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This study presents an automatic on-line adaptation mechanism to the handwriting style
of a writer for the recognition of isolated handwritten characters. The classifier we use
here is based on a Fuzzy Inference System (FIS) similar to those we have designed for

handwriting recognition. In this FIS each premise rule is composed of a fuzzy prototype
which represents intrinsic properties of a class. Furthermore, the conclusion part of rules

associates a score to the prototype for each class. The adaptation mechanism affects both
the conclusions of the rules and the fuzzy prototypes by re-centering and re-shaping them

thanks to a new approach called ADAPT inspired by the Learning Vector Quantization.
Thus the FIS is automatically fitted to the handwriting style of the writer that currently
uses the system. Our adaptation mechanism is compared with well known adaptation
techniques. The tests were based on eight different writers and the results illustrate the

benefits of the method in term of error rate reduction (86% in average). This allows such
kind of simple classifiers to achieve up to 98.4% of recognition accuracy on the 26 Latin

letters in a writer dependent context.

Keywords: supervised adaptation; on-line handwritten character recognition; Fuzzy In-

ference System.

1. Introduction

With the emergence of Personal Digital Assistants (PDA) and smartphones using

pen-based interfaces, the handwriting recognition accuracy becomes very impor-

tant, in terms of high recognition rates and low resource costs. Even if writer in-

dependent recognizers are more and more accurate for unconstrained handwriting,

they remain error-prone. In fact, in the context of real world applications, they have

to deal with many different writing styles, and the error rate is still too high for many

users. One solution to overcome this limitation is to design adaptation techniques

to optimize a writer independent system by using writer dependent specialization.

This adaptation to the writer’s style specificities must be fast, transparent and easy
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for the user. The difficulty is then to learn quickly a new writer style with very few

data and resources available.

There are several ways to adapt a classifier and they depend mainly on two

things: the classifier kind and the available data for the adaptation process. A first

way is off-line adaptation with an existing database of the user’s handwriting to

re-train the classifier, as in Ref. (8) with Hidden Markov Models (HMM). In this

study, we focus on a second way, an incremental on-line adaptation that can be

performed on devices with low resources by using only the last new characters

inputted by the user. This was performed for example in Ref. (6) with HMM which

are re-trained after few words inputted by the user. Closer from ours approach,

works in Ref. (14) and Ref. (19) use K-nearest neighbor systems and they adapt

the recognition system at each new character inputted.

In previous works, we have already designed powerful recognition systems:

Mélidis15 which is a generic pattern recognition approach and RESIFCar3, a recog-

nition system dedicated to isolated handwritten characters. These systems are based

on compact and robust Fuzzy Inference System (FIS),2 which allowed us to embed

RESIFCar on mobile phones marketed in Europe.1

In order to improve the performance of these systems, we present a new on-

line adaptation mechanism to the handwriting style of the current writer. This

adaptation is done automatically and progressively during the use of the system.

In this study we focus on the problem of the on-line adaptation of simple FIS.

The aim is to apply later on this mechanism to more complex and more powerful

systems such as RESIFCar or Mélidis. In these FIS, the rules use in premise fuzzy

prototypes which describe the classes of characters. The numeric conclusions weight

the participation of the prototypes to each class.

FIS optimization techniques already exist as described in Ref. (12). For the opti-

mization of the numeric conclusions of the rules, methods based on the least squares

are often used, like the pseudo inverse method or the gradient descent method. For

modification of the rules premises the main classical approaches are based on gra-

dient descent learning or genetic algorithms. In the handwriting recognition field

there are already some adaptation methods.13,14,19 Among those, works about the

adaptation of systems based on prototypes14,19 are particularly interesting for FIS.

We present in this paper a new writer adaptation method and strategy. It is

inspired from the Learning Vector Quantization10 (LVQ) and Elliptical Fuzzy Com-

petitive Learning9 (EFCL). The adaptation strategy is designed to respect the con-

straints imposed by the application frame i.e. on the one hand the incremental

on-line adaptation progressively done all along the use and the stability of the per-

formances in time and on the other hand the availability of few resources as in

smartphones.

The paper is structured as follows. Firstly, the section 2 presents the properties

of the used fuzzy inference system. Next, section 3 describes the adaptation ap-
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proach by focusing on its originality compared to other existing techniques. Then,

section 4 reports experimental results and comparisons on several writers for iso-

lated handwritten character recognition. Finally, some perspectives and extensions

are drawn in the conclusion.

2. Principles of the FIS

2.1. Description of the FIS used

The used classifier is formalized by an order zero Takagi-Sugeno FIS17 with N rules.

A rule is composed of a premise (the if-part) and a conclusion (the then-part). FIS

make a link with fuzzy rules between intrinsic models describing the properties of

the handwritten characters and the corresponding label.2 Each intrinsic model is

defined by a set of fuzzy prototypes Pr in n dimensions. In the case of a K classes

problem, for each fuzzy prototype Pr, a rule Rr is built:

IF ~X is Pr THEN sr
1

= ar
1

and ... and sr
c = ar

c and ... and sr
K = ar

K ,

where ~X is the feature vector of the character X to recognize. As each prototype

can take part in the description of each class, the rule Rr has numeric conclusions

which connect the prototype with each class C by a prototype score sr
c . The ar

c

values are the weights corresponding to the participation of each prototype in the

description of each class.

2.2. Learning phase

Initially the system is automatically trained from a learning database. The fuzzy

prototypes are learned separately on each class thanks to an unsupervised clustering

algorithm based on the possibilistic C-means.11 Thus, the prototypes represent an

intrinsic description of the classes.15 The fuzzy prototypes Pr are defined by their

membership degree βr( ~X) of Eq. (1). This degree is an hyper-ellipsoidal radial basis

function of center ~µr and its shape is given by a covariance matrix Qr using the

Mahalanobis distance11 dQr
( ~X, ~µr) :

βr( ~X) =
1

1 + dQr
( ~X, ~µr)

. (1)

The conclusions ar
c of each rule are computed with the pseudo-inverse method.4

This gives the optimum values to discriminate between classes by solving a linear

equation system.

2.3. Recognition process

To determine the class of an unknown character X, its membership degrees βr to

the N fuzzy prototypes are computed according to Eq. (1) and the sum-product
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inference is used to compute class scores sc, i.e. the system outputs, with Eq. (2).

sc =

∑N

r=1
βrs

r
c

∑N

r=1
βr

. (2)

This equation shows how the different prototypes participate to the recognition of

all classes.

The classification decision is then carried out by choosing the class Cd which

has the best (maximum) class score among the sc (Eq. (3)).

sCd
= max

c
sc. (3)

3. On-line adaptation principles

The structure and the learning process of the used FIS make it quite similar to pro-

totype based recognition approaches such as K-nearest neighbor classifiers. It is why

the adaptation process proposed here is mainly inspired by the adaptation mecha-

nism of K-nearest neighbor classifiers14,19 i.e. the LVQ principle. The difference is

that our FIS use hyper-ellipsoidal radial basis functions and numeric conclusions.

So, our approach is also guided by the Elliptical Fuzzy Competitive Learning,9 by

the FIS12 learning and by the radial basis function classifiers learning process.16

The writer adaptation is done during the use of the system and must respect

the embedded constraints. The presented approach is thus iterative, i.e. it uses

only the last current example (the character that has been just written by the

user) or a buffer containing the last examples to adapt the system. Furthermore,

the adaptation is supervised: each example is correctly labeled. This labeling is

possible by asking the user to check the recognition or by using an auto-supervised

technique like the one used in Ref. (14)

In the used FIS, the adaptation can be made in different ways in order to better

discriminate the classes. First the prototypes used in if-parts (premises) can be

re-centered, re-shaped, removed and it is also possible to add new ones to take into

account the specificities of the writer. Secondly the conclusions of the then-parts

can also be optimized in order to re-estimate the participation of each prototype

to each class. We define an adaptation cycle as a sequence consisting in a premise

adaptation and then a conclusion adaptation for one example (character).

In this study we focus on how to adapt the premises of the system rules by re-

centering and re-shaping prototypes. The addition and the removal of prototypes

will be studied in future works.

In the following section 3.1, we present in more details the originality of the

approach used to adapt the premises by re-centering and re-shaping the prototypes.

The section 3.2 presents the classical Gradient Descent method used to adapt the

conclusions. After that, we present in section 3.3 how to use and combine these two

adaptation steps in an embedded application.
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3.1. Premises adaptation

For both the re-centering and the re-shaping we present firstly the direct transpo-

sition of existing approaches and secondly our ADAPT approach.

3.1.1. Prototype re-centering approaches

Re-centering the prototypes makes it possible to better represent the specificity of

the writing style of a new writer. There already exists some unsupervised techniques

which re-center prototypes like Competitive Learning (CL) or Fuzzy Competitive

Learning (FCL).9 But as we focus on supervised techniques, the used process is

instead inspired by the Learning Vector Quantization (LVQ) algorithm.10 Differ-

ent versions of this algorithm have been compared in Ref. (19) to adapt K-nearest

neighbor classifiers. The simplest supervised version (LVQ1) brings the nearest pro-

totype closer to the example if it is correctly classified and moves the prototype

away from the example if it is misclassified. This technique supposes that the proto-

types are crisply labeled. The direct transposition of this method to our FIS could

be proceeded in the following way: during the learning process we have labeled

each prototype with the class from which it was learned and during the adaptation

process the most activated prototype is re-centered according to its original class

(winner-take-all method). The center ~µr of the prototype Pr of the rule r is updated

with the displacement vector ~∆µr:

~∆µr = λ ∗ δ ∗ ( ~X − ~µr), (4)

with δ set to 1 if X has the same class than Pr and to -1 otherwise. The adaptation

parameter λ lies between 0 and 1. It controls the amplitude of the displacement and

thus the adaptation rate. The value of λ is discuss in section 3.3. If this method

is used directly on our FIS, there will be no good results as shown in section 4.

The reason is that our prototypes are not crisply labeled as they participate in the

recognition of all classes (cf. section 2.3) since in a FIS all prototypes are taken into

account to recognize an entry, the decision does not depend only on one prototype.

An extension of this mechanism consists in re-centering all the prototypes ac-

cording to the activation of the corresponding premise unlike winner-take-all meth-

ods. This method is transposed from the Fuzzy Learning Vector Quantization

(FLVQ) used for a supervised fuzzy competitive learning based on prototypes.7

The farther the activation βr of the premise r is away from its objective score β∗

r ,

the more it should be moved:

~∆µr = λ ∗ (β∗

r −
βr

∑N

q=1
βq

) ∗ ( ~X − ~µr). (5)

The objective score β∗

r is 1 if the prototype Pr and X belong to the same class and 0

otherwise. FLVQ uses the activation of each prototype for the center update. Thus,

at each adaptation cycle all of them can be modified. But they are still labeled

crisply and do not take into account all information used in FIS. For example,
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a prototype from another class will be moved away even if it participates in the

recognition process via conclusion scores. Furthermore, if more than one prototype

are used for the class description, FLVQ tends to improve the activation of a far

away prototype, even if another one permits the classification.

3.1.2. The ADAPT prototype re-centering approach

The transposition of LVQ1 and FLVQ that we use comes from K-nearest neighbor

(fuzzy) classifiers. Thus, they need crisply labeled prototypes and do not take into

account the participation of each prototype in the final class score. In this context, a

beneficial displacement for a class can be wrong for other classes. This phenomenon

limits the adaptation and can have bad effects for some writers (cf. section 4.2).

Thus, we propose the ADaptation by Adjustment of ProtoTypes (ADAPT)

method. It allows to modify all the prototypes of the FIS by re-centering them for

each new example that is inputted. This is done according to their participation in

the recognition process. The prototypes are not labeled and thus participate in the

description of all the classes. The update of prototype must improve the score of

each class. In this way, the displacement ~∆µr must be significant if the class score

sc is different from those wanted, the participation sr
c of the prototype to the final

decision is high and the rule premise is activated. Equation (6) gives the prototype

update using the proposed ADAPT learning rate δ
′

r:

~∆µr = λδ
′

r(
~X − ~µr) (6)

δ
′

r = βr

C
∑

c=1

((bc − sc) sr
c) , (7)

with bc the wanted class score for sc : 1 if c is the example class and 0 otherwise.

The Figure 1 shows an example of this compromise. The prototype was learned

initially on the class 1 and an example of this class is presented to adapt the system.

The first idea is to move the prototype closer to the example but, as this prototype

participate to the recognition of other classes (class 2 and 3 in this example) this

move can have a bad effect on the recognition. So we also consider the re-centering

needed to optimize the class scores of these two classes. The final re-centering is

the sum vector of all the needed moves.

Thus, we can rewrite the equation Eq. (6) as a sum of displacements where each

displacement improves to 1 the class score of the class of the example and decreases

to 0 for the other classes:

~∆µr = λ

C
∑

c=1

(

βrs
r
c(bc − sc)( ~X − ~µr)

)

. (8)

The ADAPT prototype update is thus a compromise between the improvements

of each class score.
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ADAPT re−centering

Example of class 1

A prototype initially

Re−centering for class 1

Re−centering for class 2

learned on class 1

Re−centering for class 3

Fig. 1. Principle of the ADAPT compromises between the optimizations of all classes.

3.1.3. Prototype re-shaping approaches

The re-centering of the prototypes allows to fit the new localization of the writer

data in the input space. To better represent the repartition of these new data,

the shape of the prototypes must also be adapted. The shape of the prototype

Pr is given by its associated covariance matrix Qr. So, re-shaping the prototypes

corresponds to the re-evaluation of these matrices. Nevertheless, the Mahalanobis

distance uses the inverse matrix Q−1

r , so it is more efficient to update directly the

inverse matrix than re-evaluating the covariance matrix first and then inversing it

at each adaptation cycle.

An iterative formula is given by Schürmann16 to recursive estimation of a co-

variance matrix in an unsupervised context:

Qr ⇐ (1 − α)
(

Qr + α( ~X − ~µr)( ~X − ~µr)
T
)

, (9)

with parameter α the learning rate. This formula can be transformed to estimate

the inverse covariance matrix as shown in Ref. (16):

Q−1

r ⇐
Q−1

r

1 − α
−

α

(1 − α)

(Q−1

r ~m)(Q−1

r ~m)T

1 + α(~mT Q−1
r ~m)

, (10)

with ~m = ~X − ~µr and α is the learning rate.

3.1.4. The ADAPT prototype re-shaping approach

The drawback of the previous update method is that it is unsupervised and it can

not take into account neither the numeric conclusions of the FIS nor the error on

each class. Consequently, as in Ref. (9) where EFCL uses the activation of the

prototype, we propose to replace α in Eq. (9) by αδ
′

r which uses the ADAPT

learning rate δ
′

r from Eq. (7). The value of α is discuss in section 3.3. We can

thus rewrite the equation Eq. (10) to estimate the inverse matrix using supervised
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information:

Q−1

r ⇐
Q−1

r

1 − αδ′

r

−
αδ

′

r

1 − αδ′

r

·
(Q−1

r ~m) · (Q−1

r ~m)T

1 + αδ′

r(~mT Q−1
r ~m)

. (11)

By this way, the ADAPT re-shaping, as the ADAPT re-centering, uses the acti-

vation of the prototype, its participation on the recognition of each class and the

error made on each class.

3.2. Conclusion adaptation

To provide the conclusion adaptation, the classical Gradient Descent (GD) method

is chosen because it is simple, requires few resources and can be used in an iterative

way. This method (Eq. (12)) updates the numeric conclusions of the rules consider-

ing the prototype scores, the class scores and the target class score bc. This target

class score bc is 1 if c is the class of the example and 0 otherwise. The adaptation

parameter n lies between 0 and 1 and controls the adaptation speed.

∆sr
c = n ∗ (bc − sc) ∗ βr. (12)

3.3. On-line adaptation strategies

The aim of adaptation strategies is to obtain a fast and robust adaptation with

respect to the constraints of an on-line adaptation process embedded in a small

device such as a smartphone.

A robust adaptation could be obtained by storing all the previous examples

inputted by the user and then adapting the system to them. But, here it is impossi-

ble because of the limitation of the memory resources. Thus, in order to have some

diversity in the examples and to increase the adaptation speed, the last F examples

are stored in a data buffer. Each time a new example is inputted, it is added to

the data buffer and the oldest one is removed. An adaptation cycle, as defined in

section 3.1, is run for each example stored in this buffer. So F is an adaptation

parameter which influences the computing time.

An other way to increase the speed and robustness of the adaptation consists in

defining the value of the learning rates λ (Eq. (6)) and α (Eq. (11)). Whereas, a high

value allows a fast but unstable adaptation, a low one allows a stable and robust

but slower adaptation. So we use a classical7,10,16 mechanism which decreases the

learning rates. Thus, a decreasing learning rate allows a fast and robust adaptation.

The original aim of this technique is to allow the same importance to all examples

used in this learning process (the adaptation for us). Nevertheless, in our context

of adaptation we use a decreasing half bell shape curve to limit the decreasing at

the beginning and to have a minimum value in order to keep an adaptation even

after a long use.

The decreasing from λmax to λmin is defined here by:

λ(t) =
λmax − λmin

1 + t/T
+ λmin, (13)
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where t is incremented for each new character inputted by the user, after the adap-

tation on the data-window. When t = T we have λ = 1

2
(λmax + λmin).

The same technique is used for α, the deformation parameter from Eq. (11):

α(t) =
αmax − αmin

1 + t/T
+ αmin, (14)

4. Experiments

In order to validate our approach we compare it with the direct transposition of the

existing methods LVQ (Eq. (4)) and FLVQ (Eq. (5)) using a set of eight different

writers. In this first study, we focus on the adaptation speed (in terms of number

of inputted examples) and on the robustness (in terms of stability). After that we

study the behavior of the ADAPT method in a simulation of a real use context.

4.1. Experimental protocol

The experiments are based on the recognition of the 26 lower case Latin letters,

without any constraints for the writer. The initial learning of the system uses 5287

characters of the Ironoff database18 which contains about 400 writers. The writer

specific databases were written on a PDA by eight users all different from those

involved in the Ironoff database. Each writer has inputted 40 times each characters

i.e. 1040 characters per writer. In this experiment, there was no recognition feedback

so the writer can not adapt his style to the recognition system. To estimate the

adaptation performance on each writer, we proceed by a four-fold cross-validation

technique. 3/4 of the writer database (780 letters) is used to adapt the system to

him and 1/4 (260 letters) is used to evaluate the results of this adaptation to his

personal handwriting style. To observe the adaptation effects during a longer use,

the adaptation databases are used twice. For each split of the data, this adaptation

is carried out five times with a different order for the adaptation data in order to

avoid effects due to the letter input order. The presented curves and results are

thus the average of these 20 tests (five times the four-fold cross validations).

In this experiment, the characters are described by a set of 21 features similar

to those used in ResifCar.1 The class description uses two prototypes. As there are

26 classes the system has 52 prototypes and so 52 rules.

4.2. Global results

4.2.1. Comparison of re-centering methods

The table 1 shows the recognition rates before and after adaptation with the dif-

ferent methods for each writer. The last column shows the average recognition rate

(ARR) on all writers’ databases. “GD” alone is an adaptation with just the Gra-

dient Descent method without any prototype updating. ”X+GD” represents the

adaptation with a complete adaptation cycle i.e. re-centering method X and GD.
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The method X can be LVQ1 (Eq. (4)), FLVQ (Eq. (5)) or ADAPT (Eq. (6)). The

GD parameter n is 0.14, the parameter λ decreases from 0.05 to 0.005 for LVQ1

and ADAPT and from 0.005 to 0.0005 for FLVQ and the data window size F is 20.

The value of T for λ decrease is 100. These values were found empirically in order

to optimize the results.

Table 1. Recognition rates before and after adaptation with the different methods.

Writer

Adaptation 1 2 3 4 5 6 7 8 ARR

Before 88.9 90.7 87.8 90.1 87.6 91.6 85.2 87.5 88.7

GD 92.3 92.5 91.0 93.3 92.7 92.0 87.6 92.2 91.7

FLVQ+GD 94.1 89.1 92.6 94.2 94.8 93.9 90.4 92.3 92.7

LVQ1+GD 95.8 93.5 93.2 95.9 95.3 94.1 93.2 95.3 94.5

ADAPT+GD 97.2 95.4 95.3 97.4 97.1 96.3 95.9 97.7 96.5

ADAPT+
re-shaping+GD 98.9 97.1 97.4 99.0 99.2 98.3 98.9 98.6 98.4

Firstly, we can see that the use of the prototype center update improves the

adaptation results compared to the conclusion adaptation GD alone. Secondly, the

ADAPT method achieves the best recognition rates: 96.5% in average i.e. an error

reduction of 69% against an error reduction of 51% for LVQ1. The transposed

FLVQ method achieves lower results than the transposed LVQ1 method. It shows

that the transpositions of LVQ and FLVQ methods do not fit with the type of used

FIS. Actually, they keep the initial association of the prototypes with classes even

though the prototypes describe all classes and this association can change during

adaptation cycles through the conclusion adaptation. The lower results of the FLVQ

method (especially for writer 2) probably comes from the fact that FLVQ updates

all prototypes regardless of their contribution to each class and the LVQ1 method

takes fewer risks by updating only one prototype.

So the ADAPT method is a more appropriated re-centering formula for this

recognition system where the prototypes participate in the recognition of all classes.

4.2.2. Contribution of the re-shaping

The last line of table 1 shows the recognition rate after adaptation using the ADAPT

re-centering (Eq. (6)) and re-shaping (Eq. (11)) methods. The value of α varies from

0.005 to 0.001 according to Eq. (14) with T = 100.

We can see that the re-shaping allows another reduction of the error rate by

54% with regards to the use of just the ADAPT re-centering and 86% with regards

to the initial recognizer. So with this complete adaptation skill the recognition rate

rises up to 98.4% which represents just one error for 60 characters recognized.
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4.3. Results analysis

4.3.1. Comparison of the recognition rates evolution

Figure 2 compares the evolution of the average recognition rate of all writers during

the adaptation with the different methods.

Number of used characters

A
R

R

FLVQ + GD

GD

 1600 1400 1200 1000 800 600 400 200 0
 88

 90

 92

 94

 96

 98

 100

LVQ1 + GD

ADAPT + GD

 250

ADAPT + re−shaping + GD

Fig. 2. Comparison of average recognition rate for different adaptation methods.

Firstly, our approach allows a stable adaptation i.e. the recognition rate does

not fluctuate or decrease at the end. Secondly, we can see that the adaptation to

the writer’s style is faster with the ADAPT+GD method than with the others.

For example after 250 characters ADAPT+GD achieves 94.5% whereas LVQ1+GD

achieves 93%. We can notice that the re-shaping not only increases the final score

but also increases the speed of the adaptation. Indeed, we adapt both the center and

the shape of the prototypes and they are two complementary ways of improving

the recognition. With only 250 characters (about 50 words) the recognition rate

rises from 88.7% up to 96.2% using ADAPT+re-shaping+GD and it represents

about 66% of the final adaptation. This adaptation speed is very interesting for our

application context, where the user will rapidly have less errors to correct.

4.3.2. 2D adaptation display

In order to show the behavior of the ADAPT+GD method, we have done the same

experiment with just three classes (“a”, “f” and “x”) and in two dimensions only

(i.e. two features). These classes and features were chosen to have a suitable data

repartition in the two dimension feature space with recognition rates comparable

to those of the experiment in the initial 21 dimension space. Each class is initially
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described by two prototypes e.g. Pa1 and Pa2 for the class “a”. Thus, we can observe

the different repartition of letters for each writer due to their personal handwriting

style. We can also display the decision boundaries and the fuzzy prototypes as

ellipses (the 0.5 α-cut). Figure 3 shows a part of the learning database Ironoff,

the initial six prototypes and the initial decision boundaries. Figures 4 and 5 show

some examples of writers 4 and 8 respectively, the six prototypes and the decision

boundaries after the adaptation ADAPT+GD with re-shaping.

−−

Px2

Pa2

Pa1
Px1

Pf2

Pf1

Decision boundaries

Prototypes

Fig. 3. The initial FIS for three classes in two dimensions with examples from the learning database.
Pa1 and Pa2 are prototypes of “a”. Pf1 and Pf2 are prototypes of “f”. Px1 and Px2 are prototypes

of “x”.

We can see in Figure 4 that the writer 4 has a regular handwriting style. For

example, he writes homogeneous “f” with two loops and cursive “x”. Moreover, in

Figure 3, the “x” and “f” classes have a great confusion which is not observed for

the writer 4. After adaptation, the prototypes have been re-centered. For example,

Pa2 has been centered at the new data location. Since Pa1, Pf1 and Px2 had already

a good place, they moved only slightly. Furthermore, a prototype has changed the

class that it represents (cf. Figure 3): Px1 describes now the class “f” instead of the

class “x”. Moreover, Pf2 seems to be unused by this user’s writing style. In future

works, these redundant or unused prototypes could be deleted.

Figure 5 shows the adaptation to writer 8 whose writing style is very different

from the one of writer 4. We had to note that he writes homogeneous “a” and

“f” but has two kinds of “x”. We can see on this figure that there are clearly two

“x” locations and that the adaptation process has moved the Pf2 prototype to one

location of “x”. Furthermore, in Figure 5, the prototype Px1 is now placed on class

“f” instead of the initial class “x”.

Other re-centering methods like LVQ1 would not permit these exchanges of
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Decision boundaries

Prototypes

−−

Pa1

Px1Pf1

Pf2

Px2

Pa2

Fig. 4. The FIS for three classes in two dimensions after adaptation to writer 4.

prototypes (Px1 for writer 4 and Px1 and Pf2 for writer 8). Indeed, these methods

use labeled prototypes and they would try to keep the labels even if the prototypes

need to cross the feature space to be closer to their associated class.

Decision boundaries

Prototypes

Pa1

Px2

Pf2

Px1

Pf1
Pa2

−−

Fig. 5. The FIS for three classes in two dimensions after adaptation to writer 8.

Figure 6 shows the six prototypes before (from Figure 3) and after (from Fig-

ure 5) adaptation to writer 8 in order to appreciate the re-centering and the re-

shaping of each one. For example, Px1 has changed its height and width, but Pa2

and Pf2 have also changed their orientation. We can also see how far away were the
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initial prototypes from the writer 8 style.

Before

After

−−

Pf2

Pf1Px1

Pa1 Pa2

Px2

Fig. 6. Positions and shapes of prototypes before and after adaptation to writer 8.

In conclusion, the decision boundaries after the adaptation better discriminate

all the classes for these writers. Indeed, their shapes and positions have been well

adapted to the different handwriting styles.

4.3.3. Style adaptation

To observe the style adaptation, we compare the recognition results of the classifier

before and after the adaptation, for each writer, by showing examples of writing

styles which are misclassified by the original FIS and which are correctly classified

after adaptation (ADAPT+GD). Table 2 reports these results and the error rates of

the corresponding class before and after the adaptation. It also reports the relative

variation ∆ of the recognition error rate.

All these handwriting styles are probably represented in the learning database

because of the number of writers in Ironoff. But there are some confusion errors

between characters from different handwriting styles (for example, all errors in the

class “q” of writer 7 are confusions with the class “g”). So the improvement (up to

99% for the class “q” of this writer) comes from a well adapted representation of

the writer style specificity.

4.4. Real experiment simulation

In previous sections we have shown that our ADAPT strategy is able to fit the

recognizer to the handwriting style of a writer. But in these experiments, all data

are used in a random order with an equiprobable apparition for each class. In



January 16, 2007 10:15 WSPC/INSTRUCTION FILE Mouchere

Writer Style Adaptation of On-line Handwriting Recognizers 15

Table 2. Examples of writing styles which are misclassified before adaptation and are correctly

classified after.

Error rate (%) Examples

Writer Class Bef. Aft. ∆(%)

1 r 80 13 -84

w 55 0 -100

4 y 53 3 -95

z 58 19 -68

7 q 93 1 -99

r 68 5 -93

8 f 93 3 -97

z 58 0 -100

a real life experiment the characters arrive in the text order and with different

probabilities. For example, the class “e” will appear more frequently than other

classes and the trigram “the” is more probable than the trigram “ztw”. So it could

be interesting to know how effective ADAPT is in a more real context as described

in Ref. (5): the user inputs handwritten characters one by one and the system

recognizes them separately.

We consider a piece of a lowercase text write in table 3 and it is split into two

parts. The first two sentences (266 characters) are used as an adaptation sequence

and the next two sentences (237 characters) are used as a test sequence. The on-

line characters of this two sequences are taken randomly in the adaptation and test

databases respectively for each writer. Thus, the characters used in the adaptation

sequence are not include in the test sequence.

Table 4 shows the test sentences as recognized by the initial FIS for writer 1

(with the correct character below each mistake). Table 5 shows the same sentences

but after adaptation to writer 1. We can see that the system starts with 25 errors,

which represents an initial recognition rate of 89.4% but the sentences are unread-

able. After adaptation, the system makes only four errors (98.3% of recognition

rate), which represents only one mistake every ten words. In a real context, a dic-

tionary could be used to correct these remaining mistakes and this work will be

much easier with this adaptation.

The same test is made with the four-fold cross-validation for all users and five

draws of characters. In average, the recognition rate rises from 88.9% to 97.8% with

266 adaptation characters. It is better than the rate of the first experiments with
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Table 3. The sentences used to adapt and test the FIS. Spaces and punctuations are ignored during

the process.

in this study we present an automatic on-line adaptation

mechanism to the writer’s handwriting style for the recognition

of isolated handwritten characters. the classifier we use here

is based on a fuzzy inference system (fis) similar to those we

have developed for handwriting recognition but simplified for

this study.

doing so, the adaptation mechanisms presented here can be

transposed to the original systems. in this fis each premise

rule is composed of a fuzzy prototype which represents

intrinsic properties of a class. the consequent part of rules

associates a score to the prototype for each class.

Table 4. The test sentences and the corrected errors before adaptation to writer 1 (25 errors i.e.
10.6% of the sentence).

doing sv the adaptatiom mechdnisms presented hbre cdn

o n a e a

be trdmsposed to the origindl systems in tkis fis bach

an a h e

premise rule is composed of a fuzry prototgpb whick represents

z y e h

intrinsic propertibs of a class the consequemt pdrt vf rubes

e n a o l

dssocidtbs d scorc to the prototgpe for each class

a a e a e y

the same number of used characters which was 96.3%. This difference must be due

to a good adaptation to frequent characters which are also frequent in the test

sequence. It shows that our adaptation method will be able to reduce the number

of errors in a real context even more rapidly and efficiently.

5. Conclusion

In the context of fuzzy classifier adaptation for on-line handwritten character recog-

nition, we have presented a new adaptation approach, namely ADAPT. This ap-

proach is able to adapt prototype-based Fuzzy Inference System with numeric

conclusions. This incremental adaptation is performed conjointly by re-centering
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Table 5. The test sentences and the corrected errors after adaptation to writer 1 (4 errors i.e.

1.7% of the sentence).

doing so the adaptatiom mechanisms presented here can

n

be tramsposed to the original systems in this fis each

n

premise rule is composed of a fuzry prototype which represents

z

intrinsic properties of a class the consequemt part of rules

n

associates a score to the prototype for each class

and re-shaping fuzzy prototypes and by re-evaluating the numeric conclusions. To

achieve our aim we design a suitable on-line adaptation strategy which allows the

adaptation to be quick and robust and to respect the embedding constraints.

The reported experiments show results for eight different writers. The ADAPT

method used on prototype-based Fuzzy Inference System allows a better adaptation

than the classical methods LVQ1 and FLVQ. Indeed, we obtain an high error reduc-

tion of 86% in average. The recognition rate rises from 88.7% to 98.4% in average

(up to 99.2% for the best writer). Another experiment close to a real context of use

illustrates how this adaptation strategy is able to reduce the number of errors from

one character every two words to one character every ten words.

The method will be extended in future works on the one hand to remove unused

or redundant prototypes to simplify the recognizer and on the other hand to add

prototypes to have a more efficient adaptation in terms of accuracy and rapidity.

Furthermore, the next step will be to apply these adaptation methods to the more

complex system of handwriting recognition RESIFCar.
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