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Abstract— Driver modeling is essential in the development
of haptic guidance systems. A new cybernetic driver model
designed to account for the cooperation between the driver and
haptic guidance systems has recently been proposed. This paper
aims to validate this model in situations of interaction with
different levels of haptic guidance on a driving simulator. Two
experiments have been performed for this purpose. The first
experiment consisted of implementing the driver model in the
driving simulator and evaluating its lateral control performance
when interacting with a haptic guidance system. The results
reveal that the model can be adapted to different sharing
levels by adjusting only the gain of an internal model of the
steering wheel compliance. The second experiment consisted
of estimating the evolution of the gain of this internal model
using the unscented Kalman filter. The results reveal consistency
between the evolution of the identified parameter and the level
of sharing of the haptic guidance system. The driver model
represents the process of human driver adaptation to variations
in the level of sharing in haptic guidance systems.

Index Terms— driver model, internal model, haptic guidance
system, haptic shared control, adaptation, parameter identifi-
cation

I. INTRODUCTION

In line with the increasing interest in research on advanced
driver assistance systems, a mode of interaction between
humans and automation called haptic shared control [1], [2]
has been intensively studied. Haptic shared control proposes
that the human driver and automation simultaneously apply
a control action on an interface. In this case, the driver
receives continuous haptic feedback and is aware of the
action performed by the automation. Haptic shared control
is considered an efficient method to achieve smooth human-
machine cooperation, especially in automotive applications
[3]. It has proven to be safer in emergency situations than
traditional modes [4]–[6]. When haptic shared control is
applied to the steering control task, the assistance system
is generally referred to as a haptic guidance system. Fig. 1
illustrates how the steering task is performed in cooperation
between the driver and the system.

To minimize the potential conflicts between drivers and
haptic guidance systems, understanding and predicting driver
behavior is essential. For the development of some systems,
a driver model was included in the design strategy to predict
the output torque of the human driver [7], [8]. In a recent
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Fig. 1. Shared control between the human driver and haptic guidance
system. ρ: road curvature; α: sharing level; Γd: driver steering torque; Γa:
haptic guidance torque.

study [9], a new cybernetic driver model was proposed. The
advantage of this model is that it uses the haptic torque
feedback as input to account for the cooperation between the
driver and haptic guidance system. The model was identified
under two conditions: manual driving and driving with a hap-
tic guidance system whose sharing level was set at 50% (i.e.,
the system produced 50% of the total guidance torque, see
Section III-B). Under both conditions, the model’s prediction
of steering torque control was accurate.

This article is a follow-up to our previous study. It aims to
answer two questions related to the validation of the driver
model: 1) Is the behavior of the model close to that of a
human driver regardless of the level of sharing? 2) How can
the model account for the driver’s adaptation to variations
in the level of sharing over the course of driving? Two
experiments were conducted to answer these questions.

This article is organized as follows: Section II briefly
reviews the driver model. Section III introduces the driving
simulator and haptic guidance system used in the experi-
ments of this study. Sections IV and V present the realization
of the two experiments for validating the driver model: one
by implementing the driver model in a driving simulator to
evaluate its lateral control performance and another by con-
tinuously identifying model parameters. Finally, Section VI
concludes the results and proposes our future work.

II. CYBERNETIC DRIVER MODEL

A. Structure of the Proposed Cybernetic Model

The proposed model structure is depicted in Fig. 2 with the
description of signals listed in Table I. The basic hypothesis
of the model is that, in steering control, the driver implicitly
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TABLE I
DESCRIPTION OF SIGNALS IN FIG. 2

Signal Description

θfar Far-point Angle
θnear Near-point Angle
δd Target Steering-wheel Angle
δSW Actual Steering-wheel Angle
ΓI Torque from Internal Model
Γd Driver Steering Torque
Γfb Haptic Feedback Torque
Γa Haptic Guidance Torque
Γs Self-aligning Torque

aims at a steering angle determined from the visual scene and
then applies it to the steering wheel through the activation
of muscles. The model structure reflects these two steps: 1)
generating a target steering-wheel angle δd using a two-point
visual model (the blue part) and 2) applying the target angle
to a combination of limbs and the steering system through
the neuromuscular system (NMS) and outputting a torque
control (the orange and green parts). The two-point visual
model takes two angles, a far-point angle and a near-point
angle, as input to represent the visual information that the
driver references. The haptic feedback torque Γfb, which is
the combination of the haptic guidance torque and the self-
aligning torque, is the key input to the neuromuscular model.
It intervenes in the model in two ways. First, it implicitly
influences an internal model of steering wheel compliance
(dotted orange line). Second, it forms an explicit feedback
loop (solid green line). One minimal realization of the model
could be written as follows:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

with

y(t) = Γd (2a)

u(t) =
[
θfar θnear Γfb

]T
, (2b)
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(2f)

B. Internal Model

The internal model consists of a gain KI and a time
constant TN . In neural science, it is believed that the nervous
system uses models of the physical world to exercise control
and prediction to achieve skilled motor performance [10].
In the case of steering control, the driver uses an internal
model to convert the target steering-wheel angle to torque.
This internal model results from driver perception and prior
knowledge of the steering system. During driving, the driver
learns about the dynamics of the system and adapts to it by
updating the internal model of steering system compliance. It
is likely that this estimation is approximate and corresponds
to a simple (low-order) model, which is represented by the
gain KI . From the driver’s viewpoint, the dynamics of the
steering system are assessed through the haptic feedback.
The haptic feedback torque thus affects the internal model,
which is represented by the dashed line in Fig. 2. The time
constant TN represents the fact that the muscles need time
to output the torque control.

C. Explicit Haptic Feedback Loop

To achieve the target steering-wheel angle and stable con-
trol of the steering wheel, an open-loop control through the
internal model is not sufficient, as it is not able to compensate
for any perturbations that arise during the movement. A
closed-loop control using sensory feedback is indispensable.
The explicit haptic feedback loop is a first-order system
that outputs a complementary torque based on the error
between the torque output of the internal model and the
haptic feedback. This compensation through haptic feedback
torque is considered faster and more intuitive for the driver
than through the actual steering-wheel angle because small
errors between the target and actual steering-wheel angle are
more likely to be observed via visual information, and the
compensation is therefore much longer. In other words, the
NMS is more likely to counterbalance the haptic feedback to
stabilize the steering wheel than to achieve the exact target
steering-wheel angle.

III. EXPERIMENT SETTINGS

A. Apparatus

The experiments in this study were all performed on a
fixed-base driving simulator powered by SCANeR Studio
(Fig. 3, left). The simulator is equipped with a complete
dashboard; a five-speed gear stick; gas, brake, and clutch
pedals; and a steering wheel connected to a TRW steering
system. Sensors for measuring the steering-wheel angle,
speed, and torque are mounted in the steering system. The vi-
sual scene is displayed on three liquid crystal display (LCD)
screens: a central one in front of the driver and two others
oriented at 45◦ relative to the center. The screens cover a field
of view of 25◦ high and 115◦ wide. The software allows a
compilation and implementation of controllers developed in
Simulink to control either the steering wheel or the vehicle.
In all the experiments, a small family car, the Citroën C5,
was chosen as the vehicle model, with the longitudinal speed
fixed at 18 m/s.



Fig. 2. Structure of the proposed cybernetic driver model. Blue: two-point visual model; Orange: driver internal model; Green: direct haptic feedback
loop.

Start

Fig. 3. Left: fixed-base driving simulator; Right: track used in the first
experiment.

B. Haptic Guidance System

A haptic guidance system was implemented in the driv-
ing simulator using a controller designed in Simulink. The
controller was previously developed [8]. The final guidance
torque Γa was a combination of an anticipatory and com-
pensatory assistance torque depending on a factor α called
the sharing level:

Γa = α× Γant + Γcomp(α) (3)

where Γant and Γcomp are the torque generated by the
anticipatory and compensatory assistance, respectively. The
anticipatory assistance generates a reference trajectory from
the previewed road curvature. The compensatory assistance
consists of an H2/H∞ static output feedback that controls
the steering against disturbances and uncertainties. The shar-
ing level determines how much guidance torque is finally
applied on the steering wheel, and its value could vary
from 0% (completely manual driving) to 100% (completely
automatic driving).

IV. VALIDATION I: DRIVER MODEL SIMULATION

A. Objective

In a previous study [9], the parameters of the driver
model were sequentially estimated using the prediction error
minimization method [11] with driving data from five par-
ticipants. Two sets of parameters were obtained under two
experimental conditions: one for fully manual driving and
one for driving with a haptic guidance system with a 50%
sharing level. The model was validated under both conditions
with a good prediction quality of driver torque control (FIT
between 85% and 92%). The comparison between the two
sets of parameters implies that the NMS, in particular, the
internal gain KI of the model, accounts for the driver’s
adaptation to the intervention of the haptic guidance system.
This observation corresponds to the expected role of the
internal model in the model. Further, whether the driver’s
model can cooperate effectively with a haptic guidance
system as soon as the gain of the internal model corresponds
to the chosen sharing level remains to be verified.

B. Experiment

Fig. 4 illustrates how the experiment was conducted.
Instead of a human driver, the driver model was implemented
as a controller in the driving simulator to control the ve-
hicle in cooperation with the haptic guidance system. Two
independent variables were manipulated in this experiment:
the sharing level of the haptic guidance system, α, and the
internal model gain, KI . Four values for the sharing level
were chosen: 0%, 30%, 50%, and 80%. The corresponding
values of the internal model gain are 0.23, 0.17, 0.13, and
0.04. The other parameters in the driver model were fixed
at their nominal values (Table II). The combination of the
two independent variables provides 16 different experimental
scenarios. Each scenario lasted for about 5 min. A normal
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Fig. 4. Driver model validation with the implemented driver model.

TABLE II
NOMINAL PARAMETER VALUES USED IN VALIDATION I

Parameter Description Value

Kp Anticipatory Gain 3.7
Kc Compensatory Gain 2.6
TI Compensation Time Constant 0.4
TL Compensation Rate 7.2
TN Neuromuscular Time Constant 0.23
Kfb Haptic Feedback Loop Gain 0.97
Tfb Haptic Feedback Loop Time Constant 0.023
vx Vehicle Longitudinal Speed 18 (m/s)

track with the Euler spiral turns and straight lines was chosen
for this experiment (Fig. 3, right). The vehicle trajectory was
recorded and used to evaluate the lateral control performance.

C. Results

The standard deviation of the lateral position (SDLP) from
the lane center was chosen as the metric in this experiment
to present the validation results. It is calculated using the
lateral position deviation signal ya, which is the distance
from the center of gravity of the vehicle to the lane center (in
meters). A relatively large SDLP indicates poor lane-keeping
performance.

The SDLP values for all 16 scenarios are listed in Table III.
Each SDLP value on the diagonal is the lowest in its row
and column. This implies that, when the sharing level and
internal model gain match each other, the driver model and
haptic guidance system reach a relatively stable cooperation
with only a small variation in the lateral position. Note that
the SDLP is slightly higher for α = 0 than in the other three
cases because the driver model in manual mode tends to cut
corners, while the haptic guidance system tends to follow
the center of the lane. For a given sharing level, either a
larger or smaller value of the internal model gain results in
a higher SDLP. In these situations, the torque output from
the internal model is either too large or too small. Such
bias on the internal model, which represents the compliance
of the steering system, cannot entirely be compensated for
by the explicit haptic feedback loop, which eventually leads
to a difference between the target and actual steering-wheel
angle. Therefore, the vehicle position oscillates between the
left and right border (or even outside) of the lane.

In conclusion, the results indicate that the adjustment

TABLE III
STANDARD DEVIATION OF THE LATERAL POSITION OF ALL 16

SCENARIOS

KI = 0.23 KI = 0.17 KI = 0.13 KI = 0.04

α = 0% 0.51 2.39 5.47 33.03*

α = 30% 0.69 0.23 0.46 1.75
α = 50% 0.91 0.48 0.20 0.85
α = 80% 1.14 0.81 0.55 0.20

* The scenario ended exceptionally due to the vehicle left completely the
lane without return.

of the internal model gain through the haptic feedback is
imperative when the driver model interacts with the haptic
guidance system at different sharing levels. This adjustment
is sufficient for a significant improvement in lateral control
performance.

V. VALIDATION II: DRIVER MODEL IDENTIFICATION

A. Objective

The previous validation experience has shown that the
adjustment of the internal model gain accounts for the
adaptation of the driver model to various levels of sharing.
The second experimental validation seeks to capture the
adaptation of the human driver to the haptic guidance system
through time-varying identification of the internal model
gain. This is done in a situation in which the sharing level
varies during driving from 0% to 100%. The assumption is
that the gain of the internal model varies homogeneously
with the sharing level.

B. Experiment

Fig. 5 illustrates how the second experiment was con-
ducted. The driver was instructed to steer the vehicle in
cooperation with the haptic guidance system on the track
shown in Fig. 6, a road consisting only of Euler spiral bends
with a radius of curvature varying between 75 m and 95 m.
The experiment started in manual driving (α = 0). After the
vehicle passed P1, the sharing level started to increase from
0% to 100% in 50 s. The transition was indicated on the
simulator screen by a progress bar. When driving was fully
automated, the driver was required to remove the driver’s
hands from the steering wheel. When the vehicle passed P2
on the road, a takeover request was issued and the sharing
level began to decrease from 100% to 0% in 50 s. The
driving session lasted approximately 4 min. The signals used
to calculate the inputs and outputs of the driver model were
recorded throughout the drive at 100 Hz.

A group of 11 males and six females aged 24 to 53 (mean
= 31 years, standard deviation = 8.2 years) participated in
the experiment. All participants had a valid driver’s license
and drove regularly (12550 km per year on average). The
participants had no known medical conditions that could
affect their driving skills and had normal or corrected vision.
None of them had ever experienced a haptic guidance system.
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Fig. 5. Driver model validation with the identified driver model.

C. Parameter Identification

For each participant, the driver model identification was
performed in two steps: 1) identification of the complete
driver model using the data from the first manual driving
phase (i.e., when α = 0 from the start of the experiment)
and 2) estimation of the variation of the internal model gain
KI using all the data in the experiment. The goal of the first
step was to obtain an initial value for KI and a nominal
value for the other parameters, which were needed in the
second step. The identification method in the first step was
the same as in [9]: the visual model, internal model, and
explicit haptic feedback loop were identified sequentially by
the prediction error minimization method. In the second step,
as the value of KI may change continuously, a linear time-
varying system identification method was used. The method
was developed and validated in [12].

With the hypothesis that the variation of the internal model
gain KI(t) can be modeled as a Wiener process and that it
is slower than the variation of the system states, the system
can be augmented with KI and then can be discretized using
the Euler method. The augmented system derived from (1)
in discrete time is written as follows:{

xa[k + 1]= fd(xa[k], u[k]) + wa,d[k]

y[k]= gd(xa[k], u[k]) + v[k]
(4)

with

xa[k] =

[
x[k]
KI [k]

]
=

[
x(kTs)
KI(kTs)

]
(5a)

u[k] = u(kTs) (5b)
y[k] = y(kTs) (5c)
fd(xa[k], u[k])

=

[(
TsA(KI [k]) + I

)
x[k] + TsB(KI [k])u[k]
KI [k]

]
(5d)

gd(xa[k], u[k]) = Cx[k] +Du[k] (5e)

where wa,d[k] and v[k] are the discretized augmented process
noise and measurement noise, with the covariance matrices

P1

P2

Start

End

50s

50s

Fig. 6. Left: track used in the validation II; Right: variation of the sharing
level in the experiment.

denoted as Qa,d and Rd, respectively. The Ts is the sampling
time, which was 0.01 s in this experiment. The I in (6) is an
identity matrix that is the same size as the matrix A. Note
that the matrices A and B are all functions of KI in this
case; thus in (6) the values evaluated at KI [k] are used.

The unscented Kalman filter (UKF) is applied to estimate
the augmented system states xa[k] recursively by minimizing
the following cost function:

J(x̂a[k])= x̂Ta [0]P−1a [0]x̂a[0]

+Ts

N−1∑
k=0

ŵT
a,d[k]Q−1a,dŵa,d[k]

+Ts

N−1∑
k=0

v̂Td [k]R−1d v̂d[k] (6)

where Pa[0] is the initial covariance matrix of the augmented
states and

ŵa,d[k]= x̂a[k + 1]− fd(x̂a[k], u[k]) (7a)
v̂d[k]= y[k]− gd(x̂a[k], u[k]) (7b)

The calculation steps of UKF are listed in Algorithm 1.
The tuning methodology proposed by [12] was adopted

to configure the filter, especially the value of the matrices
Qa,d and Rd. The configuration of the filter demands a
compromise between the rapidity and the precision (noise
sensitivity) in the process of the estimation. A multi-model
UKF approach was finally applied to estimate simultaneously
the steady-state value of KI and detect fast parametric
variation with one relatively slow and another relatively fast
filter.

D. Results

The FIT values were first obtained from the results
of UKF to verify the prediction of the driver torque. The
calculation is as follows:

FIT =

(
1− ‖Γd − Γ̂d‖2
‖Γd −mean(Γd)‖2

)
× 100% (11)

where Γd is the measured driver torque, and Γ̂d is the
prediction. For the slow UKF, the mean value of FIT for
all participants is 91.5% with a standard deviation of 0.3%.
For the fast UKF, the mean value of FIT is 92.1% with a



Algorithm 1 Estimation of xa[k] with the unscented Kalman
filter.
Step 1: Initialization
At time step k = 0, configure xa[0], Pa[0], Qa,d and Rd:
Step 2: Calculation of the output prediction
At time step k > 0, estimate the output prediction using the
unscented transformation (UT) [13]:

(ŷ[k|k − 1], C ′yy[k], Cxy[k])

= UT (gd, x̂a[k|k − 1], Pa[k|k − 1]) (8a)
Cyy[k] = C ′yy[k] +Rd (8b)

Step 3: Correction with measurements
At time step k, correct the values and the covariance of the
augmented states with the measurements:

∗L[k] = Cxy[k]C−1yy [k] (9a)

x̂a[k|k] = x̂a[k|k − 1] + L[k]
(
y[k]− ŷ[k|k − 1]

)
(9b)

Pa[k|k] = Pa[k|k − 1]− L[k]CT
xy[k] (9c)

Step 4: States prediction for the next time step
At time step k, predict the augmented states value and
covariance for the next time step k + 1 using UT:

(x̂a[k + 1|k], P ′a[k + 1|k])

= UT (fd, x̂a[k|k], Pa[k|k]) (10a)
Pa[k + 1|k] = P ′a[k + 1|k] +Qa,d (10b)

Step 5: k ← k + 1, repeat step 2 to 4 until k = N .

Fig. 7. Left: measured vs. predicted driver torque of Participant 1; Right:
estimated KI variation of Participant 5.

standard deviation of 0.4%. These values confirm the validity
of the identified driver model. As an example, Fig. 7 (left)
compares the prediction results of the Participant 1. Note
that, during the completely automatic driving phase (around
110 s to 150 s), the driver torque was not exactly zero even
though the participants did not touch the steering wheel. This
was probably caused by the friction in the steering system
that was measured by the torque sensor.

Second, the variation of KI was analyzed. Fig. 7 (right)
presents the results of Participant 5 as an example. To
check whether the variation of all participants is similar,
the results were synchronized so that all participants passed
Point P1 at the same time (after the synchronization, they
passed the Point P2 with a time difference of less than
0.5 s, which could be ignored). Fig. 8 reveals two curves

Fig. 8. Mean KI variation with the three-sigma band of all participants.
Blue: results of slow unscented Kalman filter(UKF); Red: results of fast
UKF; Black: sharing level α; Sold line: mean KI ; Dotted line: three-sigma
band.

for the variation of mean KI with a three-sigma (three
standard deviations) band of all participants, one estimated
using the slow filter and another using the fast filter. The
mean and standard deviation values were calculated with the
estimated KI of all participants at each sampling instance
using the synchronized results. The figure reveals that both
the slow and fast filters exhibit a similar variation trend. For
all participants, the internal model gain decreases when the
sharing level increases, and vice versa. The KI is nearly zero
during completely automatic driving. In addition, a delay of
about 10 s occurs between the change in the sharing level
and the variation of the internal model gain. During the
experiment, human drivers adapted to the change of sharing
level by delivering more or less torque on the steering wheel.
This adaptation is captured very well by the variation of the
internal model gain. In conclusion, the results demonstrated
that the internal model gain of the driver model is directly
related to the sharing level of the haptic guidance system. By
adjusting this parameter, the prediction of the driver model in
cooperation with the haptic guidance system is always valid
when the sharing level changes.

VI. CONCLUSION

The driver model proposed in [9] was developed to
account for the cooperation between a driver and haptic
guidance system. This paper aims to validate this model
when the level of sharing between the two agents changes.
Two experiments were conducted consecutively. The first
experiment consisted of implementing the driver model in
a driving simulator so that it could perform the steering
task itself. The results indicated that the model that was
identified for a given sharing level was no longer able to
drive the simulator in cooperation with the haptic guidance
system when the level of sharing changed. This implies that
an adaptation of the model must occur either by changing
the values of the parameters in the model or by changing the



structure of the model.
The experiment demonstrates that this adaptation can be

achieved by varying only the value of the gain of the
internal model of the steering system compliance. As a
corollary, this result validated the meaning attributed to
the model parameters: the visual model is not affected
by haptic guidance, and the neuromuscular time constant
is invariant, as indicated in the literature [14]. Moreover,
the explicit haptic feedback cannot perform the adaptation
by itself. Ultimately, the adaptation of the internal model
gain is imperative because, from the driver’s viewpoint, the
haptic guidance system modifies the dynamics of the steering
wheel.

Based on these results, the second experiment validated
the driver model with all possible sharing-level values. This
time, the value of the internal model gain was identified
using a UKF method with driving data from human drivers
who were experiencing slow transitions between manual and
autonomous driving. This was achieved by gradually varying
the sharing level. The results indicated that the variation in
the internal model gain is directly related to the sharing
level. This suggests that driver adaptation to the haptic
guidance system is mostly achieved by updating the internal
model. The driver model captures this adaptation process
successfully.

Similar adaptation situations can be envisioned, such as
when the driver discovers a new vehicle with a steering wheel
that is more or less difficult to turn than expected. During
the first few curves, lane control may be inaccurate and then
improves as the next curves are negotiated. This adaptation
would likely be done by adjusting the gain of the internal
model; thus, the model would be able to account for it. This
issue will be investigated in future studies.
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