form the fac-centered (fcc)
lattice. This is the packing usually found in frefinds, in piles of cannon balls on wemorials,
or in crystalline argon. The spheres occupy 0.7404.the space, and each sphere touche

others. (b) shows only the centers of the sphehesopen circles). These centers are obtaine



taking those points of the cubic lattZ* whose coordinates add up to an even nul The

packing radius isp [9].

2.4.2. Kissing number problen

In three dimensions this asks how many billiardsbedn be arranged so that they all just touc|
kiss, another billiard ball of the same size. Tiféicdity arises because the arrangement is
unique; in fact there are infinitely many ways twaage 12 billiard balls around another. |
example, if the 12 balls are placed at positionresponding to the vertices of a regt
icosahedron concentric with t central ball, the twelve outer balls do not touelcle other an

many all be moved freely [8].

2.4.3. The covering problern

Another problem is a kind of dual to the ping problem, and asks for the most economical

to cover ndimensional Euclidean space with equal overlapppitere:

(a)

chhss
sy = a5y

ey

Fig.6 Covering the plane with circles. In (a) tleaters belong to the square laiZ?,in (b) they

belong to the hexagonal lattice (b) is a more igfficor thinner coverir [8].

In three dimensions the best covering known, whicdgmBah showed is omal among
treedimensional lattice coverings, is the b-centered cubic lattice. This is at first sii

surprising, since the densest lattice packingdgfarent lattice, the fcc lattice. In fact the bisc
7



the dual of the fcc lattice. The covering radiuRig8].

2.4.4. Important lattices for the VQ

Some lattices are important for the VQ becausedaahtizing algorithms have been defined for
them.

* The latticeZ"
The set of integers...,-2,-1,0,1,2,3,...is denoted bgrd
Z" ={(%y - %) 1% 02} (4)

is the n-dimensional cubic or integer Iattice7.2@s better called the square lattice, as seen in

ordinary graph paper.) Kissing numlsex2n, and the minimal vectors are (0,...,-1,..,0). The
packing radiugp =1/2, the covering radius R:/i_TIZ:p \/ﬁ the densith =V, 2"and the
center densitg = 2™". Thus Z has densify=1, but the densities &, Z*andZ* are only7r/ 4
=0.785..., 7T/ 6=0.524... and7’* / 32=0.328... . A typical deep hole is (1/2,1/2,...,1/Ddahe

Voronoi cell are cubesZ"is self-dual. Its group consists of all permutasi@md sigh changes of

the coordinates, and has or@én!.

‘The latticeA"
Forn=1, A" ={(X, X,..-, X,)0Z"™ 1%, +...+ X, = O} (5)

which uses n+1 coordinates to define an n-dimemasiattice.

Of courseA LJZ. A is equivalent(or similar) to the familiar hexagottttice. The hexagonal

lattice may be spanned by the vectors (1,0) ar‘/d,(~1/§ 12). BothA, andD, are equivalent to
the face-centered cubic lattice (of fcc), illustchin every chemistry textbook, and found in the

pyramids of oranges on any fruit stand. The lattical toA, is

A = +A) ©



both@ andD; are equivalent to the body-centered cubic lattice kcc), also familiar from

chemistry.

-The lattice D,
For n>3, D, ={(%y...,X,)OZ": x +...+ x even} , (7)
or in other word®, is obtained by coloring the points &falternately red and white with a

checkerboard coloring, and taking the red poirlls, is sometimes called the checkerboard

lattice. [9]

2.4.5. The fast quantizing algorithms

The algorithm for finding the closest point®tto an arbitrary poirk [ R" is particularly simple.

For a real number x, let

f (X) =closest integer t&.

In case of a tie, choose the integer with the ssb#dbsolute value. Far= (Xl, D & JOR", let

FO) =(F (%), T ().

For the flowing use we also defigéx), which is the same ds(X) except that the worst

coordinate oK (that furthest from an integer) is rounded the wgravay. In case of a tie, the

coordinate with the lowest subscript is roundedvwiheng way [10].

» Algorithm 1: to find the closet point & to x.

GivenX OOR", the closest point &"is f(x). (If x is equidistant from two or more pténofZ",

this procedure finds the one with the smallest norfio see that the procedure works, let

u=(u,...,u, )be any point oZ". Then



N(u—x)=i(ui—>q)2 (8)

which is minimized by choosingy, = f (X ) fori =1,...,n.
-Algorithm 2: to find the closet point &, to x.

GivenxOR", the closest point dd, is whichever of f(x) and g(x) has an even sum afrdmates.

If x is equidistant from two or more points Of this procedure produces a nearest point having

the smallest norm.

The procedure works because f(x) is the closesttéiZ" to x and g(x) is the next closest. f(x)

and g(x) differ by 1 in exactly one coordinate, audprecisely one on: f(x)and g(x)is

even and the other is odd.

-Algorithm 3: to find the closet point @, to x.

Stepl. Giverx O R™, computes = Z)g and replace x by

, S
X'=x-—
n+1

Step2. Calculaté (X') = f (X,),..., f (x,))and the deficiench =" f (x)

x(L1,...,1) ©

Step3. Sort th&'in order of increasing values 6()4). We obtain a rearrangement of the number
0,1,...nsayiy,...,i,, such that
-1/2<9(Xy)< .0 (X, ) (10)
Step4. ifA=0, f(x')is the closest point &, to x.
If A>0, the closest point is obtained by subtrackirigrth the coordinate§ (X,),..., f (X,_,)

If A <0, the closest point is obtained by adding 1 eodbordinated (X, ), ..., f (X, )

10



2.5.The Lattice VQ (LVQ)

The LVQ [3][4][5](lattice vector quantization) haseen successfully introduced in order to

overcome the LBG-type algorithm [6] drawbacks. Emeoding, based on rounding and scaling
operations, is simple and independent of the caalebize. There is no need to seek among all the
reproduction vectors, and practically no normsam@puted. Because of the predefined structure
of the lattice, there is no need to transmit thdetmok and no training procedure is required to
design it. But a lattice can only optimally quastimiform source and, because of its infinite size,
it has to truncate to index the codewords. Thusli¥® of a non-uniform source becomes

complex. We distinguish the different steps:

1. The lattice choice which defines the spacenfjlladvantage (the property is linked with the
sphere packing problem) of the LVQ. Some besfckstiare known for the dimensions 2, 4, 8, 16

and 24, because they offer the smallest distonstoen quantizing an uniform source associated

with the lattice Z*, DX, Egand A4, are the main criterion for the selection;

2. The determination of the codebook shape. Whamc#ating the lattice, the aim is to map the
most probable distribution of the vector sourcee fiamber of the remaining lattice points in the

codebook depends on the allocated rate;

3. The source normalization. The fast quantizatmgorithm is used, once the source
normalization has been achieved. We can descrilseofberation as a projection of the input
vectors into the truncated lattice volume. A saalfanction takes place before the quantization

module.

4. The labeling of the lattice codebook pointgh# encoding step is simpler with a lattice, trst la
step of indexing the codewords becomes complicatezh the codebook size is large. The index
has to be calculated, and the methods aim to estiiz best tradeoff between the calculation cost

and the conversion table storage. If no trainirapedure has been required yet, it is ususally used

11



in order to carry out the entropic index associatél the lattice points.

The inverse quantization procedure consists in diago the received index, finding the

corresponding lattice point and re-normalizing it.

The choice of the metric, (respectivelyL, ) permits to shape the codebook into an hyper-gpher

(respectively an hyper-pyramid) and to count thiegsoAs a result the basic LVQ is only adapted
for symmetric and Gaussian (respectively Laplacisoirce distributions which map such a
codebook. This restrictive modelization of the seuoffers some accurate and sophisticated
methods to achieve the LVQ design, but the welfgger condition collapses considering a
complex source coding at low bit rate. With the V&L based on an embedding lattice strategy,

simple procedures are implemented to overcome tirasebacks.[7]

2.6.Tree-Structured LVQ (TSLVQ)

We are going to use a particular LVQ, namely theVi@. So we will describe it.

2.6.1. Hierarchical set of embedded lattices

The goal is to use the hierarchical set of embedtédes which is achieved such as it is possible
to embed a lower scale truncated lattice into bafghe next higher scale truncated lattice. So th

scaling factor between two consecutive latticethefhierarchy ib (see Fig.7).

12



| | |
I I I
2 'J =
K hu_ﬁ

-

Scale

Fig.7 hierarchical set corresponding to the squiaiide (b=3) [7]
2.6.2. Quantization procedure

The principles of the quantization are: [7]
1. asource vector is projected into a first truncagiice;

2. to get a finer quantization, another lower scaledated lattice is embedded into the Voronoi
cell where lies the input vector;

3. the previous operation can be repeated. Obviotiynnore convenient to deal with the input
vector scale than to use several lattices witlebffit scales.

The Fig.8 illustrates the resulting multi-stage mfimation procedure using successive scaling and

translating operators. We have:

-the scaling factor used to project the input vextioto the first truncated lattice:

bx p
F = 11
L (11)

2max

whereL, _ is the maximal, norm of x, this constant energy can be estimaterh fa training

2max

sequence. So all the inputs are projected intgparhgphere whose radius equaisp because:

13



« 2 2 « 2 2 LZ(X) 2
Z(Fxxi) =F xz)ﬁ =(bxp) XL—S(bXP) (12)
i1 i=1

2max

-in the normalized space, the scaling factor useprdject each translated vector into the next

truncated lattice of the hierarchy: b.

-the reproduction vector of the truncated lattmetlie j-th stage:y; .

The final value of the reproduction vector assadatith x will be:

y=2xy Yo (13)

F Sb™
where j points out the number of the stage. No& #1 each step the same fast quantization

algorithm is used.

vl o y2 - y3
e 12D @i 1D @L T

(a) the principle of the TSLVQ [7]

N2

S E ] —
® o .

(b)
Fig.8 Quantization scheme
In Fig.7, we use different lattices with differestales. In Fig.8, for the different stages, wethee

same lattice with the same scale, but differentiityectors with different scales.

2.7.Tree-structured Codebook

2.7.1. Tree-structured codebook
14



The codebook has a B-ray tree structure, whereri2goonds to the number of points of the basic
truncated lattice. Each lattice point (i.e. eacproduction vector) and its Voronoi cell are

associated with a tree node. The 0 vector and ti@ensource space are associated with the root
tree. The possible children of a node are the paihthe lattice which is embedded into the parent
Voronoi cell. A stage in the tree corresponds \witbcale in the lattice hierarchy: the deeper is the

tree, the finer is the resolution. The final codalb the set of terminal nodes or leaves.[7]
2.7.2. Unbalanced tree-structured codebook

Two classical strategies have been explored inrdaldesign an unbalanced tree according to a
distortion v.s rate tradeoff: a tree pruning, dree growing approach. It aims to split the vector
space region where the distortion is high, and/tidasimultaneously a prohibitive cost in rate.[7]
To our work, we are going to use a tree pruning@dare to design an unbalanced tree-structured

codebook which is adapted for the visualizatiothef molecule data.

3.3D VISUALIZATION OF MOLECULES USING
VQ

3.1.Description of Testing Data

At the beginning of the experiment, we should cleotb® appropriate testing data, it is described
as follows.

3.1.1. General presentation

A molecular property of great interest to chemiststhe electronic charge densigy MED
(molecular electron densityp(r) , is a real, non-negative and continuous scalactiom of the

position vector. Further, it can also be determined experimentaipgia combination of X-ray

and neutron diffraction experiments. MED is alsoplyyed as a basic variable in the density

functional formalism. It is a usual practice to tploontour maps ofp(r) for its visual

interpretation. However, for quantitative charaeggion of this scalar field, one has to take

recourse to locating and characterizing the regmedc@P’s (critical points). The structure and

15



reactive sites of a molecule can be well-describpe®ED and its associated scalar fields such as

its Laplacian sz(r)) and energy-density distribution. Bader et alnpiered such studies and

have successfully employed the topographyo€f) for an exhaustive study of molecular

structures. Their investigations have revealeddhaind in a molecule is generally represented by

a saddle inp(r) . Other parameters such as bond ellipticity anctbanders which are expressed

respectively in terms of eigenvalues and MED vaktdsond CP are also quite useful in the study
of phenomena like charge delocalization and haen lapplied for a wide variety of aromatic
systems. The position of the bond CP has been ased measure of its polarity. In summary,

MED has been widely used for the study of molecsiarcture. [11]

In fact, the electron density is nowadays regamethe fundamental observable of the molecular

universe.[12][13] We have a example for the hydrofiigoride (HF ) molecule as follows:

500
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300
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100
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e valum
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Fig.9 (density distribution of thid F molecule)
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3.1.2. How is the data produced

Data is in our case produced by computation. Deffigiictional theory (DFT) was used to solve
self-consistently the time-independent Schrédingguation within the Gaussian quantum
chemistry computational package [14]. The calcoieti require an initial structure that is
represented in Cartesian coordinates in an inputifhich can be constructed with a number of
graphical molecular building and visualization ®dFollowing energy minimization of the input

geometry, the electron density is obtained frorglsipoint calculations.

The Gaussian computational quantum chemistry p&cksag popular simulation package due to
the fact that it is implementing a wide varietycoimputational approaches such as semi-empirical,
Hartree-Fock (HF), DFT (density function theoryndaseveral correlated post-HF methods.
Gaussian can be used to model molecular energigsstanctures (transition states, reaction
products), molecular orbitals, atomic charges dedtmstatic potential, vibrational frequencies,
and NMR (nuclear magnetic resonance) propertieleutadéions can be carried out on systems in
the gas phase or in solution, and in their grouate<r in an excited state. Gaussian was used to

calculate the electron densities of some test midec

In the last few years, methods based on Densityctiamal Theory have gained steadily in
popularity [15]. The best DFT methods achieve $igaitly greater accuracy than Hartree-Fock
theory at only a modest increase in computationat.cThey do so by including some of the

effects of electron correlation much less expemgitien traditional correlated methods.

DFT methods compute electron correlation via gdrferectionals,i.e. functions of the electron

density. DFT functionals partition the electroninesgy into several components which are
computed separately: kinetic energy, the electuiaar interaction, the Coulomb repulsion, and
an exchange-correlation term accounting for theteda-electron interaction divided into separate

exchange and correlation components.

17



3.1.3. Data format

The cube file describes volumetric data as welitasn positions, it originates from the Gaussian
software package. The file consists of a headectwinicludes the atom information and the size
as well as orientation of the volumetric data. Tikiollowed by the volumetric data, one scalar
per voxel element. All aspects of the file are téximan readable), originally the numerical
values were 5 wide for integers that started eaddér line (after the first) and floating point

values were formatted 12.6, that is, 12 charaet@ts with 6 decimal places.

The first two lines of the header are commentsy Hre generally ignored by parsing packages or
used as two default labels. The third line hastimaber of atoms included in the file followed by
the position of the origin of the volumetric dafde next three lines give the number of voxels
along each axis (X, y, z) followed by the axis weciNote this means the volume need not be
aligned with the coordinate axis, indeed it als@angeit may be sheared although most volumettric
packages won't support that. The length of eactowéx the length of the side of the voxel thus
allowing non cubic volumes. If the sign of the nemiof voxels in a dimension is positive then
the units are Angstroms, if negative then Bohr. st section in the header is one line for each
atom consisting of 5 numbers, the first is the atmmber, second (un-used), the last three are the

X,¥,Z coordinates of the atom center.

Example

In the following example the volumetric data is @y 40 by 40 grid, each voxel is 0.283459

units wide and the volume is aligned with the cawate axis. There are three atoms.

CPMD CUBE FILE [16].
OUTER LOOP: X, MIDDLE LOOP: Y, INNER LOOP: Z
3 0. 000000 0. 000000 0. 000000
40 0. 283459 0. 000000 0. 000000
40 0. 000000 0. 283459 0. 000000
40 0. 000000 0. 000000 0. 283459

8 0. 000000 5. 570575 5. 669178 5. 593517
18



1 0. 000000 5. 562867 5. 669178 7. 428055
1 0. 000000 7. 340606 5. 669178 5. 111259
—0. 25568E-04 0.59213E-05 0. 81068E-05 0.10868E-04 0.11313E-04 0. 35999E-05

In this case there will be 40 x 40 x 40 floating point values

3.2.First Visualization

We take théHF andH ,O molecules for the example.

[ (nk:]

22-Jun-201010:08:58

Fig.10.1HF molecule)
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A 23-Jun-201010:25:30

10

Fig.10.H,0 molecule)

In Fig.10, we can see the shape of the two molectdey clearly. The Fig.10.1 shows a plane at

x=29 in theCartesian coordinatder the HF.Accordingly, the Fig.10.2 displays the plane atZ=2

for heH,O. With different colors, it means the differentaten density distribution (EDD). So,

for theH ,O molecule, the highest density occurs around theg@mwyO) atom.
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Fig.11.HF molecule)
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Fig.11.H4 ,0 molecule

In Fig.11, we can use the iso-surface (density) tolalisplay the molecule. Around the molecule,

there are some iso-contours which is at [ 0.1 0.02 0.005 0.002] with the density equals 0.20.
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22-Jun-2010 10:08:58

Fig.12.HF

1.1

23-Jun-201010:23:30

Fig.12.2 H,0O
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In Fig.12, we combine the Fig.10 and Fig.11. Weaitze slice and set the iso-contours equals [1.6

10.50.20.10.050.02 0.005 0.002].

3.3.The Flow Chart of The Method

In this part, we will introduce what we plan to do.

3.3.1. The flow chart of the method

After preparing for the testing data, we need doesmecessary tasks to processing the data. As

follows, we give the flow char of the method:

Design the

Initialization codebook
| a (merging The end
processing)

Fig.13 the whole procedure

For example, we load the density of the HF molectiterefore, we get a 57*57*57 3D matrix.

And then, we should extend the matrix to the 8181 *because in the next processing, every

3™ blocks will be merged into one. So the lengthhad matrix in each direction must be the

multiple of 3. We can give a more clear explanatiothe next section.

3.3.2. The chart of the merging processing
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Sum the
density of
every 3 (i-1)

where, i is the level of blocks
the merging processing,
the initial value of i=4 v

Calculate the
mean of the
blocks

A

If all the 3" (i-1) values
are smaller than the

Calculate the

errors
Design the threshold, merging
codebook
(merging We use the
i mean value
proceSSIHg) instead of the

37 (-1 values

If one of the 3™ (i-1)

We keep the
values is bigger than the density value
threshold, not merging unchanged

v

Next level 3D
matrix

the Fig. 16 shows the
procedure

No, the next merging
Yes, the end

"llllilliilll.’

Fig.14 the procedure of merging

The procedure for one loop is as follows:

1. Theinputis a3 ™**3**3" matrix, we call it asd*, we sum the even8 2 blocks, then

5 20

calculating the averagi% = Zk , We can get a372*372%31"2 matrix.
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27
3 6 27

Fig.15 the procedure of summing

2. We calculate the errorg, =d? —d,’.

3. If all the values of g in one block (see Fig.16) are smaller than thestiotl, we will merge

the blocks into a big block; on the contrary, ieoof the €, is bigger than the threshold, we

will keep the density value unchanged.

z fih

0
0
0
0
0
0

0
0
0
0
0
0

z fih

0
0
0
0
0
0

0
0
0
0
0
0

Fig.16 merging or not merging

4. We get a new 3D matrix, and continue the next loop.
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The first &
level, i=1 "

i=y 999 matrix

i=3 ——  27#27%27 matrix

We have
81%81%81
blocks.

Fig.17 tree structure of merging

4. EXPERIMENTS AND RESULTS

4.1.Set Up For The Merging Algorithm
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Lewel 1 - Error distribution
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400 -
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300

250 -

200
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100
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Level 2 - Error distribution
500 T T T T T T T T

450 B
400 —
350 F B
300 —
250 F —
200 B
150 —
100 B

50 —

A

D 1 1 1 | 1 1 1 1
-0.05 004 -0.03 -0.02 -0.0O1 0 ool 002 003 004 005

Fig.18.1 error distribution fddF

In Fig.18.1, we can see the distribution gf. The threshold of the 4th level of the merging

processing is 0.1; the threshold of the 3rd lefelhe merging processing is 0.01. So we can

deduce that the threshold of the 2nd level is Q.001

Level 1 - Error distribution
A00 T

450

400

3a0

300

2a0

200 -

150 |

100 |

&0
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Level 2 - Error distribution

500

450

400

350

300

250

200

150

100

a0

1]
-0.05 -0.04 -003 D02 -0.01 1] 001 002 003 004 005

Fig.18.2 error distribution fdd ,O

In Fig.18.2, we can see the distribution f' (the error distribution foH,O). The threshold of

the fourth level of the merging processing is @& threshold of the third level of the merging

processing is 0.02. So we can deduce that thehibicesf the second level is 0.002.

4.2.The Results

4.2.1. The visualization of the original density
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4D e

Fig.19.2 (the plot of density distribution kf,O )

In Fig.18, we can observe that most of the valueslemsity are very small. Therefore, for
visualizing the original density, we just visualiflee points whose values are higher than a

threshold. For thelF molecule, the threshold is 0.35. For H'igO molecule, the threshold is 0.75.

Fig.19.1 and Fig.19.2 are the visualization ofdhginal density.
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4.2.2. The visualization of the first and second merging

“oronoi © Cube - D3

35
AT

25

20

“aronai © Cube - D3

Fig.20 the first and second the merging procedurkl F

Fig.20 shows the plot for the merging proceduragigiie cubic lattice F ).
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Yaoronoi o Cube - D3

Fig.21 the first and second level of the mergingcpdure foH ,O

Fig.21 shows the plot for the merging proceduregisiie cubic lattice1,0).
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4.2.3. The visualization of the third merging
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Fig.22.1 (the slice at=29 of the third merging procedure fdF )
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Fig.22.2 (the slice af =29 of the third merging procedure td,O)
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In Fig.22, there are three types of cubic. The Esilkubic stands for that the values of the
density in the cubic are very high. Accordinglye talues of the density in the biggest cubic are
very small.

4.3.Conclusion and Future works

Several experiments were done in this paper. Outribotion mostly focuses on using the LVQ to

visualize the molecule using a merging procedure.

There are 2 steps in the experiment. The first &dp get the testing data, and understand the

format of the data. Then we should display therihistion of the testing data. In the procedure,

we use thédF andH,O molecules in our experiments and analyze the bigtdan by using the

histograms. The second step is to find a methodnfnging the matrix. We calculate the mean of
the small block, judging merging or not. So in ebstel we get a bigger block until the procedure

stops.

Therefore, it is easy for us to analysis the dgrdigtribution of the molecule. And it helps us to
find the regularity. So it's a good method to ded@h the molecule. Certainly, we can do more
work in the future. For example, we can lead a mpanameter which describes the distance
between the two points that takes into accounheffrocedure, or improve the criterion of the

merging processing.
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