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1. INTRODUCTION 

A few attempts were already made using driver model in 

driving assistance systems. Among the efforts made in the 

field of driver modeling for assistance design, IRCCyN has 

developed a cybernetic model for trajectory control that has 

been successfully applied to shared control system design 

(Mars et al, 2011). This CDM is a linear and structured model 

whose parameters have physical meaning related to the 

physiological knowledge of human senses. The previous 

studies concluded on local identifiabilty of the model 

parameters using data from test on car simulator or from real 

road driving (Saleh et al, 2011; Hermannstädter et al, 2013). 

These studies proceed by iterative identification and assumed 

that the model parameters are constant over time. We propose 

in this article a recursive identification of the CDM parameter 

by applying the UKF.  A particular interest is focused on 

possible implementation for real-time operations. The 

applications related to driving assistance systems can take 

advantage of this new approach, by analyzing the parameters 

evolution or the steering wheel torque estimation error. The 

case of driver distraction estimation based on the model 

parameters evolution is considered here. The article is 

organized as follows: section 2 describes briefly the driver 

model, section 3 reformulates the model to support the 

identification processes, and section 4 presents the recursive 

identification algorithm via UKF. An experiment is then 

analyzed to validate the identification schemes and assess the 

driver distraction. The experiment protocol is presented in 

section 5 while section 6 specifies the identification results. 

Finally, the driver distraction assessment is analyzed in 

section 7, through examining the model parameters evolution. 

 

 

2. CYBERNETIC DRIVER MODEL 

Based on current knowledge of human sensorimotor 

functions (see (Mars et al, 2011) for the theoretical 

background), the model’s internal structure can be divided 

into four parts (Fig 1):1. the visual anticipation of the road 

curvature fed by the angular deviation (θfar) of a far point 

(the tangent point), 2. the visual compensation of lateral 

position error and the yaw angle of the vehicle fed by the 

angular deviation (θnear) of a near point, 3. the time delay 

necessary for the driver to process visual information, and 4. 

a neuromuscular system that transforms the output of the 

previous subsystems into steering wheel torque, taking into 

account the proprioceptive feedback (self-aligning torque   ) 
and the steering wheel angle   . The model has two outputs: 

the steering wheel torque  ̂  and driver intention  ̂  . Driver 

intention is not measurable in physical terms. However, it can 

be compared with the steering wheel angle when identifying 

the parameters in order to increase the model’s identifiability. 

The model parameters are listed in Table 1.  

 

Fig 1: Cybernetic Driver Model 
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Table 1: Cybernetic driver model parameters 

Parameters Description 

   visual anticipation gain 

   visual compensation gain 

   visual compensation time constant 

   processing delay 

   gain of the internal model of steering 

compliance 

   gain of the stretch reflex 

   neuromuscular time constant 

  vehicle speed 

 

 

3. MODELS REQUIRED FOR IDENTIFICATION 

 

3.1. Initial system 

The model depicted on Fig.1 can be represented in the state-

space framework form as follows: 

{  ̇( )   [ ( )  ( )  ]   ( ) ( )   ( ) ( ) ( )   [ ( )  ( )  ]   ( ) ( )   ( ) ( ) (1) 

with   [          ]  the state vector, 

   [                   ]  and   [ ̂   ̂   ]
 
 are the inputs 

and outputs vector. The model parameters to be identified are 

stored in the parameter vector   [                    ],    
is a real analytic vector field on    and    is a real analytic 

vector field on   . Once the time delay       is replaced by a 

first-order Padé approximation, one gets from Fig.1 the state 

variables: 
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The expression of   is obtained from the output equations: 
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 ( )  [     
    ]   and  ( )  [     

      ] 
Assuming that the inputs are approximately constant during 

two sample times, the discretized model corresponding to (1) 

is given by: 

{ ̂      [ ̂      ]  ̂   [ ̂      ]
         (2) 

 

with   [ ̂      ]   ̂     [ ̂      ], 
  ̂   ̂(  ),     (  )      ̂   ̂(  ),  =sample time. 

Considering each parameter of    as constant, (1) is an     
structured system. This assumption was made in (Saleh et al, 

2011; Hermannstädter et al, 2013) that proposed to estimate 

the parameters using nonlinear optimization by an iterative 

approach. 

 One can also consider the parameter vector   varying over 

time, making (1) an LPV system. This mathematical 

description is sufficient to identify parameters   by iterative 

identification (see §6.2). In order to proceed to recursive 

identification, the augmented system presented in the next 

section is required. 

 

3.2. Augmented system 

Following (Julier&Uhlmann, 1997), the augmented state 

vector associated to (1) is obtained by concatenating the 

initial state variable   and the parameter vector   considered 

here as variable over time. The augmented state variable    is 

thus formulated: 

   [
 
 ]  or     [                              ]  ; 

Assuming that each parameter of    is a discretized Wiener 

noise (Brown & Hwang, 1997) and that (Gaussian) noises 

corrupt the state evolution and the outputs; the model 

becomes a stochastic nonlinear system (with the size of    as 

dimension). Its discrete representation is (3): 

{ ̂        [ ̂      ]     ̂    [ ̂      ]    
  (3) 

 

where    [ ̂      ]=[
  [ ̂      ]

  
]and   [ ̂      ]=  [ ̂      ], 

   and    the process and measurement noises are assumed 

to be zero-mean white Gaussian noise, with respective 

covariances    and   , and independent of  ̂   . Therefore, 

the problem of identifiability can be seen as a problem of 

nonlinear observability (Hermann & Krener, 1997). The 

ability to extract the state variables from input-output data 

depends upon the structure of the nonlinear functions    and 

  : this ability is formally described as the system 

observability. The nonlinear observability of the model was 

partially checked out using NOLIACPA toolbox (Glumineau 

et al, 1996), showing that the augmented state may be 

estimated from the input-output data. 
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noise (Brown & Hwang, 1997) and that (Gaussian) noises 

corrupt the state evolution and the outputs; the model 

becomes a stochastic nonlinear system (with the size of    as 

dimension). Its discrete representation is (3): 

{ ̂        [ ̂      ]     ̂    [ ̂      ]    
  (3) 

 

where    [ ̂      ]=[
  [ ̂      ]

  
]and   [ ̂      ]=  [ ̂      ], 

   and    the process and measurement noises are assumed 

to be zero-mean white Gaussian noise, with respective 

covariances    and   , and independent of  ̂   . Therefore, 

the problem of identifiability can be seen as a problem of 

nonlinear observability (Hermann & Krener, 1997). The 

ability to extract the state variables from input-output data 

depends upon the structure of the nonlinear functions    and 

  : this ability is formally described as the system 

observability. The nonlinear observability of the model was 

partially checked out using NOLIACPA toolbox (Glumineau 

et al, 1996), showing that the augmented state may be 

estimated from the input-output data. 
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4. RECURSIVE IDENTIFICATION PROCESS 

The Extended Kalman Filter (EKF) and Unscented Kalman 

Filter (UKF) can be used to estimate model’s states or 

parameters.  The previous studies concluded that UKF may 

be easier to implement than EKF (no Jacobian matrix 

computation), and more interesting here, more robust against 

systems nonlinearities (Gustafsson & Hendeby, 2012; St-

Pierre & Gingras, 2004; Wan & Merwe, 2000). From these 

literature reviews, we chose the UKF method. It is based on 

the “unscented transformation” that estimates the mean and 

covariance of random variable which undergoes nonlinear 

transformation. This unscented transformation will be applied 

to functions    and    of the augmented system (3) in §4.2. 

Before then, §4.1 gives a reminder of the “unscented 

transformation”. 

 

4.1 Unscented transformation 

Let’s consider  -dimensional random variable  , with  ̅ and 

      its mean and covariance. Let’s also consider a nonlinear 

transformation    ( ): h is a nonlinear function. The 

unscented transformation aims to estimate the mean and 

covariance of   ( ̅          ) and covariance      (    ). A 

set of weighted points (2n+1 points) called Sigma-Points are 

chosen around  ̅ according to the following steps: 

The Cholesky decomposition of      :               (4) 

 

  = ̅ (5) 

    ̅  √                    (6) 

      ̅  √                        (7) 

 
   denotes the i-th column of  . 

There is no convincing policy about the choice of the 

parameter λ (Straka et al, 2012). The simplest solution is        

λ =0, so that the central Sigma-Points is not used; this is a 

cubature (Arasaratnam & Haykin, 2009; Gustafsson & 

Hendeby, 2012). The propagation of the Sigma-Points is then 

calculated according to: 
    (  )                                                                        (8) 

 ̅  ∑   
   

                                                                   (9) 

    ∑   
   

   [    ̅][    ̅]                                (10) 

    ∑   
   

   [    ̅][    ̅]                                (11) 

 

The weighted coefficients    
 
 are computed as follows: 

  
   

     and    
   

 (   )            

The unscented transformation presented here for the function  

  : ( ̅        )=Unscented (   ̅    ) is used in the next 

section to implement the UKF filter. 

 

4.2 Recursive CDM parameter identification 

The UKF algorithm has to be initialized with the initial state 

 ̂    
 [    

], the state covariance matrix     , the noise 

covariance matrices    and   .     can be set to zero: it  

corresponds to the case of driving in straight line.    is 

obtained from the iterative identification approach.       is 

chosen according to the assumption that  ̂  is changing with a 

faster dynamic than    : therefore the first three values of the 

diagonal of       (corresponding to  ̂ ) are relatively greater 

than the others.    is obtained using a posteriori information:  

the variance of the output prediction errors provided by the 

identification using PEM (see §6.2). Finally,    is chosen to 

tune the observer’s dynamic through the relative values of the 

(fictive) measurement and process noises variances 

(Doraiswami et al, 2014). Finally, based on above 

descriptions and assumptions, we got the following numerical 

values: 

 ̂    
=[                                 ]  ; 

    =[     
    ]; I denotes identity matrix, the desired 

performance is obtained for     (e.g.      and     ) 

 

  =    [   
   ] and   =    [   

  ] 
Starting from  ̂    

and     , the algorithm estimates at each 

sample time, the augmented state vector   ̂    as follows: 

 
5. EXPERIMENT 

To validate the identification schemes and evaluate the 

impact of the driver distraction on the CDM parameter, an 

experiment was conducted on fixed-base driving simulator 

(SCANeR-OKTAL). Thirty-five participants (10 females and 

25 males), aged between 21 and 60 years (mean age=32; 

SD=15), took part in the experiment. It consisted of a 

succession of baseline driving (no distraction) and periods of 

distracted driving. The test was performed on both closed 

track consisting of a series of bends (Track 1) and straight 

line road (Track 2): see Fig 2 . During the test, key variables 

(input-output data of the driver model) were extracted for the 

identification and analyses. Visual and visuomotor 

distractions were tested: 

 

Visual distraction  

The driver was instructed to read a text that appeared on the 

simulator’s right-hand LCD screen. This was equivalent to 

 ̂    ;      , k=0 

            

Prediction of next observation 

( ̂               ) = Unscented (     ̂             ) 

 

 ̂       ̂                (    ̂      ) 
                              

 Update after observation of  𝐲𝐲𝐤𝐤 (measurement)  

 Prediction of the next state  

( ̂          
) = Unscented (    ̂             

) 

     
=       

+    

  ̂    

k=k+1 
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the type of visual distraction that can be caused by a 

peripheral information system. 

Visuomotor distraction 

Using a set of buttons on the side of the simulator, the driver 

had to dial sequences of numbers that he heard. He was 

instructed to look at the buttons when dialling. This 

secondary task is equivalent to tuning on a radio or 

interacting with a head-down display. 

 

(a) 

 

(b) 

 

(c) 

 

Fig 2: IRCCyN driving simulator (a) & test Tracks  (b,c) 

 

6. RESULTS  

 

6.1. Recursive identification 

Baseline driving data were used to validate the recursive 

identification scheme for CDM. Fig 3 and Fig 4 illustrate the 

results based on data of one participant. For the entire 

participant, a high level of fit between the model estimation 

and the experimental data is obtained (a fit average of 90% 

on the steering wheel torque and 70% on the steering wheel 

angle). Fig 4 shows a rapid convergence and slow evolution 

over time of the parameters. This is due to the initial value of 

the parameters and also because of the choice of the process 

noises versus the measurement noises: small value of    

compared to   . 

 

 

Fig 3: Steering wheel torque and steering wheel angle: 

Experimental vs Estimation (Baseline driving on Track 1) 

 

Fig 4: Model's parameters evolution in baseline driving, 

on Track 1, y-axis : mean value of the parameter 
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6.2. Iterative CDM parameter identification 

The discrete state-space representation of (1) is obtained by 

applying Euler method: 

{ ̂      ( ) ̂    ( )   

 ̂    ( ) ̂    ( )  
 (12) 

with   ( )        ( ),   ( )     ( ),   ( )  
 ( ),   ( )   ( ),  ̂  :  the outputs predicted, 

         (identity matrix),   the sample time and     , the 

time index.  

Let’s consider N the number of samples in the packet of 
input-output data and  = [          ], the vector of the 

prediction error (       ̂ ). The identification algorithm 

aims to find the parameter vector   minimizing the criterion    
 ̂        

 
 ( ) 

 ( )   
  ( )

     ( ) , (13) 

where   is semi-positive matrix, formed of the weights on 

the steering wheel torque and the steering angle prediction 

errors. It is given by   [  
  ]  (   ). The iterative 

identification approach (Ljung, 1999) is applied to (12) and 

(13). The method consists in optimizing the nonlinear 

criterion  . It was implemented using the Prediction Error 

Method (PEM) of the System Identification Toolbox of 

Matlab 7. Contrary to the initial values of the state vector 

which are estimated, those of the parameter vector are set 

to   [             ]. 
 

6.3. Recursive versus iterative identification 

The prediction and the estimation of the steering by 

respectively the iterative and the recursive identification are 

shown in Fig 5. These results demonstrate that, during no 

distraction driving phase, the LPV driver model (recursive 

identification) is as good as the LTI driver model (iterative 

identification). The following assumption can then be made: 

when the driver undergoes distraction, his state will change, 

and the LPV model parameters should reflect this state 

changes via the model parameters evolution. This assumption 

is checked out in the next section. 

 

Fig 5: Steering prediction and estimation (PEM, UKF) in 

no distraction driving phase 

Model parameters (PEM):   [                          ] 
Model parameters (UKF): see Fig 4 

 

 

7. DRIVER DISTRACTION ASSESSMENT 

Fig 6 illustrates the variation over time of two parameters of 

the driver model: the visual anticipation gain    and the gain 

of the stretch reflex   . These preliminary results show that 

some of the model parameters vary as a function of driver 

distraction. Unlike baseline condition (no distraction driving 

phase) which led to less variance of the model parameters 

(  ,   ), the visual or visuomotor distraction resulted in 

important variance of the parameters. Thus, identifying the 

CDM parameter online can offer the possibility to monitor 

the driver state of distraction. These results based on the UKF 

filtering applied to the CDM proposed here are promising for 

the design of new advanced driver assistance systems 

(ADAS). 

 

 

Fig 6: Parameters (   and   ) variation as a function of 

distraction conditions; test on Track 2; --black=> visual 

distraction, --red=> no distraction, --blue=> visuomotor 

distraction 

 

8. CONCLUSION 

 

This paper shows the capability of recursive identification to 

identify parameters of what we have named Cybernetic 

Driver Model. This model is known to be useful to predict 

the steering behavior of the driver in a short future. The 

recursive algorithm considered is based on the Unscented 

Kalman Filter method. Using data collected on a fixed-base 

driving simulator, the approach was tested, calibrated and 

validated. It was also compared to an iterative identification 

approach. The results obtained are relatively similar. 

However, the recursive identification makes possible to 

analyze the driver’s model parameters evolution. The 

principle of using such an analysis for distraction assessment 

was then proposed. Indeed, it is shown that the parameters 

variation is significantly sensitive to driver distraction, thus 

opening a way to detect or estimate distraction online 

(distraction arises when the driver is performing a secondary 

task (Cooper et al, 2013; Hermannstädter et al, 2013)). This 

observation is promising and need to be examined in more 

details. 
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