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Abstract: Advanced Driver-Assistance Systems (ADAS) have become an essential part of modern cars. 

Among the solutions proposed, haptic shared control of the steering wheel is increasingly being studied. A 

fundamental question is how drivers adapt their behavior to these systems.  This article proposes to use the 

Unscented Kalman Filter (UKF) to identify the variation over time in the psychological and neuromuscular 

parameters of a driver structured model. The goal here is to understand how the driver adapts to changes, 

whether regarding the behavior of the steering system, the visibility or the road conditions. The LPV system 

considered for identification is known as the cybernetic driver model. Two experiments carried out 

respectively with Simulink© and on a driving simulator provide the data. The methodology proposed for 

tuning the UKF is studied from the results obtained with those data. A multi-UKF strategy is also 

considered. The methodology reveals useful when a compromise between rapidity and precision has to be 

achieved for parameters estimation. It opens the way to a detailed analysis of the driver's parameter 

variations within the multi-UKF framework. 
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1. INTRODUCTION 

Modern cars are more and more equipped with Advanced 

Driver-Assistance Systems (ADAS). For example, the Lane 

Departure Avoidance (LDA) systems warn the driver when the 

vehicle begins to move out of its lane unless a turn signal is on 

in that direction. The Lane Keeping Support (LKS) or lane 

centring systems help driver stay in the lane relieving driver of 

the steering task. Such systems either warn the driver in a 

critical situation, like the LDA, or take over full control of a 

subtask like the LKS. When steering is fully automated, the 

human driver will act like a supervisor of the system and 

monitors unexpected changes. As a consequence, the driver is 

out of the perceptual-motor loop, without any direct feedback 

from the steering wheel (Mole et al., 2019).  

An alternative approach, haptic “shared control” has been 

proposed (Abbink et al., 2012; Mark Mulder et al., 2012). In 

shared control, both human driver and automation interact 

through the steering wheel, which continuously provides 

feedback of the system actions. In addition, the human can 

override the system or give way to it, if it is safe and necessary 

to do so (Steele & Gillespie, 2001). Haptic shared control 

driver-assistance systems have shown their advantages in 

improvement of driver’s objective performance (Flad et al., 

2017) and become an increasingly popular approach to 

facilitate control and communication between human and 

intelligent machines. 

One of the fundamental questions in the development and 

implementation of haptic shared control systems concerns how 

the action of driver-assistance systems can smoothly take part 

in the driver’s sensorimotor loop. Incorporating a cybernetic 

driver model in the controller design has been proposed as a 

solution (Mars & Chevrel, 2017; Mars et al., 2011; Saleh et al., 

2013, 2011). This approach allows to take into account the 

predictions of the driver model to improve human-machine 

cooperation.  

Another open question related to the design of haptic shared 

control systems is how to consider the driver potential adaption 

to the system. Adaptation may be due to the prolonged use of 

the system (Mars, Deroo, & Charron, 2014) or to variations in 

the environment (Mars, Deroo, & Hoc, 2014), for instance. 

This may be achieved by adaptation of the driver model 

parameters as a function of time or conditions. The present 

paper aims to evaluate a method to achieve this goal. 

Previous interdisciplinary researches focusing on the 

estimation of driver’s distraction (Ameyoe et al., 2015) 

showed that one possible methodology is identifying in real-

time the variation of perceptual and neuromuscular parameters 

in a driver cybernetic model. Since the parameters in the driver 

model are varying, this approach is actually dealing with a 

Linear Parameter-Varying (LPV) system identification 

problem.  
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To deal with the driver’s adaptation process to different 

changes in his or her driving environment, this article adopts 

the idea of using the Unscented Kalman Filter (UKF) to 

identify an embedded driver model. The tuning methodology 

will be emphasized and a multi-UKF approach will be 

proposed. The method is validated through experiments. In 

section 2, the parametrized cybernetic driver model is 

presented. Section 3 implements the identification method 

based on UKF, section 4 discusses its tuning methodology and 

proposes a practical approach. Section 5 shows results of two 

experiments to validate the method, one with simulation data 

and another with experimental data from a driving simulator. 

Section 6 summarizes general conclusions. 

2. CYBERNETIC DRIVER MODEL 

The principle of a cybernetic driver model is based on a 

“perception-action” cycle which represents perceptual and 

motor processes (Max Mulder et al., 2004). The development 

of such models originates from human operator model in 

aeronautics (McRuer et al., 1977) during the 1950s. (Donges, 

1978) proposed a seminal two-level model  for vehicle control 

with anticipatory open loop control and compensatory closed 

loop control. During the 1980s and 1990s, human physical 

attributes and neuromuscular system were taken into 

consideration (Hess & Modjtahedzadeh, 1990). A visual 

control model of steering has been proposed later (Salvucci & 

Gray, 2004). In an effort to integrate all those models, a new 

model has been proposed (Mars & Chevrel, 2017; Mars et al., 

2011; Saleh et al., 2011). It represents the driver’s visual 

behaviour as the processing of two points on the road, a far 

point and a near point. The near point is used to compensate 

for lateral position errors while the far point is used to 

anticipate the road ahead. The visual information is then 

processed with a neural delay before feeding to the 

neuromuscular model. The neuromuscular action is modelled 

based on neurophysiology (Hoult & Cole, 2008). The block 

diagram of the cybernetic driver model is shown in Fig. 1. 

 

Fig. 1 Cybernetic driver model 

Signals and parameters are described in Table 1 and Table 2. 

Table 1 Description of signals in driver model 

Signal Description 

𝜃𝜃���  Visual anticipation angle 

𝜃𝜃���� Visual compensation angle 

𝛿𝛿� Steering wheel angle 

Γ� Self-aligning torque 

Γ� Driver steering wheel torque 

𝛿𝛿�� Driver intention of steering wheel angle 

Table 2 Description of parameters in driver model 
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12 
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Neuromuscular time 
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Vehicle longitudinal 

velocity 
18 

The delay can be approximated by using 1st order Padé model: 
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𝐾𝐾�𝑣𝑣� + 𝐾𝐾�

𝑇𝑇�

𝐾𝐾�

𝑣𝑣�

𝑇𝑇�

𝑇𝑇�
−

𝐾𝐾�

𝑇𝑇�
−

1
𝑇𝑇�⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐶𝐶(𝐴) = �
0 0 1

−
𝐾𝐾�

𝑣𝑣�
�1 −

𝑇𝑇�

𝑇𝑇�
� 2 0� 

𝐷𝐷(𝐴) = �
0 0 0 0

−𝐾𝐾� −
𝐾𝐾�

𝑣𝑣�

𝑇𝑇�

𝑇𝑇�
0 0� 

𝐴𝐴(𝑡𝑡) and 𝑣𝑣(𝑡𝑡) are process noise and measurement noise, with 

respective covariance matrix 𝑄𝑄� and 𝑅𝑅. 

3. PARAMETER IDENTIFICATION 

Identification methods for LPV system have been intensively 

studied recently. For example, Tóth proposed an extension of 

the Refined Instrumental Variable (RIV) approach for closed 
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loop LPV systems (Tóth et al., 2011); Zhang discussed about 

the local approach by interpolating individually estimated 

local linear time invariant (LTI) models (Zhang & Ljung, 

2017); Darwish introduced a nonparametric Gaussian 

regression approach based on prediction-error (Darwish et al., 

2018); Rizvi presented another nonparametric method for 

state-space LPV model using kernelized machine learning 

(Rizvi et al., 2018). In this section a parametric method based 

on Unscented Kalman Filter is proposed. It is demonstrated 

that under certain hypothesis, the driver LPV model (2) can be 

rewritten as a non-linear system (3) (see below) by augmenting 

system states in (2) with parameter dynamics. It therefore turns 

the parameter identification problem of the LPV system (2) to 

a non-linear state estimation problem associated to system (3). 

Compared to methods previously pointed out, the one chosen 

has the possibility of 1) balancing the rapidity and sensitivity 

of identification via tuning the dynamics of the state observer 

and 2) defining the dynamic of parameters according to a prior 

knowledge on the nature of parameter variations such as 

continuity, derivability, time constant etc. 

3.1 Augmented Model and State Estimation  

Before rewriting the driver model as an augmented system, 

working hypothesis must be made to guarantee the conditions 

of utilizing Unscented Kalman Filter (UKF) for parameter 

identification. 

Hypothesis 1: the driver model parameters are considered as 

time varying and are modelled as Wiener processes, i.e. 

Θ̇(𝑡𝑡) = 𝑤𝑤�(𝑡𝑡) where 𝑤𝑤�(𝑡𝑡)~𝑁𝑁(0, 𝜎𝜎�
�), namely the Θ(𝑡𝑡) is a 

Wiener process (scaling limit of a random walk), or a random 

walk itself in discrete time. 

Actually, different kinds of stochastic process could be chosen 

for 𝑤𝑤�(𝑡𝑡)  based on a priori knowledge of parameter 

dynamics. For example, if 𝑤𝑤�(𝑡𝑡) is a sum of several Dirac 

functions with random amplitude at random time, the Θ(𝑡𝑡) is 

thus a piecewise constant signal. 

Hypothesis 2: the variations of all parameters are slower than 

those of system states. 

This hypothesis distinguishes, within the augmented system 

states defined below (see (3)), the variables predefined as 

“parameters” from the state variables as defined in (2). If the 

parameters evolved more rapidly than the system states, the 

linearization performed implicitly to design the Kalman Filter 

would be unjustified. 

Under Hypothesis 1 & 2, the augmented system is defined as: 

�
�̇�𝑥�(𝑡𝑡) = 𝑓𝑓�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝑤𝑤�(𝑡𝑡)

𝑦𝑦(𝑡𝑡) = 𝑔𝑔�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝑣𝑣(𝑡𝑡)
�3� 

with 

1) Augmented system states 𝑥𝑥�(𝑡𝑡) = [𝑥𝑥(𝑡𝑡) Θ(𝑡𝑡)]� 

2) Augmented process noise 𝑤𝑤�(𝑡𝑡) = [𝑤𝑤(𝑡𝑡) 𝑤𝑤�(𝑡𝑡)]� 

3) Parameters’ process noise covariance 𝑄𝑄� 

4) Augmented process noise covariance 𝑄𝑄� 

5) State-transition function 

𝑓𝑓�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� = �𝐴𝐴(Θ)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(Θ)𝑢𝑢(𝑡𝑡)
0

� 

6) Measurement function  
𝑔𝑔�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� = 𝐶𝐶(Θ)𝑥𝑥(𝑡𝑡) + 𝐷𝐷(Θ)𝑢𝑢(𝑡𝑡) 

A commonly used state estimator is the Luenberger observer. 

For the augmented system (3), such observer can be written as 

𝑥𝑥�̇�(𝑡𝑡) = 𝑓𝑓�𝑥𝑥��(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝐿𝐿(𝑡𝑡)�𝑦𝑦(𝑡𝑡) − 𝑔𝑔�𝑥𝑥��(𝑡𝑡), 𝑢𝑢(𝑡𝑡)�� �4� 

where 𝐿𝐿(𝑡𝑡) is the observer gain. If the augmented system (3) 

is considered as a deterministic system without noise 𝑤𝑤�(𝑡𝑡) 

and 𝑣𝑣(𝑡𝑡), an optimal observer gain for state estimation, which 

is also the Kalman gain, can be obtained by minimizing the 

cost function (5). 

𝐽𝐽�𝑥𝑥��,�, 𝑥𝑥��� = 𝑥𝑥��,�
� 𝑃𝑃�,�

��𝑥𝑥��,�

+ � �𝑥𝑥�̇� − 𝑓𝑓(𝑥𝑥�, 𝑢𝑢)�
�

𝑄𝑄�
���𝑥𝑥�̇� − 𝑓𝑓(𝑥𝑥�, 𝑢𝑢)�𝑑𝑑𝑡𝑡

��

�

+ � [𝑦𝑦 − 𝑔𝑔(𝑥𝑥�, 𝑢𝑢)]�𝑅𝑅��[𝑦𝑦 − 𝑔𝑔(𝑥𝑥�, 𝑢𝑢)]𝑑𝑑𝑡𝑡
��

�

�5� 

where 𝑃𝑃�,�, 𝑄𝑄�  and 𝑅𝑅 are respectively weighting matrices for 

initial states, state transitions and measurements in this case  

instead of covariance matrices. From this point of view, the 

dynamic of observer can thus be configured via tuning these 

weighting matrices.  

In following sections, the LPV system states in (2) are still 

called as “system states” or just “states”, except if it is 

explicitly pointed out to be “augmented system states”. Same 

for “process noise” and “augmented process noise”. 

3.2 Discretization and Implementation via UKF 

3.2.1 Discretization 

For numerical calculation and implementation of UKF, the 

augmented system (3) needs to be discretized. With Euler’s 

approximation the augmented system in discrete time becomes 

�
𝑥𝑥�[𝑘𝑘 + 1] = 𝑓𝑓�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) + 𝑤𝑤�,�[𝑘𝑘]

𝑦𝑦[𝑘𝑘] = 𝑔𝑔�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) + 𝑣𝑣[𝑘𝑘] �6� 

with 

1) Discretized noise: 𝑤𝑤�,�[𝑘𝑘] = 𝑇𝑇�𝑤𝑤�(𝑘𝑘𝑇𝑇�), 𝑣𝑣[𝑘𝑘] = 𝑣𝑣(𝑘𝑘𝑇𝑇�) 

2) Noise covariance  

𝑄𝑄�,� = 𝑇𝑇�𝑄𝑄�, 𝑅𝑅� = 𝑅𝑅/𝑇𝑇� 

3) State-transition function 

𝑓𝑓�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) = �
(𝑇𝑇�𝐴𝐴(Θ) + 𝐼𝐼)𝑥𝑥[𝑘𝑘] + 𝑇𝑇�𝐵𝐵(Θ)𝑢𝑢[𝑘𝑘]

Θ[𝑘𝑘] � 

4) Measurement function  
𝑔𝑔�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) = 𝐶𝐶(Θ)𝑥𝑥[𝑘𝑘] + 𝐷𝐷(Θ)𝑢𝑢[𝑘𝑘] 

where 𝑇𝑇� is sample time, 𝐼𝐼 is identity matrix. 

The observer (4) is now considered in discrete time according 

to the discrete augmented system (6). 

𝑥𝑥��[𝑘𝑘 + 1] = 𝑓𝑓�(𝑥𝑥��[𝑘𝑘], 𝑢𝑢[𝑘𝑘])
+𝐿𝐿[𝑘𝑘]�𝑦𝑦[𝑘𝑘] − 𝑔𝑔�(𝑥𝑥��[𝑘𝑘], 𝑢𝑢[𝑘𝑘])� �7� 

3.2.2 Unscented Transformation 

In order to calculate the optimal Kalman gain 𝐿𝐿[𝑘𝑘] in (7), the 

Extended Kalman Filter (EKF) uses Jacobian matrices of 
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loop LPV systems (Tóth et al., 2011); Zhang discussed about 

the local approach by interpolating individually estimated 

local linear time invariant (LTI) models (Zhang & Ljung, 

2017); Darwish introduced a nonparametric Gaussian 

regression approach based on prediction-error (Darwish et al., 

2018); Rizvi presented another nonparametric method for 

state-space LPV model using kernelized machine learning 

(Rizvi et al., 2018). In this section a parametric method based 

on Unscented Kalman Filter is proposed. It is demonstrated 

that under certain hypothesis, the driver LPV model (2) can be 

rewritten as a non-linear system (3) (see below) by augmenting 

system states in (2) with parameter dynamics. It therefore turns 

the parameter identification problem of the LPV system (2) to 

a non-linear state estimation problem associated to system (3). 

Compared to methods previously pointed out, the one chosen 

has the possibility of 1) balancing the rapidity and sensitivity 

of identification via tuning the dynamics of the state observer 

and 2) defining the dynamic of parameters according to a prior 

knowledge on the nature of parameter variations such as 

continuity, derivability, time constant etc. 

3.1 Augmented Model and State Estimation  

Before rewriting the driver model as an augmented system, 

working hypothesis must be made to guarantee the conditions 

of utilizing Unscented Kalman Filter (UKF) for parameter 

identification. 

Hypothesis 1: the driver model parameters are considered as 

time varying and are modelled as Wiener processes, i.e. 

Θ̇(𝑡𝑡) = 𝑤𝑤�(𝑡𝑡) where 𝑤𝑤�(𝑡𝑡)~𝑁𝑁(0, 𝜎𝜎�
�), namely the Θ(𝑡𝑡) is a 

Wiener process (scaling limit of a random walk), or a random 

walk itself in discrete time. 

Actually, different kinds of stochastic process could be chosen 

for 𝑤𝑤�(𝑡𝑡)  based on a priori knowledge of parameter 

dynamics. For example, if 𝑤𝑤�(𝑡𝑡) is a sum of several Dirac 

functions with random amplitude at random time, the Θ(𝑡𝑡) is 

thus a piecewise constant signal. 

Hypothesis 2: the variations of all parameters are slower than 

those of system states. 

This hypothesis distinguishes, within the augmented system 

states defined below (see (3)), the variables predefined as 

“parameters” from the state variables as defined in (2). If the 

parameters evolved more rapidly than the system states, the 

linearization performed implicitly to design the Kalman Filter 

would be unjustified. 

Under Hypothesis 1 & 2, the augmented system is defined as: 

�
�̇�𝑥�(𝑡𝑡) = 𝑓𝑓�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝑤𝑤�(𝑡𝑡)

𝑦𝑦(𝑡𝑡) = 𝑔𝑔�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝑣𝑣(𝑡𝑡)
�3� 

with 

1) Augmented system states 𝑥𝑥�(𝑡𝑡) = [𝑥𝑥(𝑡𝑡) Θ(𝑡𝑡)]� 

2) Augmented process noise 𝑤𝑤�(𝑡𝑡) = [𝑤𝑤(𝑡𝑡) 𝑤𝑤�(𝑡𝑡)]� 

3) Parameters’ process noise covariance 𝑄𝑄� 

4) Augmented process noise covariance 𝑄𝑄� 

5) State-transition function 

𝑓𝑓�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� = �𝐴𝐴(Θ)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(Θ)𝑢𝑢(𝑡𝑡)
0

� 

6) Measurement function  
𝑔𝑔�𝑥𝑥�(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� = 𝐶𝐶(Θ)𝑥𝑥(𝑡𝑡) + 𝐷𝐷(Θ)𝑢𝑢(𝑡𝑡) 

A commonly used state estimator is the Luenberger observer. 

For the augmented system (3), such observer can be written as 

𝑥𝑥�̇�(𝑡𝑡) = 𝑓𝑓�𝑥𝑥��(𝑡𝑡), 𝑢𝑢(𝑡𝑡)� + 𝐿𝐿(𝑡𝑡)�𝑦𝑦(𝑡𝑡) − 𝑔𝑔�𝑥𝑥��(𝑡𝑡), 𝑢𝑢(𝑡𝑡)�� �4� 

where 𝐿𝐿(𝑡𝑡) is the observer gain. If the augmented system (3) 

is considered as a deterministic system without noise 𝑤𝑤�(𝑡𝑡) 

and 𝑣𝑣(𝑡𝑡), an optimal observer gain for state estimation, which 

is also the Kalman gain, can be obtained by minimizing the 

cost function (5). 

𝐽𝐽�𝑥𝑥��,�, 𝑥𝑥��� = 𝑥𝑥��,�
� 𝑃𝑃�,�

��𝑥𝑥��,�

+ � �𝑥𝑥�̇� − 𝑓𝑓(𝑥𝑥�, 𝑢𝑢)�
�

𝑄𝑄�
���𝑥𝑥�̇� − 𝑓𝑓(𝑥𝑥�, 𝑢𝑢)�𝑑𝑑𝑡𝑡

��

�

+ � [𝑦𝑦 − 𝑔𝑔(𝑥𝑥�, 𝑢𝑢)]�𝑅𝑅��[𝑦𝑦 − 𝑔𝑔(𝑥𝑥�, 𝑢𝑢)]𝑑𝑑𝑡𝑡
��

�

�5� 

where 𝑃𝑃�,�, 𝑄𝑄�  and 𝑅𝑅 are respectively weighting matrices for 

initial states, state transitions and measurements in this case  

instead of covariance matrices. From this point of view, the 

dynamic of observer can thus be configured via tuning these 

weighting matrices.  

In following sections, the LPV system states in (2) are still 

called as “system states” or just “states”, except if it is 

explicitly pointed out to be “augmented system states”. Same 

for “process noise” and “augmented process noise”. 

3.2 Discretization and Implementation via UKF 

3.2.1 Discretization 

For numerical calculation and implementation of UKF, the 

augmented system (3) needs to be discretized. With Euler’s 

approximation the augmented system in discrete time becomes 

�
𝑥𝑥�[𝑘𝑘 + 1] = 𝑓𝑓�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) + 𝑤𝑤�,�[𝑘𝑘]

𝑦𝑦[𝑘𝑘] = 𝑔𝑔�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) + 𝑣𝑣[𝑘𝑘] �6� 

with 

1) Discretized noise: 𝑤𝑤�,�[𝑘𝑘] = 𝑇𝑇�𝑤𝑤�(𝑘𝑘𝑇𝑇�), 𝑣𝑣[𝑘𝑘] = 𝑣𝑣(𝑘𝑘𝑇𝑇�) 

2) Noise covariance  

𝑄𝑄�,� = 𝑇𝑇�𝑄𝑄�, 𝑅𝑅� = 𝑅𝑅/𝑇𝑇� 

3) State-transition function 

𝑓𝑓�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) = �
(𝑇𝑇�𝐴𝐴(Θ) + 𝐼𝐼)𝑥𝑥[𝑘𝑘] + 𝑇𝑇�𝐵𝐵(Θ)𝑢𝑢[𝑘𝑘]

Θ[𝑘𝑘] � 

4) Measurement function  
𝑔𝑔�(𝑥𝑥�[𝑘𝑘], 𝑢𝑢[𝑘𝑘]) = 𝐶𝐶(Θ)𝑥𝑥[𝑘𝑘] + 𝐷𝐷(Θ)𝑢𝑢[𝑘𝑘] 

where 𝑇𝑇� is sample time, 𝐼𝐼 is identity matrix. 

The observer (4) is now considered in discrete time according 

to the discrete augmented system (6). 

𝑥𝑥��[𝑘𝑘 + 1] = 𝑓𝑓�(𝑥𝑥��[𝑘𝑘], 𝑢𝑢[𝑘𝑘])
+𝐿𝐿[𝑘𝑘]�𝑦𝑦[𝑘𝑘] − 𝑔𝑔�(𝑥𝑥��[𝑘𝑘], 𝑢𝑢[𝑘𝑘])� �7� 

3.2.2 Unscented Transformation 

In order to calculate the optimal Kalman gain 𝐿𝐿[𝑘𝑘] in (7), the 

Extended Kalman Filter (EKF) uses Jacobian matrices of 

 

 

     

 

functions 𝑓𝑓 and 𝑔𝑔. This is actually an approximation using a 

first-order Taylor series expansion to locally linearize the non-

linear system. However, when high non-linearity appears, the 

computational complexity increases and result may be 

inaccurate (Wan et al., 2000). The Unscented Kalman Filter 

(UKF) utilizes the “Unscented Transformation” (UT) to 

calculate the statistical properties of a random variable that has 

undergone a nonlinear transformation (Julier & Uhlmann, 

1997). Given a vector of random variables 𝑥𝑥 of dimension 𝑁𝑁 

propagating through a non-linear function 𝑧𝑧 = ℎ(𝑥𝑥)  with 

mean �̅�𝑥 and covariance 𝐶𝐶��, the statistics of 𝑧𝑧 is calculated by 

Algorithm 1. 

Algorithm 1: Unscented Transformation 

Step 1: Sigma points 

Form a matrix 𝑋𝑋  of 2𝑁𝑁 + 1  vectors. Each vector, called 

sigma point (in 𝑁𝑁 dimension space), is calculated by 

𝑋𝑋� = �

�̅�𝑥, 𝑖𝑖 = 0
�̅�𝑥 + ��𝑁𝑁𝐶𝐶���

�
, 𝑖𝑖 = 1,2, … , 𝑁𝑁

�̅�𝑥 − ��𝑁𝑁𝐶𝐶���
���

, 𝑖𝑖 = 𝑁𝑁 + 1, 𝑁𝑁 + 2, … ,2𝑁𝑁
�8� 

where �𝑁𝑁𝐶𝐶�� is the square root matrix of 𝑁𝑁𝐶𝐶�� such that 

�𝑁𝑁𝐶𝐶����𝑁𝑁𝐶𝐶���
�

= 𝑁𝑁𝐶𝐶�� and ��𝑁𝑁𝐶𝐶���
�
 is the 𝑖𝑖th column 

of �𝑁𝑁𝐶𝐶�� . 

Step 2: Propagated sigma points 

The sigma points are propagated through the non-linear 

function ℎ. 

𝑍𝑍� = ℎ(𝑋𝑋�), 𝑖𝑖 = 0,1,2, … , 2𝑁𝑁 �9� 

Step 3: Mean and covariance of propagated sigma points 

𝑧𝑧̅ = � 𝑊𝑊�𝑍𝑍�

��

���

𝐶𝐶�� = � 𝑊𝑊�(𝑍𝑍� − 𝑧𝑧̅)(𝑍𝑍� − 𝑧𝑧̅)�
��

���

�10� 

where 𝑊𝑊� is a weighting factor. 

Step 4: Cross-covariance between 𝑥𝑥 and 𝑧𝑧 

𝐶𝐶�� = � 𝑊𝑊�(𝑋𝑋� − �̅�𝑥)(𝑍𝑍� − 𝑧𝑧̅)�
��

���
�11� 

Adjustment of weighting factor 𝑊𝑊� can improve the quality of 

approximation when the function ℎ is highly non-linear. This 

is not the case here of the augmented system (3) that will be 

considered. So it is chosen hereafter 𝑊𝑊� = 0  and 𝑊𝑊� =
�

��
 (𝑖𝑖 = 1,2, … ,2𝑁𝑁). 

3.2.3 UKF Algorithm 

The following Algorithm 2 details the calculation steps of 

UKF for estimating the augmented system states in system (6).  

Algorithm 2: Unscented Kalman Filter 

Step 1: Initialization 

At time step 𝑘𝑘 = 0, initialize augmented system states value 

𝑥𝑥��[0], augmented system states covariance matrix 𝑃𝑃�[0], 

augmented process noise covariance matrix 𝑄𝑄�,�  and 

measurement noise covariance matrix 𝑅𝑅�. 

Step 2: Calculation of the output prediction 

At time step 𝑘𝑘 ≥ 0, estimate the output prediction using 

Unscented Transformation. 

�𝑦𝑦�[𝑘𝑘|𝑘𝑘 − 1], 𝐶𝐶��
� [𝑘𝑘],  𝐶𝐶��[𝑘𝑘]�

= 𝑈𝑈𝑈𝑈(𝑔𝑔�, 𝑥𝑥��[𝑘𝑘|𝑘𝑘 − 1],  𝑃𝑃�[𝑘𝑘|𝑘𝑘 − 1]) 

𝐶𝐶��[𝑘𝑘] = 𝐶𝐶��
� [𝑘𝑘] + 𝑅𝑅� 

Step 3: Correction with measurements 

At time step 𝑘𝑘 , correct the states estimated from the 

measurements, and the state covariance. 

𝐿𝐿[𝑘𝑘] = 𝐶𝐶��[𝑘𝑘]𝐶𝐶��
��[𝑘𝑘] 

𝑥𝑥��[𝑘𝑘|𝑘𝑘] = 𝑥𝑥��[𝑘𝑘|𝑘𝑘 − 1] + 𝐿𝐿[𝑘𝑘](𝑦𝑦[𝑘𝑘] − 𝑦𝑦�[𝑘𝑘 |𝑘𝑘 − 1 ]) 

𝑃𝑃�[𝑘𝑘|𝑘𝑘] = 𝑃𝑃�[𝑘𝑘|𝑘𝑘 − 1] − 𝐿𝐿[𝑘𝑘]𝐶𝐶��
� [𝑘𝑘] 

Step 4: Prediction of next step states’ value 

At time step 𝑘𝑘, predict system states (and the associated 

covariance) at next time step 𝑘𝑘 + 1  using Unscented 

Transformation. 

(𝑥𝑥��[𝑘𝑘 + 1|𝑘𝑘],  𝑃𝑃�
�[𝑘𝑘 + 1|𝑘𝑘])

= 𝑈𝑈𝑈𝑈(𝑓𝑓�,  𝑥𝑥��[𝑘𝑘|𝑘𝑘],  𝑃𝑃�[𝑘𝑘|𝑘𝑘]) 

𝑃𝑃�[𝑘𝑘 + 1|𝑘𝑘] = 𝑃𝑃�
�[𝑘𝑘 + 1|𝑘𝑘] + 𝑄𝑄�,� 

Step 5: Increase one time step and repeat step 2 to 4 until 

the last time step. 

4. PRATICAL USE OF UKF 

4.1 UKF Tuning Methodology 

Tuning, or initialisation is one of the common issues in using 

Kalman Filter. Some empirical conclusions in linear KF can 

be referred in UKF. As stated above, from a deterministic point 

of view, the dynamic of an optimal observer can be tuned via 

the weighting matrices 𝑃𝑃�[0], 𝑄𝑄�,� and 𝑅𝑅�. From a stochastic 

point of view, the UKF will give an accurate result when 

ideally the augmented process noise covariance 𝑄𝑄�,� equals to 

the real augmented process noise covariance, and the same for 

the measurement noise covariance 𝑅𝑅� . Whether from the 

deterministic or the stochastic point of view, reducing the 

magnitude of the elements in 𝑄𝑄�,�, or increasing the magnitude 

of the elements in 𝑅𝑅� informs the UKF so that it is adapted to 

the situation for which the measurement noise is important 

compared to the augmented process noise. As a result, the 

UKF will give more confidence or weight to the augmented 

state transition model than to measurements. The Kalman gain 

matrix will have reduced value components focusing more on 

the augmented state predictions and less on measurement 

corrections (Dutton et al., 1997). Under this condition, the 

augmented state reconstruction dynamics will be slow (low 

correction level from the measurements) but will be more 

weakly impacted by a worse measurement quality. On the 

contrary, i.e. by assuming a priori that the measurement noise 

is lower compared to augmented process noise, the augmented 

system states reconstruction will be faster but also more 

sensitive to the quality of the measurements. 

To study the parameter evolution in driver’s adaptation 

process, the initial augmented states value 𝑥𝑥��[0] and states 

covariance 𝑃𝑃�[0] are not quite important. We focus mainly on 
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the tuning of matrix 𝑄𝑄�,�  and 𝑅𝑅� . A simple and intuitive 

choice is that 𝑄𝑄�,� is block-diagonal, i.e. 

𝑄𝑄�,� = �
𝑄𝑄�,� 0
0 𝑄𝑄�,�

� �12� 

where 𝑄𝑄�,� and 𝑄𝑄�,� are respectively the covariance matrices 

of the discretized states and parameters process noise. (12) 

means the following hypothesis is admitted: 

Hypothesis 3: there is no correlation within the process noise 

between system states and parameters. 

In addition, for measurement noise: 

Hypothesis 4: there is no correlation in measurements noise 

between system outputs, i.e. 𝑅𝑅� is diagonal. 

One of the difficulties in applying the aforementioned tuning 

rules (confidence on measurements versus states evolution) to 

define the magnitude of the elements of the matrix 𝑄𝑄�,� and 

𝑅𝑅�  comes from its qualitative nature. Normalization is 

required because the signals can be very diverse, concerning 

their range of amplitude values, but also their impact on states 

and output signals. On one side, for output signals with 

scattered ranges of variation, it is important to a priori 

normalize measurement noise properly accordingly, by 

adequate choice in 𝑅𝑅� (see (13)). On the other side, the process 

noise may be normalized through its effects on the system 

outputs. These effects may be evaluated through using the 

observability Gramian for 𝑄𝑄�,�  tuning, as proposed in (de 

Larminat, 2009) for setting a Kalman Filter with a 

homogenized observer dynamics. It is more easily derived for 

𝑄𝑄�,� tuning from the parametric sensitivity of the output. In 

this case, normalization from the nominal value of the 

parameters is possible and will be considered to simplify 

presentation. Algorithm 3 details the UKF tuning process. 

Algorithm 3: Tuning UKF 

Step 1: Choose 𝑅𝑅� 

Given outputs data 𝑦𝑦[𝑘𝑘] on 𝑘𝑘 ∈ [0, 𝑁𝑁] with dimension 𝑀𝑀, 

supposing each output has an error ratio of 𝜎𝜎� (inverse of the 

confidence level as stated above), 𝑅𝑅� is 

𝑅𝑅� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝜎𝜎��𝑦𝑦�,���� �, 𝑑𝑑 = 1,2, 𝑖 ,𝑀𝑀 �13� 

where 𝑦𝑦�,��� = max
�∈[�,�]

|𝑦𝑦�[𝑘𝑘]|. 

Step 2: Normalize 𝑄𝑄�,� 

Given (2) with parameters fixed at normal values in Table 

2 as a normal LTI system, calculate the observability 

Gramian of the discretized normal LTI system  

𝐺𝐺� =� (𝐴𝐴��)�𝐶𝐶��𝐶𝐶�𝐴𝐴��
�

���
�14� 

Step 3: Choose 𝑄𝑄�,� 

Choose a time scaling factor 𝑇𝑇�  so that 𝑄𝑄�,� = [𝑇𝑇�𝐺𝐺�]�� 

lead the LTI observer inherited from (2) (with nominal 

parameters) having its poles with real part less than −1/𝑇𝑇�. 

Verification is possible by solving the adequate algebraic 

Riccati equation. 

Step 4: Choose 𝑄𝑄�,� 

Choose an error ratio of 𝛼𝛼� for each parameter and a time 

scaling factor 𝑇𝑇�  according to the Hypothesis 2: 

𝑄𝑄�,� =
1
𝑇𝑇�
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�𝛼𝛼��Θ�,���� �, 𝑑𝑑 = 1,2,𝑖 , 𝑖𝑖 �15� 

where Θ�,��� is the nominal value of 𝑑𝑑th parameter. 

4.2 Multi-UKF Approach 

 

Fig. 2 Multi-UKF schema 

As the result of such a tuning is always a compromise between 

rapidity and precision (noise sensitivity) in the process of 

parameters estimation, a multi-model UKF based approach is 

considered. At least two UKF will be used (see Fig. 2). One is 

configured to get a precise steady-state value of the parameters 

considered. The other is configured to detect possible fast 

variations. 

5. EXPERIMENTS 

The identification method as well as the tuning methodology 

are validated by two experiments: one in Simulink© and one 

on the driving simulator SCANeR©. In these experiments, the 

cybernetic driver model (2) is utilized as a virtual driver. Some 

of its parameters are a priori increased gradually at different 

times. In this case study, the increase of both visual gains (𝐾𝐾� 

and 𝐾𝐾�) may depict increasing stress in driver’s mind, or weak 

visibility conditions (like foggy or dark). The experiment steps 

are the following: the virtual driver steers a vehicle on a 

predefined road; the parameters change during driving; inputs 

and outputs data are collected; the data is used to identify the 

augmented system states including the searched parameters. 

The main differences between the two experimental platforms 

are: on the driving simulator 1) the vehicle is more realistic 

and precise, 2) the vehicle is controlled by a real steering 

column instead of a mathematical model and 3) some inputs 

and outputs data are collected by sensors. Besides, the multi-

UKF approach is used in the second experiment so as to 

evaluate the tuning methodology. 

5.1 Experiment in Simulink© 

The first experiment is realized by simulating a Driver-

Vehicle-Road (DVR) model (Saleh et al., 2013) in Matlab / 

Simulink©. The simulation environment (see Fig. 3) was 
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established in previous researches. The vehicle-road (VR) 

model is a bicycle model of which parameters were identified 

from experimental data. The cybernetic driver model “steers” 

the VR model with a fixed speed 64 km/h on a predefined road 

(see Fig. 4).  

Three different situations are simulated in this experiment: 1) 

only 𝐾𝐾� increases; 2) only 𝐾𝐾� increases; and 3) both 𝐾𝐾� and 𝐾𝐾� 
increase. A small gain UKF is implemented in all situations, 

of which the configuration could be found in (16), (17), (18) 

and (19). The identification results are shown respectively in 

Fig. 5, 6 and 7. The red solid line is the actual variation of 

parameters during simulation, the blue dashed line is the 

estimated variation of parameters and the yellow dotted line 

represents for the related input signals (𝜃𝜃���  for 𝐾𝐾�, 𝜃𝜃���� for 

𝐾𝐾�, see Fig. 1).  

Several observations could be obtained from these figures. 

Firstly, the results prove the feasibility of the identification 

method in tracing variation of parameters. Secondly, as long 

as the related input signal becomes “weak”, i.e. the input 

excitation is low, the corresponding parameter keeps constant 

due to “weak” identifiability. For example, in Fig. 5 from 80s 

to 90s, the input signal 𝜃𝜃���  is almost 0, in the meantime the 

identified 𝐾𝐾� is constant. Same in the Fig. 6 for 𝜃𝜃���� and the 

identified 𝐾𝐾� during 80s and 90s. The reason of “weak” input 

signals here is trivial: the “driver” is driving on a straight road. 

Thirdly, in Fig. 7 the variation of the identified 𝐾𝐾� is different 

from that in Fig. 5 during 40s to 60s, this is caused by the 

correlation between two parameters, since 𝐾𝐾� starts changing 

at 40s. 

5.2 Experiment on SCANeR© 

The second experiment is realized on the driving simulator 

SCANeR© (see Fig. 8), where researches on human driver’s 

adaptation will take place afterwards. It is equipped with a 

complete dashboard, a common five-speed gear stick, pedals 

of gas, brake and clutch, and a TRW direction system with 

steering wheel. The visual scene is displayed on 3 LCD 

screens, a central one in front of driver and two others oriented 

to the centre one with 45°. They cover a field of view of 25° 

on height and 115° on width. The visual scene transmits the 

road characteristics as perceived by driver via the windshield. 

A small family car of type Peugeot 307 is chosen as vehicle 

model in this experiment. The driver model also “steers” the 

vehicle with a fixed speed 64 km/h on a predefined road (see 

Fig. 9). Both parameters, 𝐾𝐾� and 𝐾𝐾�, are supposed to change.  

Fig. 8 Driving simulator 

SCANeR© 

Fig. 9 Experiment road in 

the driving simulator 

The multi-UKF approach with two different configurations of 

UKF is used to identify the parameter evolution. In both UKFs, 

the value for initial system states are simply 0, while the 

estimated parameters are initialized without error to the initial 

values (see Table 2) used for the simulation.  

𝑥𝑥��[0] = [0 0 0 3.4 15]� �16� 

The initial augmented system state covariance 𝑃𝑃�[0] is chosen 

arbitrarily as stated in section 4.1.The UKFs are now tuned 

according to Algorithm 3: 

𝑅𝑅� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(9 × 10��, 25 × 10��) �17� 

𝑄𝑄�,� = 10�� × 𝐺𝐺��� �18� 

This tuning leads to poles at: -1, -10 and -50 meaning that the 

slowest dynamics of observer will have a time constant of 1 

second, which seems sufficient. In fact, the state observer in 

open-loop is fast enough. 

Finally, different tuning are made for 𝑄𝑄�,� to get the two UKF. 

For UKF1: 

𝑄𝑄�,� = 10�� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(3.4�, 15�) �19� 

The scaling factor in 𝑄𝑄�,� is modified for UKF2: 

𝑄𝑄�,� = 10�� × 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(3.4�, 15�) �20� 

The results are shown respectively in Fig. 10 and Fig. 11. Same 

as in the first experiment, identified parameters are constant 

when “weak” identifiability happens. In addition, compared 

 

Fig. 3 Models in Simulink© Fig. 4 Road in Matlab© 

Fig. 5 Only 𝐾𝐾� increases 

 

Fig. 6 Only 𝐾𝐾� increases 

 
Fig. 7 Both 𝐾𝐾� and 𝐾𝐾� increase 
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with Fig. 10, the constant values are greater in Fig. 11. For 

example 𝐾𝐾� is almost constant from 40s to 60s, while its value 

is about 15.5 in Fig. 10 and 16 in Fig. 11. This proves the 

rapidity of the UKF2. Besides, the results of UKF2 are more 

sensible to noise, this is obvious on the figures during 120s to 

160s. It should be noted that 𝐾𝐾�  has an undesired variation 

from 80s to 110s in UKF1. Although the estimations 

eventually converge, there is also some slowness for UKF2 

between 120s and 180s for 𝐾𝐾�.  

Fig. 10 Results of the UKF1 with slow reconstruction 

 

Fig. 11 Results of the UKF2 with fast reconstruction 

6. CONCLUSION 

This article shows the interest and the feasibility of tracking 

the variations of parameters related in particular to the visual 

part of a driver model, so called cybernetic driver model. This 

problem is essential to study the adaptation of the driver’s 

behaviour to different changes in his driving environment, e.g. 

adaptation to active steering control systems, road features or 

meteorology. The driver model chosen is based on knowledge 

concerning neurophysiology and psychology of human driver, 

useful to study the driver’s adaptation. The LPV identification 

problem was solved by first augmenting LPV system states 

with the state-space differential equations characterizing 

parameters’ evolution dynamics. Then the Unscented Kalman 

Filter was applied by considering the identification problem as 

a state estimation problem. Referring to methodological 

experiences concerning classical Kalman Filter, the tuning of 

UKF was mainly accomplished by setting the parameters’ 

process and measurement noise covariance matrices. The 

compromise between rapidity and precision of parameter 

estimation was discussed through considering a multi-UKF 

approach. One UKF estimates the mean value of parameters 

while another one makes it possible to detect fast parametric 

variations. Two experiments considering a sequential change 

of parameters showed good identification results, compatible 

with the aim (driver adaptation analysis). However, a coupling 

effect may appear especially if the UKF is configured for high 

dynamic performance. Nevertheless, although this effect still 

needs to be understood more in depth from a theoretical point 

of view, the identification method considered (multi-UKF 

approach) proved to be useful in the future, for investigating 

especially the adaptation of human driver to the driver-

assistance systems. 

Extensive tests will now be performed on the LS2N driving 

simulator, with a significant number of human drivers. We 

believe that the proposed methodology will allow us to better 

understand driver’s adaptive dynamics over time. 
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with Fig. 10, the constant values are greater in Fig. 11. For 

example 𝐾𝐾� is almost constant from 40s to 60s, while its value 

is about 15.5 in Fig. 10 and 16 in Fig. 11. This proves the 

rapidity of the UKF2. Besides, the results of UKF2 are more 

sensible to noise, this is obvious on the figures during 120s to 

160s. It should be noted that 𝐾𝐾�  has an undesired variation 

from 80s to 110s in UKF1. Although the estimations 

eventually converge, there is also some slowness for UKF2 

between 120s and 180s for 𝐾𝐾�.  

Fig. 10 Results of the UKF1 with slow reconstruction 

 

Fig. 11 Results of the UKF2 with fast reconstruction 

6. CONCLUSION 

This article shows the interest and the feasibility of tracking 

the variations of parameters related in particular to the visual 

part of a driver model, so called cybernetic driver model. This 

problem is essential to study the adaptation of the driver’s 

behaviour to different changes in his driving environment, e.g. 

adaptation to active steering control systems, road features or 

meteorology. The driver model chosen is based on knowledge 

concerning neurophysiology and psychology of human driver, 

useful to study the driver’s adaptation. The LPV identification 

problem was solved by first augmenting LPV system states 

with the state-space differential equations characterizing 

parameters’ evolution dynamics. Then the Unscented Kalman 

Filter was applied by considering the identification problem as 

a state estimation problem. Referring to methodological 

experiences concerning classical Kalman Filter, the tuning of 

UKF was mainly accomplished by setting the parameters’ 

process and measurement noise covariance matrices. The 

compromise between rapidity and precision of parameter 

estimation was discussed through considering a multi-UKF 

approach. One UKF estimates the mean value of parameters 

while another one makes it possible to detect fast parametric 

variations. Two experiments considering a sequential change 

of parameters showed good identification results, compatible 

with the aim (driver adaptation analysis). However, a coupling 

effect may appear especially if the UKF is configured for high 

dynamic performance. Nevertheless, although this effect still 

needs to be understood more in depth from a theoretical point 

of view, the identification method considered (multi-UKF 

approach) proved to be useful in the future, for investigating 

especially the adaptation of human driver to the driver-

assistance systems. 

Extensive tests will now be performed on the LS2N driving 

simulator, with a significant number of human drivers. We 

believe that the proposed methodology will allow us to better 

understand driver’s adaptive dynamics over time. 
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