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Abstract|The purpose of this paper is to introduce a new

vector quantizer (VQ) for the compression of digital im-

age sequence. The proposed approach uni�es both eÆcient

coding methods: a fast lattice encoding and an unbalanced

tree-structured codebook design according to a distorsion

v.s. rate tradeo�. This tree-structured lattice VQ (TSLVQ)

is based on the hierarchical packing of embedded truncated

lattices. In the paper, we investigate its complete design

with: the lattice truncation, the multi-stage procedure of

quantization, the unbalanced tree-structured design and the

determination of the best lattice respectively to this method.

Experimental results are given with the TSLVQ taking place

in sub-band coders: the detection and the processing of the

outlying input vectors are then de�ned, as well as a bit al-

location strategy.

The TSLVQ o�ers some original solutions to usual lattice VQ

drawbacks, with a space partition according to the source

distribution, and a simple labeling of the lattice points. The

codebook automatically obtained is well suited for predic-

tion error coding, and a fast updating of the code-vectors

can be performed.

I. Introduction

The most promising method introduced for the VQ 1 [1],

[2], is certainly lattice vector quantization (LVQ) [3], [4],

[5], for which the codebook is not calculated. It is de�ned

as a particular subset of regularly arranged points in an n-

dimensional space, centered in zero (lattice [6], [7]). When

designing an LVQ, the diÆculty is not the same as an LBG-

type algorithm [8] which as computationally expensive en-

coding and codebook storage, but lies with the choice of

lattice, its truncation and labeling of the remaining points.

In this paper, motivated by video coding applications, we

develop a new VQ for which lattice use is simpli�ed.

The paper is organized as follows. Brief reviews on VQ

and LVQ are presented respectively in Section II and Sec-

tion III. The source characteristics are given in Section IV

in order to specify the adapted quantizer. Section V deals

with the TSLVQ design. Finally, Section V also presents

experimental results at a low bit rate.

II. Vector Quantization

VQ has been investigated extensively in recent years [9],

[2]. Let x(n): x = (x(1); : : : ; x(k)) be a k-component

source vector with joint probability density function (pdf)

p
X
(x). A VQ of dimension k and size L is de�ned as a
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function that maps a vector x into one of L reproduction

vectors y1; : : : ;yk belonging to IRk. We have:

Q : IRk �! D
x 7�! Q(x) = yi

Where D, the set of reproduction vectors or codewords, is

the codebook. This chart implicitly determines a partition

of IRk in L non-overlapping Vorono�� regions Ci de�ned by

the equation (where Lp(x) =
Pk

i=1 jxijp is the norm):

Ci =

�
x 2 IRk

=Q(x) = yi;

if L2(x� yi) � L2(x� yj);8j 6= i

�

The total distortion [per dimension] is given by:

D =
1

k
EfL2(X�Q(X))g = 1

k

LX
i=1

Z
Ci

L2(x�yi):pX(x) dx

In this transmission and storage context, a binary word

or index ci of length bi bits is assigned to each codeword

yi. Thus a VQ combines both functions: an encoder that,

from the input vector x, generates the index i speci�ed by

Q(x); a decoder that, from this index and by listing D,
generates the corresponding reproduction vector yi. The

average binary word length is given by the entropy measure

of the codebook (where pi is the occurrence probability of

yi):

R ' H(D) = �1

k

LX
i=1

pi: log2(pi) [bit/dimension]

An adaptive entropy coder [10] is supposed to produce this

minimum bit rate necessary to achieve the distortion D.

In fact a codebook design with an entropy constraint has

to be used. The ECVQ algorithm [11] is then optimal, but

this generalization of the LBG algorithm[8] is very compu-

tationally expensive.

III. Lattice Vector Quantization

The LVQ [3], [12], [4] has been successfully introduced in

order to overcome the LBG-type algorithm [8] drawbacks.

The encoding, based on rounding and scaling operations, is

simple and independent of the codebook size. There is no

need to seek among all the reproduction vectors, and prac-

tically no norms are computed. Because of the prede�ned

structure of the lattice, there is no need to transmit the

codebook and no training procedure is required to design

it. But a lattice can only optimally quantize uniform source



and, because of its in�nite size, it must be truncate to in-

dex the codewords. Thus the LVQ of a non-uniform source

becomes complex. We distinguish the di�erent steps:

1. the lattice choice which de�nes the \space �lling advan-

tage" [13], [14], [15] of the LVQ. Some best lattices are

known for the dimensions 2, 4, 8, 16 and 24, because they

o�er the smallest distorsion when quantizing an uniform

source [6], [7]. But in practice, the fast quantization al-

gorithms [16] associated with the lattices ZZk, Dk, E8 and

�16, are the main criterion for the selection;

2. the determination of the codebook shape. When trun-

cating the lattice, the aim is to map the most probable

distribution of the vector source, in order to exploit the

\shape advantage" [15] of the VQ. The number of the re-

maining lattice points in the codebook depends on the al-

located rate;

3. the source normalization. The fast quantization algo-

rithm [16] is used, once the source normalization has been

achieved. We can describe this operation as a projection

of the input vectors into the truncated lattice volume. A

scaling function [17], [18], [5], [19], [20] (linear or not) takes

place before the quantization module. A particular process

for the outlying source vectors (which still don't belong to

the codebook after normalization) must be de�ned [21], [4],

[22], [23];

4. the labeling of the lattice codebook points. If the encod-

ing step is simpler with a lattice, the last step of indexing

the codewords becomes complicated when the codebook

size is large. The index must be calculated [24], [3], [22],

[23], [25], [20], and the methods aim to realize the best

tradeo� between the calculation cost and the conversion

table storage. If no training procedure has been required

yet, it is usually used in order to carry out the entropic

index associated with the lattice points (to get their occur-

rence probability).

The inverse quantization procedure consists in decoding

the received index, �nding the corresponding lattice point

and re-normalizing it.

The choice of the metric L2 [26], [18], [4] (respectively

L1 [3], [18], [21], [4], [22]) permits to shape the codebook

into an hyper-sphere (respectively an hyper-pyramid) and

to count the points. As a result the basic LVQ is only

adapted for symmetric and Gaussian (respectively Lapla-

cian) source distributions which map such a codebook.

This restrictive modelization of the source o�ers some ac-

curate and sophisticated methods to achieve the LVQ de-

sign, but the well-perform condition collapses considering

a complex source coding at low bit rate. With the TSLVQ,

based on an embedding lattice strategy, simple procedures

are implemented to overcome these drawbacks.

IV. Specification of the vector source

Predictive coding and subband coding [27], [28], [29],

[30], [31] are unavoidable decorrelation methods for the

compression of digital image sequence. Because an hy-

brid coder aims to apply precisely two main rules: the

non-transmission of the predictable information and, the

non-transmission of the no-perceivable information by the

human visual system (HVS).

Fig 1 shows the generic coder for which our VQ is devoted.

Note that we don't study in the paper the quantization

aspect of the information performed by the motion estima-

tion [31] between each image pair of the input sequence, but

the VQ of the transformed prediction errors. The current

prediction error image is the di�erence between the pre-

diction image, obtained by a motion compensation of the

previous decoded image, and the input image. The predic-

tion error image is then transformed and decomposed in

subimages or subbands before the VQ.
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Fig. 1. Hybrid coder with forward motion compensation. I: input
image from the sequence; Ip: prediction image; Ir: reconstructed
image; E: prediction error image; Eq: quantized prediction error
image.

The inter-intra decorrelation steps shape the signal be-

fore its quantization. Because in each subimage the data

are classi�ed according to their frequential orientation and

resolution. A separate VQ of each subimage [4] is well-

suited in order to exploit the dependencies between the

transformed coeÆcients, and the bit allocation is per-

formed, such as, taking account of the HVS propriety, the

low frequency subimages receive more bits (but the result-

ing gain is subjective).

The monodimensional pdf of such a subimage signal is com-

monly mapped by a centered Generalized Gaussian func-

tion whose narrowest highlights the correlation between the

coeÆcients [4]. For the predictive sources, the multidimen-

sional repartition of correlated vectors is made into some

ellipses oriented according to the bisector axis [32]. Because

the edges within the di�erential images are characterized

by some pixels with a very near absolute value and an oppo-

site sign (see �gure 2), and the corresponding transformed

coeÆcients conserve this propriety.

However the shaped signal obtained after the hybrid

decorrelation chain is always non-stationary [27], [33].

Only an adaptive VQ [34], [35], [36] is capable of adapt-

ing to changing source statistics as the coding progresses.

Such as, from a source representative training sequence,

a very fast updating of the VQ codebook is achieved (see

�gure 3).
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Fig. 3. Adaptive VQ scheme. The codebook validity test consists in
a mean distorsion-based criterion.

V. Tree-Structure Lattice VQ Design

In this chapter the di�erent steps of the TSLVQ design

are progressively described in order to justify our choices.

A. Hierarchical Set of Embedded Lattices

With respect to the vector space dimension, the lattice is

chosen among ZZ2, D4 or E8, for which Conway and Sloane

determined fast quantizing and decoding algorithms [16].

This support lattice is then truncated such as it can be em-

bedded, after contraction, into its central Vorono�� region.

The embedding is optimal if the Vorono�� cells of the em-

bedded lattice cover exactly the receiving Vorono�� region.

But this result depends on the geometric propriety of the

support lattice. Our goal becomes to achieve a sub-optimal

embedding such as the receiving Vorono�� region is full of a

maximum number of complete Vorono�� cells of the support

lattice. In practice, the embedding consists in shifting the

scale of the lattice to embed with respect to the support

lattice scale that is �xed and equal to one. Reciprocally, in

order to solve the problem, we consider that the support

lattice scale is �xed, then the central Vorono�� cell of the

receiving lattice is dilated.

Let us describe a lattice like a packing of identical spheres

in IRk where the lattice points are the sphere centers [6], [7].

The sphere radius � is called the packing radius. We call

the touch points, the points between the packed spheres.

Note that the Vorono�� cell edges are the hyperplanes tan-

gent to the spheres in these touch points.

So (see �gure 4) 2 if � is the packing radius of the support

lattice, the packing radius of the receiving Vorono�� region

is then:

b� � = b 2 IR and b > 1

A sub-optimal embedding is then achieved if we dilate the

receiving Vorono�� cell by the scaling factor:

b = 2� n+ 1 = n 2 IN�

In order that the touch points of the dilating lattice corre-

spond to some touch points of the support lattice.

b

Fig. 4. Embedding principle. The scaling factor is here: b = 3.

As a result (see �gures 5 and 6) a maximal number of

edges of the support lattice Vorono�� cells are merged into

the edges of the scaled Vorono�� cell.

0

Fig. 5. A sub-optimal embedding with the hexagonal lattice (b = 5).

0

Fig. 6. An optimal embedding with the squared lattice (b = 5).

2For simplicity the �gures are in dimension 2 and often with the
squared lattice ZZ2, but the results can be generalized to higher di-
mensions with the other lattices.



The support lattice is truncated because only its Vorono��

cells, completely or partially within the dilated Vorono�� cell

are conserved.

The hierarchical set of embedded lattices is achieved such

as it is possible to embed a lower scale truncated lattice

into a cell of the next higher scale truncated lattice. So

the scaling factor between two consecutive lattices of the

hierarchy is b (see �gure 7).

1 bk b 2.k
Scale

Fig. 7. Hierarchical set corresponding to the squared lattice (b = 3).

B. Quantization Procedure

The principles of the quantization are:
1. a source vector is projected into a �rst truncated lattice;

2. to get a �ner quantization, another lower scale truncated

lattice is embedded into the Vorono�� cell where lies the

input vector;

3. the previous operation can be repeated.
Obviously it is more convenient to deal with the input vec-

tor scale than to use several lattices with di�erent scales.

The �gure 8 illustrates the resulting multi-stage quanti-

zation procedure using successive scaling and translating

operators. We have:
� the scaling factor used to project the input vector x into

the �rst truncated lattice:

F =
b� �p
L2 max

(1)

where L2 max is the maximal L2 norm of x, this constant

energy can be estimated from a training sequence. So all

the inputs are projected into an hyper-sphere whose radius

equals (b� �) because:

Pk

i=1(F � xi)
2 = F

2 �Pk

i=1 x
2
i = F

2 � L2(x)

= (b� �)2 � L2(x)

L2 max
� (b� �)2

� in the normalized space, the scaling factor used to project

each translated vector into the next truncated lattice of the

hierarchy: b

� the reproduction vector of the truncated lattice for the

j-th stage: yj

The �nal value of the reproduction vector associated with

x will be:

y =
1

F
�
X
j

yj

bj�1

where j points out the number of the stages. Note that at

each step the same fast quantization algorithm is used.

TSLVQ

x

F

y
1

TSLVQ

y
2

TSLVQ

y
3

b

Fig. 8. Quantization scheme.

C. Tree-Structured Codebook

The codebook has a B-ary tree structure [2], [19], [37],

[38] where B corresponds to the number of points of the

basic truncated lattice. Each lattice point (i.e each repro-

duction vector) and its Vorono�� cell are associated with a

tree node. The 0 vector and the whole source space are

associated with the root tree. The possible children of a

node are the points of the lattice which is embedded into

the parent Vorono�� cell. A stage in the tree corresponds

with a scale in the lattice hierarchy: the deeper is the tree,

the �ner is the resolution. The �nal codebook is the set of

terminal nodes or leaves.

Tree-structured codebook designs are illustrated by the

�gure 9. These quantization of synthetic sources shows how

the space partition matches with the source distribution.

A progressive splitting of the vector space is achieved if,

when embedding a truncated lattice, the number of the

new reproduction points are restricted. So the scale factor

b is �xed at its minimal value:

b = bmin = 3

The tree-structured codebooks of the �gure 9 are balanced,

namely all the leaves are at the same stage. A more eÆcient

method consists of splitting the vector space according to

a distortion v.s rate criterion, the tree-structure codebooks

are then unbalanced.

D. Unbalanced Tree-Structured Codebook

Two classical strategies have been explored in order to

design an unbalanced tree according to a distortion v.s rate

tradeo�: a tree pruning [39], [40] or a tree growing ap-

proach [41], [42], [43]. It aims to split the vector space

region where the distortion is high, and to avoid simulta-

neously a prohibitive cost in rate.

A training procedure is performed to design the tree-

structured codebook. Let yni and Cni , the reproduction

vector and the Vorono�� cell associated with the node ni, N

the training sequence size (i.e the source vector number)

and card(Cni) the number of input vectors that lie within

Cni . Then, each tree node is characterized by 3:

3From now we use "distortion" instead of "average distortion", and
"rate" instead of "average entropy code length".



Fig. 9. Tree-structured codebook designs using ZZ2 lattice (b = 3).
The source vectors are the white dots, the distribution of their co-
ordinates is i.i.d and respectively Gaussian (on the �rst column),
and Generalized Gaussian (second column). A reproduction vec-
tor (in black) and its Vorono�� cell are depicted only if they are
used for the quantization. Three successive quantization stages
are illustrated, one per line.

� an occurrence probability:

P (ni) =
card(Cni)

N

� a distortion:

d(ni) =
1

card(Cni)
�
X
x2Cni

L2(x� yni)

� a rate (assuming that an entropy encoding is used for the

leave indexing):

l(ni) = � log2 P (ni)

Consequently we get for a subtree S ( ~S symbolises the set

of its leaves):

� a distortion:

d(S) =
X
nu2 ~S

P (nu)� d(nu)

� a rate:

l(S) =
X
nu2 ~S

P (nu)� l(nu)

The tree pruning approach is known as the BFOS algo-

rithm [39]. First a complete tree T is achieved, it will be

successively pruned according to the BFOS criterion. If

a branch Sni (i.e the subtree rooted at ni, and such as
~Sni � ~T ) is removed, we get:
� an increase in distortion:

�d(Sni ) = P (ni)� d(ni)� d(Sni)
� a decrease in rate:

�l(Sni) = l(Sni)� P (ni)� l(ni)

� the BFOS criterion:

�(ni) =
�d(Sni)
�l(Sni)

�(ni) can be interpreted as a possible piece-wise of the slope

of the experimental distortion v.s rate curve. Thus we suc-

cessively prune the branches for which the ratio �(ni) is

minimal such as the total distortion is increased a little as

possible for a decrease in total rate. The resulting sequence

of distortion v.s rate pairs corresponding to the pruned sub-

trees S (i.e a subtree with the same root as the full tree

T ) lies on the convex hull of the operational distorsion v.s

rate function. The BFOS algorithm could be considered

as using a Lagrangian approach that aims to minimize the

functional J(S) = d(S)+�� l(S) where � is interpreted as

a Lagrangian multiplier [39], [44]: varying �, all the pairs

on the convex hull of the distortion v.s rate function can

be reached. The distortion or the rate associated to the

pruned subtree enables to interrupt this codebook design

procedure as soon as a threshold is exceeded. Because of

the storage complexity of the �rst complete tree, the tree

pruning approach is not suitable for the TSLVQ whose tree

ary number is high.

As a starting point of the tree growing approach [42], [2],

any tree structure can be used. Typically we start with

the root, afterward an individual leaf splitting is applied to

grow the tree. Exactly for each loop of the growing process

we split all the tree leaves, but only the new branch with

the best distortion v.s rate tradeo� is conserved. Let be Sj
the subtree obtained at the end of the (j � 1)-th loop (at

the initialisation S0 = n0), its leaves are the ni. For the

next loop, when splitting the ni we get the new branches

Sjni with for each:
� a decrease in distortion:

�d(Sni ) = P (ni)� d(ni)� d(Sni)
� an increase in rate:

�l(Sni) = l(Sni)� P (ni)� l(ni))

� the ratio:

�(ni) =
�d(Sni)
�l(Sni)



So now we conserved the branch for which �(ni) is maxi-

mal. The distortion and the rate associated with the new

pruned subtree are:

d(Sj) = d(Sj�1)��d(Sjni )
l(Sj) = l(Sj�1) + �l(Sjni)

The growing process will stop as soon as a threshold in

distortion or in rate is exceeded. This local approach is

adapted to the TSLVQ because the amount of stored in-

formation �ts exactly to the codebook size that grows pro-

gressively.

Fig. 10. Greedy tree approach illustrations considering the TSLVQ
of the two synthetic sources of the �gure 9 and using ZZ2 lattice
(b = 3). The training ratio (i.e the ratio of the training sequence
size on the number of the tree leaves) is over than 150.

The �gure 10 shows the pruned trees corresponding to

the TSLVQ of the synthetic sources of the �gures 9. These

examples illustrates how the TSLVQ is adapted to dif-

ferential or hybrid image source coding. Because, for a

given rate, the high-density space region where are located

the lowest error magnitudes is coarsely quantized (a "dead

zone" [30] appears) in order to permit a �ner coding of the

low density region where lie relevant input vectors.

E. Labeling of the lattice points

The TSLVQ is a multi-stage VQ [2] where the same LVQ

is used at each stage. Therefore it's convenient to achieve

out-line a look-up table containing the index of the basic

truncated lattice points. This look-up table is supposed to

be known by the coder as well as the decoder, then no repre-

sentation vector have to be transmitted. The tree structure

of the TSLVQ codebook permits its compact presentation,

we proceed in two tree scans:
� the �rst is achieved just to give a number to the nodes;

� the second permits to store for each node: its children

and parent numbers, the index of the corresponding lattice

point (this index belongs to the previous look-up table)

and, only for a leaf, its entropy code word.
This TSLVQ codebook presentation will be upgrade for the

adaptive quantization.

F. Determination of the best lattice

The goal is to determine the best lattice for the TSLVQ

among the lattices for which Conway and Sloane deter-

mined fast quantizing and decoding algorithm [16]. Fig-

ure 11 shows experimental codebook entropy v.s distortion

curves where we compare ZZ4 with D4, and ZZ8 with E8

(note that D4 and E8 are the best quantizing lattice re-

spectively to their dimension and considering the high res-

olution theory [6], [7]). It appears that ZZk performs better

than the others: lower distortion and rate are obtained.
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Fig. 11. TSLVQ using a tree growing approach: experimental dis-
tortion v.s rate curves with an i.i.d synthetic Gaussian source
(source variance �2 = 1). The training ratio is over than 150.

ZZk is the best lattice for the TSLVQ because it is the

only lattice that produces an optimal embedding: the cu-

bic truncated lattice recovers exactly, when we embed it,

the cubic Vorono�� cell. Figure 12 illustrates simply the

optimal embedding advantage. Suppose that the source

vectors are uniformly distributed into the shaded region.

For the truncated cubic lattice the decrease in distortion

and the increase in rate are equally shared between all the

nine points. For the hexagonal lattice (which is the best

quantizing lattice for the dimension 2 [6], [7]) the six pe-

ripheral points are less probable, it induces an increase in

rate and a less decrease in distortion.

bmin.

Fig. 12. An optimal embedding with the cubic lattice and a sub-
optimal with the hexagonal lattice (b = 3) .

Using ZZk implies that the resulting TSLVQ has not a

space �lling advantage, but in practice this gain is very

low [15]. On the other hand ZZk is the least dense lattice,

so the truncated lattice point number (i.e the tree nodes) is

reduced involving a more accurate vector space partition.



G. Processing of the outlying input vectors

A training procedure is used in order to set up the

TSLVQ codebook. After that, during the coding, the input

vectors will not be exactly the training sequence vectors.

So we must detect and process separately the probable out-

lying vectors (i.e the source vectors that do not belong to

the codebook after normalisation).

Because the truncated lattice is an hyper-cube, the L1

norm of the vectors u within is such as (see �g 12):

L1(u) = max
i=1;:::;k

juij � (bmin � �)

The scaling factor (see equation 1) that aims to project the

input vectors x into the hyper-cube equals:

F =
bmin � �p
L2 max

As a result, the source vectors x that can be e�ectively

quantized by the codebook have to verify:

L1(x) = max
i=1;:::;k

jxij �
p
L2 max

This test using the L1 norm is obviously very fast. The

detected outlying vectors are projected on the frontier of

the �rst hyper-cube by using:

If jxiji=1;:::;k >
p
L2 max =) xi = sign(xi)�

p
L2 max

These vectors are then quantized. They will be decoded as

usual. The resulting overload distortion can be large but

the outlying vector probability is low [26].

H. Bit allocation

The allocation problem occurs because we have to share

the bit ressource between the subbands [2], [45], [46]. It

consists in minimizing the global distorsion D subject to

the constraint that the global rate R is under a threshold

Rd.

For each subband j a separate TSLVQ is set up. Each

pruned TSLVQ con�guration is numbered by i. The set of

potential quantizers qi;j of the j-th subband is the set of the

corresponding pruned TSLVQ con�gurations. di;j and ri;j

are the distortion and the rate when coding the subband j

with qi;j . The transformation is supposed orthogonal and

there are M subbands, so the problem is:

minD = min

M�1X
j=0

dj;i subject to R =

M�1X
j=0

rj;i � Rd

A combination of M quantizers (one for each subband)

involves a point (R;D) in the distortion v.s rate space, all

the combinations produce a cluster (see �gure 13 as an

example). The problem becomes the determination on the

cluster convex hull of the point whose rate is just lower

than Rd. In order to reduce the amount of calculus the

Lagrange-multiplier method is introduced to solve:

min(D + ��R)()
M�1X
j=0

min
qi;j

(di;j + �� ri;j)

The complexity decreases because the reduction of distor-

tion is now achieved separately from each subband. The

general form of the algorithm is:

1 The convex hull for each subband is calculated. With

the TSLVQ we obtain it directly when growing the tree, by

storing the distortion v.s rate point corresponding to each

new branch addition;

2 The point on the global convex hull is determined, its

rate is just below Rd.

For this second step, the algorithmic solution proposed

by Shoham en Gersho [45] is particularly adapted. It is

based on the calculation of singular values of the Lagrange-

multiplier �. Precisely, a singular value of � is the slope

of the line that pass through two consecutive points of the

convex hull. So from a �rst point on the hull, by successive

calculations of singular values, we get the global convex

hull.

In practice with the TSLVQ, a �rst (respectively second)

point is (R;D) where D equals to the sum of the distor-

tions when quantizing each subband with the minimal (re-

spectively maximal) rate allowed. The successive singular

values of � are obtained by ordering in an increasing (re-

spectively decreasing) manner the BFOS criteria [39] and

considering all the subbands. The �gure 13 shows an ex-

perimental result. A drawback appears because there are

some large gaps between some points of the global convex

hull.
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Fig. 13. Cluster of (R;D) points, convex hull and optimal quantizers.

We want to improve the process in order to get the op-

timal quantizers namely the points just above the convex

hull. We proceed in two steps:

1 The previous method permits to get two points of the

convex hull that surround the rate target Rd;

2 From these two points the Shoham's algorithm [45] is

used again in order to get a local portion of the convex

hull.

The curve titled "intermediary quantizers" on the �gure 14

is achieved by calculating the portions of convex hulls be-

tween each consecutive couples of points on the global con-

vex hull. As a result a lot of optimal quantizers are reached.
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I. Adaptive Vector Quantization

For the adaptive TSLVQ [34] the codebook is set up

in two parts: a stump from several types of training se-

quences, this structure is achieved outline; some branches

added according to the image sequence to be quantized,

these branches constitute the only transmitted information

to update the codebook. Because of the binary allocation

that implies a tree pruning, there are precisely four steps

in the process (see the �gure 15):

1 Construction of a large stump,

2 Stump binary allocation, the chosen rate threshold is

very low,

3 Addition of large branches,

4 Codebook �nal binary allocation with the desired rate.

In order to update the codebook, only the step 3 and 4 are

carried out.

bit allocation

stump construction branches addition

bit allocation

Fig. 15. The four steps of the adaptive TSLVQ codebook.

VI. Experimental Results

The TSLVQ takes place in a subband coder (see �gure 1)

devoted to very low bit rate coding of video-phone image

sequence. This coder is MPEG based because the tools are

a block matching for the motion estimation/compensation

and a DCT for the transform. There are four experimental

stages:

1 the training sequences constitutions with the coder in an

open loop,

2 the subband codebook design,

3 the bit allocation between the subbands,

4 the image sequence coding with the coder in closed loop.

For the numerical results, in addition to the Peak Signal

to Noise Ratio (PSNR), the prediction gain Gp and the

quantization gain Gq are distinguished, PSNR = Gp+Gq

with:

Gp = 10� log10
2552

1
S
�PS

i=1 e
2
i

Gq = 10� log10

PS

i=1 e
2
iPS

i=1(eqi � ei)2

where S is the image size, ei the prediction errors and eqi

the vector quantized prediction errors. The simulations are

made using QCIF image sequences (images extracted from

the sequences are shown on �gure 16): "Miss America",

"Salesman", "Carphone" and "Mother-and-daughter". For

the CPU time, the target computer is a Sparc-Station 20

(75 Mhz).

Fig. 16. Images extracted from the original sequences.

A. Results with classical TSLVQ

A.1 Codebook design

The block size is (2 � 2) so 4 sub-bands are set up by

putting together the coeÆcients relating to the same fre-

quency activity. For each sub-band a codebook is con-

structed as shown in the �gure 17: the vector shape is

adapted in order to exploit the redundancy and the indi-

cated rates are the thresholds before bit allocation.

1  b p p

A

0 . 5  b p p

B

0 . 5  b p p

C

0 . 2  b p p

D

Fig. 17. Codebook: vector shapes, sub-band labels and maximal
entropies (before bit allocation).

Images from all four di�erent sequences are used for the

codebook design, table I shows the numerical results before

bit allocation and table II after bit allocation. Note that as

the vector dimension increases the number of code-vectors

increases too, so the training sequence size must be large

in order to ensure a high enough training ratio. The CPU

times for these codebook constructions are small although

the programming is not optimal.



subband label training sequence CPU time codeword number codebook entropy

A 4 images 4.93 s 55 0.698 bpp

B 12 images 6.15 s 106 0.213 bpp

C 12 images 6.22 s 133 0.231 bpp

D 200 images 69.43 s 1982 0.083 bpp

TABLE I

Classical TSLVQ, codebook design from the four sequences: before bit allocation.

threshold: Rd = 0:2 bpp threshold: Rd = 0:1 bpp
�nal rate: R = 0:195 bpp �nal rate: R = 0:096 bpp

subband label codeword number codebook entropy codeword number codebook entropy
A 20 0.332 bpp 20 0.332 bpp
B 106 0.213 bpp 26 0.020 bpp
C 133 0.231 bpp 34 0.027 bpp
D 92 0.003 bpp 92 0.003 bpp

TABLE II

Classical TSLVQ, codebook design from the four sequences: after bit allocation.

A.2 Image sequence coding

The codebook for which the target rate Rd = 0:2 bpp,

is used to code the "Salesman" sequence. The maximal

time for encoding an image is just about 1:8 s. Figure 18

shows curves obtained when encoding one hundred pictures

of the sequence. The PSNR equals in average 36:89 dB,

so globally the quality is quite good. The PSNR curve

is constant because when the prediction gain becomes less

eÆcient, the quanti�cation gain gets higher (the fall at the

beginning of the PSNR curve is due to the stabilization of

the closed loop coder). When the rate curves are correlated

with gain curves: the peaks appear with the motion in

the sequence (because the character moves and handles an

object).

The pictures shown in �gure 19 are extracted from the

sequences. They illustrate how the TSLVQ performs: only

the edges of the moving man are �nely quantized, while

the background and the noise are coarsely quantized.

The curves (�gure 18) and the pictures (�gure 19) ob-

tained with the "Salesman" sequence are a good represen-

tation for this type of results obtained with TSLVQ. Ta-

ble III displays outcomes when coding the other sequences.

These results are too dependent on the coding intrinsic dif-

�culty of the sequence ("Miss America" sequence is simple,

"Carphone" sequence not). The adaptive approach aims to

overcome this drawback.

B. Results with adaptive TSLVQ

B.1 Codebook design

The coder con�guration is chosen as before, but the code-

book of each sub-band is now designed in two parts. For

the stump we use the same training sequence constituted

from the four sequences and the same codebook con�gura-

tion (see �gure 17), but the threshold for the bit allocation

is very low: Rd = 0:1 bpp (see table II for numerical re-

sults). For the branch addition we use the images from the

sequence to be coded. As an example, table IV and ta-

ble V show typical outcomes obtained respectively before

and after bit allocation, using the "Salesman" sequence.

The CPU times remains reasonable, and after the bit allo-

cation the rate is closer than the target. The replenishment

information is necessary to complete the codebook from the

stump, its size is very small.

B.2 Image sequence coding

We code separately the sequences from their own code-

book, namely the training sequence for the branch addi-

tion has been constituted only with images from the se-

quence to be quantized. Table VI shows more regular re-

sults: whichever the type of sequence, the �nal rate is close

to the target, and a good quality of reconstruction is ob-

tained. A gap between the target and the �nal rate remains

because the training sequence used for the codebook con-

struction is obtained with an open loop coder, whereas the

image sequence coding is achieved next in a closed loop.

As a consequence the two vector sources are slightly dif-

ferent. Moreover, we must add that the gain induced by

the "dead zone" is subjective, and its size could be settled

empirically.

The analysis of results presented as before (encoding time,

rate and gain curves, pictures extracted from the se-

quences) will be the same.

VII. Conclusion

We have proposed a new vector quantizer in the con-

text of video coding applications. The approach aims to

unify both eÆcient coding methods (fast lattice encoding

and unbalanced tree-structure codebook) is based on lattice

embedding. We have investigated the VQ complete design

with: the lattice truncation, the multi-stage procedure of

quantization, the unbalanced tree-structured codebook de-

sign according to a distortion v.s. rate tradeo�, the best

lattice determination, the outlying input vector processing

and the bit allocation strategy. Taking account of the par-

ticular structure of the codebook, the VQ capability for

adaptive coding has been explored.

This tree-structured lattice VQ o�ers some solutions to

usual lattice VQ drawbacks with a space partition accord-

ing to the source distribution, a simple labeling of the lat-



sequence name number of images average PSNR average entropy

"Salesman" 180 36.89 dB 0.195 bpp

"Miss-America" 150 37.32 dB 0.137 bpp

"Carphone" 180 34.25 dB 0.367 bpp
TABLE III

Classical TSLVQ, coding of sequences with the codebook designed from the four sequences.

subband label training sequence CPU time codeword number codebook entropy

A 5 images 7.18 s 48 0.954 bpp

B 15 images 5.97 s 104 0.205 bpp

C 15 images 6.11 s 161 0.318 bpp

D 150 images 52.92 s 1348 0.078 bpp
TABLE IV

Adaptive TSLVQ, codebook design, branch addition from the "Salesman" sequence: before bit allocation.

subband label codeword number codebook entropy replenishment information

A 20 0.337 bpp 0 bytes

B 104 0.205 bpp 681 bytes

C 86 0.253 bpp 448 bytes

D 92 0.002 bpp 0 bytes
TABLE V

Adaptive TSLVQ, codebook design, branch addition from the "Salesman" sequence: after bit allocation (threshold:

Rd = 0:2 bpp, final rate: R = 0:199 bpp).

sequence name number of images average PSNR average entropy

"Salesman" 180 36.66 dB 0.170 bpp

"Miss-America" 150 38.03 dB 0.273 bpp

"Carphone" 180 32.65 dB 0.257 bpp
TABLE VI

Adaptive TSLVQ, coding of sequences with their own codebook.

tice points and a fast processing of the outlying input vec-

tors. It is well suited for adaptive video coding because of

the "dead zone" in accordance with prediction error cod-

ing, the practicable updating of the codebook and the fast

image encoding.
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