
Objective: To present a structured, narrative review 
highlighting research into human perceptual-motor coordina-
tion that can be applied to automated vehicle (AV)–human 
transitions.

Background: Manual control of vehicles is made possible 
by the coordination of perceptual-motor behaviors (gaze and 
steering actions), where active feedback loops enable drivers 
to respond rapidly to ever-changing environments. AVs will 
change the nature of driving to periods of monitoring followed 
by the human driver taking over manual control. The impact 
of this change is currently poorly understood.

Method: We outline an explanatory framework for 
understanding control transitions based on models of human 
steering control. This framework can be summarized as a per-
ceptual-motor loop that requires (a) calibration and (b) gaze 
and steering coordination. A review of the current experi-
mental literature on transitions is presented in the light of 
this framework.

Results: The success of transitions are often measured using 
reaction times, however, the perceptual-motor mechanisms 
underpinning steering quality remain relatively unexplored.

Conclusion: Modeling the coordination of gaze and 
steering and the calibration of perceptual-motor control will 
be crucial to ensure safe and successful transitions out of 
automated driving.

Application: This conclusion poses a challenge for future 
research on AV-human transitions. Future studies need to 
provide an understanding of human behavior that will be 
sufficient to capture the essential characteristics of drivers 
reengaging control of their vehicle. The proposed framework 
can provide a guide for investigating specific components of 
human control of steering and potential routes to improving 
manual control recovery.

Keywords: perception, action, steering, gaze coordination, 
motor control, automated driving, human-computer interaction

Introduction
The term automated vehicle encompasses a 

wide variety of systems that provide some form 
of driver assistance (SAE, 2016). Many Level 
2 (SAE, 2016) semiautomated systems where 
lateral and longitudinal control can be tempo-
rarily relinquished by the driver to the vehicle, 
but the driver’s hands typically remain on the 
wheel, are already commercially available (e.g., 
traffic jam assist, automated parking; Chan, 
2017; Sousa, Almeida, Coutinho-Rodrigues, & 
Natividade-Jesus, 2017). There is a long list 
of car companies trying to rapidly develop 
vehicles with higher levels of automation, who 
are promising widespread deployment of AVs 
by the early 2020s (Chan, 2017; Bagloee, 
Tavana, Asadi, & Oliver, 2016) with a number 
of such systems already being piloted on public 
roads. Most of these AVs will not be driverless 
(Level 5; SAE, 2016); rather, they will be Level 
3 or 4 systems that are largely automated but 
still require a supervising driver who receives 
handover of control (during a period which we 
will refer to as a control transition) to man-
age situations where the AV is unable to safely 
maneuver.

Transitions might occur in systematic and 
planned ways (e.g., the AV always hands over 
control when leaving the motorway), but also 
for a variety of unplanned reasons where the AV 
system fails. Failures will encompass a multi-
tude of situations where the AV no longer oper-
ates safely, so they could occur at a variety of 
timescales with differing degrees of warning for 
the driver depending on whether the AV system 
is able to identify that a failure state has occurred. 
Likely examples of AV failure states include 
situations where information about the environ-
ment has become uncertain (e.g., if a road has 
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degraded lane markings or unusual signage, or if 
the vehicle sensor signals are disrupted due to 
weather conditions or a weak GPS signal; Sousa 
et  al., 2017). AV reliability will continue to 
improve, but preventing failure conditions 
entirely is a massive challenge; therefore, it is 
likely that transitions will be a feature of AVs for 
the foreseeable future. The AV systems that are 
able to successfully transition control to the 
human driver will be the ones that can be 
deployed most readily: The AV can be given 
control during easier-to-automate situations 
where there is less uncertainty about the vehicle 
position relative to the external environment 
(such as driving along motorways) while also 
being able to relinquish control to the human 
driver when the environment is too complex or 
uncertain (e.g., driving through a busy city cen-
ter or negotiating country lanes).

The core assumption of Level 2 to 4 AV sys-
tems is that humans can and will safely and rap-
idly take over control of a moving vehicle. 
Depending on the situation, however, the human 
driver may be faced with a set of environmental 
and vehicle characteristics that are drastically 
different from when they were last in control. 
The assumption that drivers can jump back in to 
control and produce actions that are appropriate 
for the conditions is not well aligned with our 
current understanding of how humans perform 
highly dynamic active control tasks such as 
steering (see Lappi & Mole, 2018, Mulder et al., 
2017 for recent reviews). Nor is it supported by 
ergonomics research into human performance of 
monotonous “monitoring” tasks over prolonged 
periods where active input is only rarely required 
(Molloy & Parasuraman, 1996).

To illustrate the problem, consider the case of 
a driver relinquishing control to an AV prior to 
joining a motorway. When the driver was in con-
trol of steering, the vehicle was traveling at 
fairly slow speeds on a dry road. After the AV 
was given control, the driver does not feel a 
pressing need to keep gaze directed to the road 
ahead, he or she may look around at the scenery 
or even direct gaze to other tasks such as reading 
e-mail. The AV then detects road construction 
ahead and alerts the driver to take over control in 
response to this event. The driver’s task is to 
coordinate steering and/or braking actions to 

smoothly generate a safe path during the transi-
tion event, but in the intervening period (since 
the driver was last in control of the vehicle) it 
has rained, causing reduced road friction, and 
the car is also traveling at a higher speed than 
previously. If the driver is explicitly aware of the 
changing conditions, he or she could take some 
form of tactical precautionary measure (i.e., an 
arbitrary reduction in speed), but the driver’s 
sensorimotor system will also need to adapt rap-
idly to the altered control dynamics (due to 
lower adherence and increased vehicle speed). 
Because the driver has not been in control of the 
vehicle, his or her sensorimotor system may not 
be well calibrated to the new environmental 
conditions and/or vehicle dynamics, and the 
driver may not have access to useful perceptual 
information that would be needed to plan and 
execute the possible driving actions (either due 
to not looking at or attending to the road ahead). 
In this example, it seems likely that the ability of 
the human driver to successfully steer will be 
diminished (compared with a situation where 
control had been manual throughout), resulting 
in less safe lane-keeping or collision-avoidance 
maneuvers by the human driver.

Highly automated vehicles may populate our 
streets in the not-so-distant future (Chan, 2017), 
yet currently we do not have sufficient under-
standing of the factors affecting driving perfor-
mance in transition scenarios to inform the 
design of these systems. This review examines 
control transitions from the perspective offered 
by the extensive literature on human perceptual-
motor control. In order to apply these findings, it 
is first important to identify the theoretical 
framework in which we will situate this research.

Identifying a Framework for Examining 
Transitions

Driving is complex and can be broken down 
into numerous subcomponents, the nature of 
which will depend on the environment being 
driven through, the familiarity of the driver 
with the environment, and also the driver’s level 
of skill. Capturing the complexity of driving 
is usually approached using a framework that 
employs a hierarchy of distinct control loops 
(Donges, 1978, 1999; Hollnagel, Nåbo, & Lau, 
2003; Lappi & Mole, 2018; McRuer, Allen, 



Transitions out of Automated Driving	 1039

Weir, & Klein, 1977; Michon, 1985; Salvucci, 
2006). Although the description of each control 
level varies across frameworks, many of the 
underpinning principles are shared. At the high-
est level, the driver sets navigation goals. The 
middle levels are responsible for composing the 
route from a sequence of actions, e.g., changing 
lanes within the constraints of the current traffic 
environment. The lowest level is responsible 
for controlling the underlying perceptual-motor 
behaviors (lateral and longitudinal control 
actions) that propel the vehicle along the desired 

trajectory (Figure 1). While lateral (steering) 
control and longitudinal (speed) control are 
clearly related (e.g., speed choice can preclude 
certain steering responses, and steering response 
gain will depend on speed) it is also the case 
that different perceptual variables provide use-
ful information about lateral and longitudinal 
control. For this reason, research into human 
perceptual-motor control often considers these 
behaviors independently. The primary behavior 
considered in this review is the effect of auto-
mation on lateral (steering) control: adjusting 
the direction of travel to meet the current and 
upcoming requirements specified by the road.

Within the framework presented in Figure 1, 
the lower the control level, the higher the feed-
back frequency (Donges, 1999; Hollnagel et al., 
2003; McRuer et al., 1977; Michon, 1985; Sal-
vucci, 2006). Successful steering control (the 
lowest level, operational control) is supported 
by rapid perceptual-motor loops. System lags 
mean that for smooth control, drivers require 
perceptual inputs not only of the current vehicle 
lane position and heading, but also preview 
information obtained from 1–2 s ahead, in the 
direction of where the driver wishes to go (Chat-
tington, Wilson, Ashford, & Marple- 
Horvat, 2007; Land & Lee, 1994; Lappi, 
Lehtonen, Pekkanen, & Itkonen, 2013; Lehtonen, 
Lappi, Koirikivi, & Summala, 2014; Lehtonen, 
Lappi, Kotkanen, & Summala, 2013; Salvucci & 
Gray, 2004; Wilkie, Wann, & Allison, 2008; 
Wilkie, Kountouriotis, Merat, & Wann, 2010) or 
even further along the road (if road regions are 
visible beyond this typical preview distance, 
drivers may make anticipatory look-ahead fixa-
tions; Lehtonen et  al., 2013, 2014; Lehtonen, 
Lappi, & Summala, 2012; Mars & Navarro, 
2012). Based on these perceptual inputs, the 
driver needs to determine quickly which path to 
take and how to coordinate steering actions to get 
there. The resulting motor commands set the 
conditions for new perceptual inputs, and the 
loop repeats. A consequence of this operational 
(perceptual-motor) control loop is that vehicle 
control and gaze tend to be tightly coupled dur-
ing manual control of driving.

This article focuses on the consequences of 
automated driving, specifically the impact of 
automation upon the operational control loop. 

Operational
(perceptual-motor)

Low Feedback
Frequency

High Feedback
Frequency

A

B

e.g. Route
Setting

e.g. Lane 
Keeping

Strategic 

Tactical

e.g. Changing 
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Figure 1. The principles underlying multilevel 
driver models. Each level has its own control 
loop, with specific environment inputs and action 
outputs. The terms used in this figure are taken from 
Michon (1985), but the principles are similar for all 
multilevel driving models. The higher level, strategic 
control, is concerned with general plans that require 
infrequent updating, for example large scale route 
setting through the environment. The middle level(s), 
tactical control, is concerned with the organization 
and sequencing of actions that determine the course 
through the local environment. The lowest level, 
operational control, involves rapid perceptual-motor 
control loops that execute the necessary steering 
commands to keep the vehicle on the selected 
trajectory. The lowest operational control level is the 
primary focus of this manuscript.
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The operational control loop is the first loop to 
be disengaged, and is critical for all takeover 
scenarios: higher level loops can only affect 
ongoing activity through the pathway provided 
by perceptual-motor control. This focus is 
intended to complement existing human factors 
frameworks that adopt more holistic high-level 
approaches (e.g., see Merat et  al., 2018 for a 
common definition for being “out of the loop”). 
Although considerations of driver control that 
introduce concepts such as “out of the loop” 
(Merat et  al., 2018) or “situation awareness” 
(Endsley, 2017) provide useful high-level 
descriptions for capturing the nature of driving, 
this manuscript aims to bring greater clarity to 
the underlying role of perceptual-motor control. 
This focus necessitates the omission of a num-
ber of topics (such as driver distraction) that are 
important research challenges for control transi-
tions but are outside the scope of the current 
manuscript (and for which reviews already exist, 
e.g., Engstrom et al., 2017). By concentrating on 
perceptual-motor control, this article will high-
light concepts that may be less familiar to the 
human factors readership but in our view are no 
less critical.

Overview and Method
The section entitled The Perceptual-Motor 

Loop (Outside of Transitions) highlights the 
literature that underpins our current understand-
ing of the human perceptual-motor loop for 
the operational control of steering. The sec-
tion entitled Automated Driving Will Break the 
Perceptual-Motor Control Loop then considers 
the likely impact of automation on the percep-
tual-motor control loop and the possible impli-
cations of transitions of control. The section 
entitled Current Evidence: Human Responses 
During Transitions then relates these predic-
tions to current evidence examining human per-
formance when taking over control from AVs. 
Finally, in Conclusions and Future Directions, 
we look to the future and assess how current 
technological advances may address some of the 
issues raised in the previous sections.

This article is not intended to be a systematic 
review, rather our purpose is to take knowledge 
from one theoretical domain (the area of human 
perceptual-motor control) and apply it within 

the context of a newly emerging, distinct but 
related field (transitions out of automated driv-
ing). We met this aim through the pursuit and 
reporting of two distinct literature searches. The 
first is a structured, narrative review of papers in 
the domain of perceptual-motor control, selected 
based on the accumulated expertise of the 
authors in order to highlight literature that can 
be best related to transitions of control. Although 
this review is extensive, there were no strict 
inclusion criteria. The section entitled Current 
Evidence: Human Responses During Transi-
tions presents a semistructured review of the 
way that perceptual-motor control is examined 
within the existing literature on transitions. We 
used Google Scholar to conduct specific 
searches on perceptual-motor calibration and 
gaze and steering coordination (the mechanisms 
that are this article’s focus) during automated 
driving (see Table A1 for search terms). We 
found 10 relevant papers using these searches. 
Further candidate articles were identified using 
existing reviews reported in Lu, Happee, 
Cabrall, Kyriakidis, and de Winter, 2016, and 
Eriksson and Stanton, 2017a, that were then 
complemented with additional articles found 
through ad-hoc searches and citation networks. 
Although there were no strict inclusion criteria, 
we gave preference to papers that could be 
accessed that were in English, and that: (a) 
described transitions out of a period of auto-
mated driving to human control of driving, (b) 
considered automation of lateral control, (c) 
reported empirical objective metrics on driver 
perceptual-motor control (recorded actions of 
the driver or the vehicle, rather than subjective 
report), and (d) were published from the year 
2010 onwards to ensure relevance to automation 
of lateral control. In total, Current Evidence: 
Human Responses During Transitions is sup-
ported by 53 papers on transitions out of auto-
mated driving, which was deemed sufficient for 
assessing the current transition literature (see 
Table A2 for the full list of references).

The Perceptual-Motor Loop 
(Outside of Transitions)

To understand how automation could affect 
the perceptual-motor level in driving transi-
tions, it is necessary to establish how the 
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human perceptual-motor systems are normally 
involved during successful steering control. The 
following primer is aimed at readers unfamil-
iar with the existing perceptual-motor control 
literature, to provide sufficient background to 
appreciate how the issues raised apply to control 
transitions out of automated driving (for more 
in-depth reviews, see Land & Tatler, 2009; 
Lappi, 2014; Lappi & Mole, 2018; Regan & 
Gray, 2000). In particular, we introduce two 
key concepts in the following subsections: 
(1) perceptual-motor calibration and (2) gaze 
and steering coordination. Perceptual-motor 
calibration (fully described in the next section) 
refers to how individuals maintain appropriately 
scaled movements in conditions where there are 
changing task dynamics; although this is a com-
mon conceptual framework in the motor con-
trol literature (see Brand & de Oliveira, 2017; 
van Andel, Cole, & Pepping, 2017 for recent 
reviews), the issue is often not explicitly con-
sidered in the steering control literature, despite 
having important implications for control tran-
sitions. Gaze and steering coordination (fully 
described later) refers to the way that drivers use 
head and eye movements to anticipate upcom-
ing steering requirements (and how the steering 
requirements themselves alter gaze patterns), 
and we (and others) consider this coordination 
to be central to understanding how humans 
drive (Chattington et al., 2007; Lappi & Mole, 
2018; Land, 1992, 1998; Land & Lee, 1994; 
Land & Tatler, 2001; Lappi, 2014; Lehtonen 
et  al., 2014; Mars, 2008a; Wilkie et  al., 2008, 
2010). In the section entitled Automated Driving 
Will Break the Perceptual-Motor Control Loop, 
we will apply these concepts to consider the 
case of control transitions.

Perceptual-Motor Calibration
Steering is a specific example of a broader 

set of actions that rely on visual information to 
guide movement (e.g., steering has been mod-
eled as a reaching task; Kolekar, Mugge, & 
Abbink, 2018; and there is also evidence link-
ing steering ability with manually tracing paths; 
Raw, Kountouriotis, Mon-Williams, & Wilkie, 
2012). In the fields of experimental psychol-
ogy and vision science, such visually guided 
actions have historically been modeled using 

mathematically specifiable control laws that 
translate perceptual cues more or less directly 
into movement commands, for example braking 
(Fajen, 2007, 2008; Lee, 1976) or steering (Fajen 
& Warren, 2003; Land & Lee, 1994; Salvucci & 
Gray, 2004; Wilkie & Wann, 2002). A number 
of perceptual cues are made optically available 
to humans by their environment (such as optic 
flow, Gibson, 1958; or optic expansion, Lee, 
1976). A driver can learn relationships between 
available perceptual variables and the control 
states that produce desired task performance 
(Fajen, 2005). The learned relationship can 
be referred to as a perceptual-motor mapping. 
However, the exact mechanisms of the senso-
rimotor learning underpinning skilled actions 
is often unclear. Motor learning is routinely 
described as a set of internal models that support 
predictive feedforward control (Wolpert, Died-
richsen, & Flanagan, 2011), yet the presence of 
internal models is also contested in some online 
control accounts of visually guided action (Zhao 
& Warren, 2015). Irrespective of the precise 
mechanisms underlying perceptual-motor map-
ping and learning, adequate perceptual-motor 
mappings need to be established, maintained, 
and updated over time and across different 
conditions (see Lappi & Mole, 2018, for a more 
detailed discussion of the role of internal models 
in steering control).

The mappings from perceptual cues to motor 
actions will vary depending on environmental 
conditions, vehicle dynamics, and driver experi-
ence. For example, if someone tries to drive a 
new vehicle, the steering characteristics (e.g., 
wheel sensitivity) is likely to differ from their 
prior experience: Given identical perceptual 
stimuli, a different motor response will be 
needed, and so a new mapping needs to be 
acquired. If the new vehicle is more responsive 
(e.g., it has power-assisted steering, whereas the 
previous vehicle did not), the driver risks exces-
sive initial steering inputs and/or overcorrecting 
for errors because responses will reflect an 
incorrect mapping. Analogous changes will 
occur even during a continuous drive of the 
same vehicle. Steering dynamics will alter 
across time due to changes in the vehicle (e.g., 
increased speed, reduced fuel load, wear in tire 
tread), the environment (change in surface 
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texture, e.g., gravel vs. Tarmac, different weather 
conditions), and the driver (e.g., muscle fatigue). 
During such periods, a driver needs to adapt to 
frequently changing action capabilities and 
remain well attuned to the environment (Fajen, 
2005; Shadmehr, Smith, & Krakauer, 2010).

We can define, at the broadest level, 
perceptual-motor calibration as maintaining 
appropriately scaled movements when condi-
tions change (Fajen, 2005). We will follow 
recent reviews of how humans scale movements 
under changing conditions (Brand & de Oliveira, 
2017; Redding, Rossetti, & Wallace, 2005; van 
Andel et al., 2017) and refer to this as percep-
tual-motor calibration, but note that calibration 
is a type of sensorimotor adaptation (Krakauer 
& Mazzoni, 2011; Wolpert et al., 2011), so often 
either term is used to describe changes very sim-
ilar in nature (e.g., Bourgeois & Coello, 2012; 
Benson, Anguera, & Seidler, 2011). For readers 
unfamiliar with the perceptual-motor control lit-
erature, it is worth being explicit about the rela-
tionship between calibration and adaptation 
(Tresilian, 2012). Adaptation is broader in scope 
and refers to adjusting existing skills in new cir-
cumstances to maintain levels of performance. 
Calibration refers to a specific case of adaptation 
involving adjusting existing or learning new 
perceptual-motor mappings. All (re)calibration 
is adaptation, but not all adaptation is calibra-
tion, for example one can stiffen muscles to 
resist uncertain forces without updating percep-
tual-motor mappings. Both adaptation and cali-
bration are distinct from acquisition, which 
involves learning a new skill (Tresilian, 2012). 
All are forms of learning.

The process of maintaining perceptual-motor 
mappings attuned to the environment can be 
examined at different levels of the sensorimotor 
system, from neuromuscular changes (Franklin, 
Wolpert, & Franklin, 2017), to scaling move-
ments such as swinging a baseball bat (Scott & 
Gray, 2010), braking (Fajen, 2007) or reaching-
to-grasp (Coats, Bingham, & Mon-Williams, 
2007), to end-point accuracy of complex tasks 
with multiple coordinated submovements such 
as during driving simulator adaptation experi-
ments (McGehee, Lee, Rizzo, Dawson, & Bate-
man, 2004; Ronen & Yair, 2013; Sahami & 
Sayed, 2010). Given the role of calibration in 

supporting successful action, it is important to 
consider how AVs might affect the acquisition 
and maintenance of well calibrated steering 
responses. We examine the likely impact of auto-
mation on calibration in Automated Driving Will 
Break the Perceptual-Motor Control Loop after 
we have completed outlining the fundamentals 
of the operational control loop underpinning 
steering control behaviors.

Gaze and Steering Coordination
There appears to be a growing consensus 

within the recent perceptual-motor steering con-
trol literature that successful steering naturally 
relies on close coordination with gaze behaviors 
(Chattington et al., 2007; Hollands, Patla, & Vick-
ers, 2002; Jahn, Kalla, Karg, Strupp, & Brandt, 
2006; Land, 1992, 1998; Land & Hayhoe, 2001; 
Land & Lee, 1994; Land & Tatler, 2001; Lappi, 
2014; Lappi & Mole, 2018; Lehtonen et  al., 
2014; Mars, 2008a; Matthis, Yates, & Hayhoe, 
2018; Vansteenkiste et  al., 2014; Wilkie et  al., 
2008, 2010). Gaze behaviors that are tightly 
coupled with vehicle control maneuvers lead to 
fairly stereotypical behaviors (albeit with some 
interindividual variation) during routine driv-
ing (for illustrative examples, see Lappi, Rink-
kala, & Pekkanen, 2017). It seems that to steer 
smoothly, drivers usually employ guiding fixa-
tions (GF): fixations directed about 1–2 s ahead 
(Land, 1992; Land & Lee, 1994; Lappi et  al., 
2013; Lehtonen et al., 2014). However, GFs are 
sometimes interleaved with rarer fixations even 
further ahead—referred to as lookahead fixations 
(LAFs; Lehtonen et al., 2013). This gaze polling 
behavior of alternating GF/LAF (Wilkie et  al., 
2008) has been observed in both laboratory and 
real-world tasks (Lappi et  al., 2017; Lehtonen 
et al., 2014; Wilkie et al., 2008).

It has been hypothesized that these two 
classes of fixation have different functional 
roles. GFs seem to be useful for path modifica-
tion when responding to changes determined by 
the upcoming road curvature, whereas LAFs are 
more useful for route planning decisions further 
ahead in both time and space (Lehtonen et al., 
2013, 2014; Mars & Navarro, 2012; Mennie, 
Hayhoe, & Sullivan, 2007; Pelz & Canosa, 
2001; Wilkie et  al., 2008; see Lappi & Mole, 
2018, for a review of the relevant evidence).
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During routine steering, gaze patterns are 
very active, with a move-dwell-move pattern 
occurring 2 to 3 times per second (Lappi et al., 
2017; Wilkie et al., 2010). It appears that gaze 
behaviors by themselves are important, but the 
interplay between steering and gaze control is 
more nuanced than simply needing to look ahead 
to observe the scene features relevant for deter-
mining the upcoming steering requirements. 
Gaze patterns change when the need for active 
vehicular control is removed: even when the 
viewed scene is identical, drivers look further 
ahead and make more LAFs than when they are 
no longer required to steer (Mackenzie & Harris, 
2015; Mars & Navarro, 2012).

Complementing the visual input, the (for-
ward) orientation of the head and eyes itself 
provides proprioceptive gaze direction informa-
tion (from the muscles controlling the head and 
eyes) that is a useful input for steering control 
over and above the visual pattern on the retina 
(Authié, Hilt, Berthoz, & Bennequin, 2015; 
Wilkie & Wann, 2003a; Wilson, Stephenson, 
Chattington, & Marple-Horvat, 2007). If driv-
ers are looking where they wish to go, the 
direction and magnitude of gaze relative to the 
current direction of locomotion in part signals 
the steering required to pass through the point 
of fixation. Steering can be biased by prevent-
ing normal eye movements (Robertshaw & 
Wilkie, 2008) or requiring drivers to fixate a 
point to the side of the path (Jahn et al., 2006; 
Kountouriotis, Floyd, Gardner, Merat, & 
Wilkie, 2012; Mars, 2008a; Readinger, Chatzi-
astros, Cunningham, Bülthoff, & Cutting, 
2002). It seems, therefore, that active gaze con-
trol is also critically important for maintaining 
locomotor perceptual-motor mappings. These 
eye and head movements actively shape the 
samples from the sensory array (including but 
not limited to the retina) that the brain receives 
as input (Ahissar & Assa, 2016). Therefore, a 
notable aspect of the coupling between steering 
and gaze is that it appears to be bidirectional: 
gaze influences steering, and steering influ-
ences gaze.

The evidence highlighted so far in this sub-
section demonstrates that gaze and steering 
coordination can be well captured within the 
framework of a perception-action loop. Neither 

behavior in isolation (gaze or steering) wholly 
determines the other: rather, where a driver 
will look (and consequently what is sampled 
retinally and extraretinally) depends on the 
current steering intentions, but the current 
steering is in turn influenced by where the 
driver is looking. It is worth mentioning that 
because these perception-action loops are 
modeled on successful human steering behav-
iors in laboratory steering tasks, they tend to 
describe well-calibrated behaviors (see e.g., 
Boer, 2016; Mars & Chevral, 2017; Salvucci & 
Gray, 2004; Wilkie et al., 2008), however the 
way that the human has become calibrated, and 
how calibration can adapt in more dynami-
cally complex and labile environments, tend 
not to be explicitly addressed.

One cannot have synergy between steering 
and gaze without appropriately attuned bidirec-
tional perceptual-motor mappings. The section 
entitled How Will AVs Affect Gaze and Steering 
Coordination? examines the potential impact on 
control transitions.

An Operational Control Loop That 
Reflects the Perceptual-Motor 
Demands of Steering

The operational control level outlined in 
Figure 1 can be expanded to highlight the com-
ponents of perceptual-motor steering control 
that are most relevant to control transitions 
(Figure 2). Successful steering is here depicted 
as relying on a frequently updated perceptual-
motor loop, where the perceptual inputs used 
to inform steering are supplied by gaze and 
steering control acting synergistically. The role 
of calibration is included as a critical property 
of this loop, attuning gaze and steering control 
outputs to the current vehicle and environmental 
conditions.

When attempting to capture the nature of 
complex human behaviors (such as driving) it is 
essential to be explicit about the level of descrip-
tion being used. Figure 2 is a schematic repre-
sentation, which does not attempt to describe an 
implemented steering model, nor does it make 
concrete proposals about the physiological or 
perceptual-cognitive nature of the key mecha-
nisms underlying calibration and gaze and 
steering coordination.
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This is because these phenomena are partly 
determined by the character of the subcompo-
nents of the perceptual-motor loop: perceptual 
variables, steering control, and gaze control. 
Ongoing research continues to improve our 

understanding of these components, and there 
are a number of steering models proposing dif-
ferent candidate perceptual variables and alter-
native mechanisms for how candidate variables 
translate to vehicle control (e.g., Salvucci & 
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Gray, 2004; Wilkie et al., 2008; also see Lappi, 
2014, for a review). However, the level of 
description used in Figure 2 is sufficient for 
assessing the impact of these components upon 
smooth and safe control transitions.

One characteristic of the loop shown in Fig-
ure 2 is that for steering actions to remain well 
calibrated with respect to the environment, the 
driver will need to operate at a sufficiently high 
frequency. In the real world, drivers are able to 
look away from the road (or have the scene 
occluded) for around 1 to 2 s intermittently 
without a major impact upon performance (Hor-
rey & Wickens, 2007; Pekkanen et  al., 2018; 
Senders, Kristofferson, Levison, Dietrich, & 
Ward, 1967). Even when a driver is on task, 
there will be intermittency in the gaze input due 
to gaze polling behaviors (Lappi et al., 2017). 
Also, recent modeling advances suggest that 
intermittent control could be a fundamental 
property of steering (Markkula et  al., 2018). 
Nevertheless, while the perceptual-motor loop 
can handle intermittent and irregular inputs, the 
manageable time scales of such interruptions 
appear to be in the order of seconds rather than 
minutes (Johns & Cole, 2015; Pekkanen, Lappi, 
Itkonen, & Summala, 2017). During periods of 
automated driving, the perceptual-motor loop is 
likely to be interrupted for considerably longer 
timescales, in the order of many tens of min-
utes, up to a number of hours. The next section 
will explore how the perceptual-motor control 
loop components identified so far may be dis-
rupted during automated driving for prolonged 
periods.

Automated Driving Will Break the 
Perceptual-Motor Control Loop

During automated driving, the perceptual-
motor loop depicted in Figure 2 will be dis-
rupted. Specifically, the requirement for the 
human driver to produce steering control com-
mands is removed because the AV takes control 
over steering (Figure 3). This change effectively 
breaks the perceptual-motor loop, which may 
have an impact on perceptual-motor calibration 
and also have consequences for the other behav-
iors normally exhibited during driving (e.g., 
eye-movement patterns).

How Will AVs Impact Upon Perceptual-
Motor Calibration?

During manual control of steering, a driver 
remains calibrated to the vehicle dynamics 
and environmental conditions despite frequent 
changes to the mapping between motor action 
and resultant vehicle motion (see Perceptual-
Motor Calibration). Most (if not all) current 
steering models implicitly assume that the driver 
is well calibrated (e.g., Boer, 2016; Mars & 
Chevrel, 2017; Salvucci & Gray, 2004; Wilkie 
et al., 2008). However, if a driver relinquishes 
control to an automated vehicle and then later 
takes back control (after some unspecified dura-
tion), some degree of miscalibration should be 
expected. This situation is analogous to clas-
sic recalibration paradigms (see Brand & de 
Oliveira, 2017, and Redding et  al., 2005, for 
detailed reviews) where an individual is initially 
calibrated to baseline conditions (in our case, 
during a period of manual driving) with a sub-
sequent disturbance whereby perceptual-motor 
mappings are altered (the automated driving 
period), followed by a rearrangement period (in 
the terminology used by Brand & de Oliveira, 
2017) where perceptual-motor mappings are 
adjusted and reacquired (control transitions 
from automation back into manual control).

In this context the relevant question to ask 
about perceptual-motor calibration is how long 
the system remains well calibrated once the 
driver is no longer in active control of the vehi-
cle. There is evidence that when perceptual 
feedback is removed the sensorimotor system 
quickly becomes inaccurate: for example pro-
prioception accuracy has been shown to dete-
riorate within 1 min without visual feedback 
(Wann & Ibrahim, 1992), and when visual and 
kinesthetic motion feedback is removed driv-
er’s actions can become inaccurate within a 
few seconds (Wallis, Chatziastros, & Bülthoff, 
2002; Wallis, Chatziastros, Tresilian, & Toma-
sevic, 2007). These studies clearly demonstrate 
that perceptual-motor calibration can deterio-
rate rapidly without feedback, but a complete 
absence of feedback is the limit case, and it is 
unlikely to occur during automated driving. 
The driver will continue to receive positional 
feedback (e.g., from having the hands on the 
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wheel) as well as visual feedback (when look-
ing at the road ahead). However, even though 
such feedback may be available, the signals 
could be considered diminished compared with 
what is available when driving manually: driv-
ers seem to be less likely to look at the road 
ahead during automated driving (see How Will 
AVs Affect Gaze and Steering Coordination?), 
and in L3/L4 automation they will not neces-
sarily have their hands on the wheel (thus elim-
inating haptic/proprioceptive signals from their 
hands/arms).

Even if the perceptual-motor system is able to 
use some of the available information to prevent 
calibration drift (the decay/misalignment of 
perceptual-motor mappings), it is likely that dur-
ing longer automation periods the environmental 
conditions will have altered (e.g., changes to the 
grip of road surface due to rain). In such cases, the 
driver is likely to need an acclimatization period 
to ensure recalibration. Research investigating 
recalibration tends to examine discrete move-
ments over short trials, for example swinging a 
baseball bat that has increased mass (Scott & 

Gray, 2010) or decelerating a vehicle using a 
stronger brake (Fajen, 2007). Such studies show 
that participants are able to recalibrate fairly 
quickly (in the order of around 10 trials), even 
when feedback is restricted to 1s per trial (Fajen, 
2007). However, these are repetitions of specific 
movements in controlled environments with con-
sistent feedback—conditions that are likely to be 
favorable to rapid recalibration (Castro, Hadji-
osif, Hemphill, & Smith, 2014; Huang, Haith, 
Mazzoni, & Krakauer, 2011). In the real world, 
drivers do not have the luxury of repeating a 
movement until it is optimal, rather they execute 
steering corrections of different magnitude in 
response to an ever-changing environment, and 
so rearrangement of steering may take much lon-
ger. Deborne, Gilles, and Kemeny (2012) showed 
that drivers on a simulated circular track could 
recalibrate (stabilize steering wheel angle) in 
response to a sudden increase in steering wheel 
self-aligning torque within a few seconds. How-
ever, the drivers in Deborne et al. (2012) were in 
active control the entire time, and there is evi-
dence that drivers adapt to changes in steering 
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Figure 3. A schematic of how automated driving may disrupt the perceptual-motor 
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torque particularly quickly (Russell et al., 2016; 
Toffin, Reymond, Kemeny, & Droulez, 2007). 
Therefore, although this evidence supports the 
idea that drivers can rapidly recalibrate to some 
changing conditions during active control, it may 
not be directly applicable to control transitions 
where drivers are taking over vehicle control after 
a period of disengagement when there may have 
been multiple changes to both the vehicle dynam-
ics and environmental conditions.

An indirect way to examine the issue of a 
change in vehicle and environment is by mea-
suring the behavior of drivers when they first 
use a driving simulator. Simulators differ from 
real-world driving in terms of vehicle dynamics 
and the available perceptual information (e.g., a 
fixed-base simulator will not provide vestibular 
feedback), so drivers usually need to have a 
period of time over which they adjust their per-
ceptual-motor mappings. Simulator studies 
report that driver performance can take between 
4 to 15 min to stabilize (i.e., stop noticeably 
improving). McGehee et al. (2004) report a sta-
bilization time of 4 min (for wheel reversals), 
whereas Ronen and Yair (2013) report longer 
timescales that vary from 6.5 to 15 min depend-
ing on road type. Sahami and Sayed (2010) 
report considerable interindividual variation in 
rate of stabilization, averaging ~7.5 min. It is 
reasonable to expect that the recalibration period 
during real-world control transitions would be 
shorter than these estimates because changes 
within the same vehicle are likely to be rela-
tively small compared with the difference 
between a real vehicle and first-time use of a 
simulator (presuming the conditions during 
takeover are close to the preexisting perceptual-
motor mappings). To the best of our knowledge, 
there is only one study to date that has looked in 
detail at motor recalibration in real cars during 
transitions out of automation. Russell et  al. 
(2016) used a paradigm similar to classic motor 
control studies, where participants first experi-
enced multiple handovers of lateral control with 
one set of vehicle dynamics, then vehicle 
dynamics were altered (the steering was made 
more sensitive or the steering wheel self-align-
ing torque increased). An increase in steering 
sensitivity initially led to jerkier steering as driv-
ers overshot the required wheel angle. Within 10 

trials (more than 1 min) on a controlled lane 
change task (each trial contained approximately 
15 s of manual lateral control), drivers were able 
to bring steering back to levels of smoothness 
comparable to the baseline trials. The results of 
Russell et al. (2016) establish the existence, at 
least for some aspects of vehicle control (there 
was little effect of changing steering torque), 
that there is a critical period after takeover where 
drivers may be miscalibrated if conditions have 
changed from when they were last in manual 
control. The time needed to recalibrate in Rus-
sell et al. (2016) is considerably quicker than the 
4- to 15-min timescales reported in the simulator 
studies discussed previously (though it is possi-
ble that the repeated controlled conditions favor 
rapid recalibration). Yet a timescale of around 1 
min is still considerably slower than the ~10 s 
exposure time extrapolated from the perceptual-
motor literature. It seems, then, that although 
drivers may be able to take up control within a 
few seconds (as indicated by reaction times; see 
the section entitled Reaction Times When 
Responding During Transitions for further eval-
uation), they may be prone to making miscali-
brated steering responses during early phases of 
the transition (such as rapid evasive maneuvers; 
Navarro, François, & Mars, 2016; Russell et al., 
2016).

It is critical to improve our understanding of 
which behaviors could be supported during 
automated driving to minimize the decay of 
perceptual-motor mappings and reduce the time 
required to recalibrate. Unfortunately, the task 
demands placed on the human operator during 
automated driving is really at odds with the 
indications of the perceptual-motor control lit-
erature, which suggests that a crucial require-
ment of successful calibration is active motor 
control (often termed action exploration, Brand 
& de Oliveira, 2017). For example, Pelah and 
Barlow (1996) report that treadmill runners 
recalibrate their relationship between locomo-
tor speed and optic flow, so that after treadmill 
running there is a period of illusory accelerated 
self-motion that causes participants to walk 
more slowly than usual, however, the effect of 
recalibration was eliminated if participants 
were pushed on a wheelchair (so they had no 
active control, Pelah & Barlow, 1996). 
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Furthermore, research suggests that the state of 
calibration is often unavailable for self-report, 
with participants able to recalibrate to a change 
in brake strength despite being unable to accu-
rately detect the brake strength change (Fajen, 
2007). Or, in contrast, participants are made 
aware of the manipulation (and were instructed 
to ignore it) but nevertheless were unable to 
resist recalibration (Mon-Williams & Bingham, 
2007, Exp. 4; see also Benson et al., 2011). This 
evidence suggests that simply informing drivers 
of the need to recalibrate may not be sufficient 
(although it could help drivers reduce error if 
there are explicit strategies available, Benson 
et  al., 2011; Taylor, Krakauer, & Ivry, 2014). 
This point would seem to be supported by the 
evidence of Russell et al. (2016), who informed 
participants about an upcoming change in steer-
ing but drivers nevertheless required more than 
1 min to recalibrate. The extent to which indi-
viduals can recalibrate without “online” motor 
control (i.e., solely from “passive” perceptual 
signals) remains unclear, and there may well be 
mismatch situations where a driver is able to 
subjectively report changes in conditions during 
the automated drive yet their perceptual-motor 
calibration does not shift appropriately.

On the basis of the research reviewed in this 
section we identify three key open research 
questions pertinent to the design of safe AV sys-
tems: (RQ1) How long does a well-calibrated 
human driver’s mapping persist without active 
steering control? (RQ2) What factors determine 
how quickly a driver can recalibrate to new con-
ditions after a control transition? (RQ3) How 
can we help drivers remain well-calibrated dur-
ing automated driving?

How Will AVs Affect Gaze and Steering 
Coordination?

In the section entitled Gaze and Steering 
Coordination, we introduced the extensive lit-
erature suggesting that the coordination of gaze 
and steering is fundamental to effective steering 
behavior. This point is reinforced by real-world 
studies of the manual control of driving, dem-
onstrating that even coarse indicators of gaze 
behavior (on- or off-road glances) can be reli-
able indicators of collision risk (Victor et  al., 
2015; Seppelt et al., 2017). It seems plausible, 

therefore, that steering actions during control 
transitions will be influenced by where driv-
ers look, both in the seconds before takeover 
(which will affect the nature of the available 
perceptual information) and during the initial 
period of the control transition.

It is clear from existing empirical data that 
gaze behaviors during automated driving should 
be expected to be markedly different than during 
manual driving. Gaze patterns are characteristi-
cally less concentrated during automation than 
during manual driving: eye metric positions are 
more variable (Damböck, Weissgerber, Kienle, 
& Bengler, 2013; Mackenzie & Harris, 2015; 
Shen & Neyans, 2017), gaze dispersion metrics 
are higher (Louw & Merat, 2017), and less 
cumulative time is spent looking toward the 
road ahead (Carsten, Lai, Barnard, Jamson, & 
Merat, 2012; Feldhütter, Gold, Schneider, & 
Bengler, 2016; Jamson, Merat, Carsten, & Lai, 
2013; Louw, Kountouriotis, Carsten, & Merat, 
2015; Louw, Madigan, Carsten, & Merat, 2016).

Louw et  al. (2016) linked changes in gaze 
behavior during automation to detrimental road 
safety outcomes, showing that drivers who 
looked the least often to the road ahead were 
most likely to crash (i.e., did not execute an eva-
sive maneuver quickly enough; see also Zeeb, 
Buchner, & Schrauf, 2015). It may seem obvi-
ous that drivers who do not look at what is in 
front of them are unable to respond to events 
that they did not see. But the erratic patterns of 
sampling often observed during automation 
(Louw & Merat, 2017) may affect steering con-
trol by disrupting the coordination of gaze and 
steering (independent of the opportunity to sam-
ple useful visual information). Looking away 
from the direction of travel for long periods may 
lead to subsequent steering control being biased 
by where the driver was previously looking 
(e.g., steering response are coupled to gaze 
direction with a 1 to 2 s lag; Land & Lee, 1994; 
Wilkie & Wann, 2003b; see Gaze and Steering 
Coordination). Alternatively, if drivers have 
decoupled gaze from steering during automation 
(so that gaze direction is no longer informing 
steering) then recoupling will need to take place 
after takeover: this could lead to a period 
whereby gaze direction does not appropriately 
inform steering. Evidence during manual 
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steering suggests that drivers can find it difficult 
to decouple gaze and steering and may uninten-
tionally steer where they look (Kountouriotis 
et al., 2012; Robertshaw & Wilkie, 2008). It is 
currently unknown whether gaze direction infor-
mation picked up during automation will carry 
over to manual steering after a handover, but if 
carryover is possible, then there hypothetically 
exists a critical period immediately after hando-
ver where a driver could be influenced by where 
they had previously been looking (during auto-
mation), not where they are currently looking 
(during manual control). Whether carryover 
exists—and the timescales of any effect—will 
have important implications for where a driver 
should be looking before a transition; these fac-
tors need to be empirically tested.

Ensuring the driver is on task (i.e., monitoring 
how the automated vehicle is steering) and look-
ing to the road ahead should aid steering during 
transitions, but it may also be the case that the 
gaze patterns produced during automation differ 
compared with manual driving (Mars & Navarro, 
2012; Navarro et al., 2016). The bidirectionality 
of gaze and steering coordination suggests that 
executing steering commands provides a driver 
with valuable information (e.g., efference copy, 
Franklin & Wolpert, 2011) of the likely conse-
quences of current steering actions (Blaauw, 
Godthelp, & Milgram, 1984; Mars & Navarro, 
2012; Nash, Cole, & Bigler, 2016; Markkula 
et  al., 2018), informing drivers of where they 
need to look in order to obtain perceptual inputs 
for the next motor command controlling steering. 
In contrast, during periods of automation, drivers 
have to decide where to look based on the control 
outputs from the AV rather than their own senso-
rimotor system. Mars and Navarro (2012) 
showed that during automated driving, gaze pat-
terns changed compared with when the driver 
was in full manual control (guiding fixations 
were executed less often, and look-ahead fixa-
tions more often). Navarro et al. (2016) demon-
strated that these differences are amplified in 
critical scenarios: during obstacle avoidance, 
drivers spent less time sampling the region where 
GFs normally occur (compared with manual 
driving). Navarro et  al. (2016) interpreted this 
result as a reorganization of the requirements for 

perceptual inputs: Since drivers are not actively 
controlling their trajectory (semiautomated con-
trol was used where steering was automated but 
drivers remained in control of speed), they made 
fewer GFs, and prioritized perceptual inputs 
from farther ahead in the scene. Interestingly, in 
Navarro et al. (2016) the manual drivers evaded 
obstacles less aggressively (had lower steering 
amplitudes and accelerations) than recently tran-
sitioned drivers, despite both groups looking to 
the obstacle at similar times (so had a similar pre-
view time in which to prepare the evasive maneu-
ver). Unstable steering posttransition may be 
directly linked to gaze reorganization that takes 
place during automation: Drivers make fewer 
GFs, so do not have available the necessary per-
ceptual signals for smooth steering, and it takes 
time to reestablish successful coordination. 
However, it could be the case that even with opti-
mal gaze sampling patterns, unstable steering 
occurs due to a decay in perceptual-motor map-
pings (resulting in poor calibration; see How 
Will AVs Impact Upon Perceptual-Motor Cali-
bration?). When a driver is poorly calibrated, 
erratic steering is expected because there will be 
a mismatch between intended and executed 
actions (causing positional error that needs cor-
rected for). Of course, it is also plausible that the 
unstable steering in Navarro et al. (2016) could 
be due to a combination of gaze and steering 
coordination and calibration mechanisms: The 
reorganization of gaze may remove perceptual 
inputs that would be available in manual driving, 
leading to a decay of perceptual-motor mappings 
that in turn cause unstable steering. At present, 
the relative impact of gaze and steering coordina-
tion and calibration on transitions are unknown, 
but this understanding will be invaluable for the 
design of safe AV systems.

In this section, we have identified three fur-
ther research questions pertinent to the design of 
safe AV systems: (RQ4) How does gaze behav-
ior change during automation? (RQ5) Do 
changes in gaze during automation affect steer-
ing control upon takeover? And if so, by what 
mechanism? (RQ6) How can we help drivers to 
maintain gaze patterns during automated driving 
that facilitate timely and well calibrated 
reengagement?
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Current Evidence: Human 
Responses During Transitions
In this section, we assess the extent to which 

the AV literature maps onto the perceptual-
motor control loop as outlined in the previous 
sections and the operational level of Figure 1. 
In particular, we review empirical studies that 
examine transitions out of automated steering 
(for complementary reviews, see de Winter, 
Happee, Martens, & Stanton, 2014; Lu et  al., 
2016), and focus on whether the research 
addresses concepts related to gaze and steering 
coordination and perceptual-motor calibration 
(see Table A2 for the references supporting 
this section, along with how they relate to the 
perceptual-motor behaviors discussed in this 
article). Among the papers examining transi-
tions, the perceptual-motor loop has been 
examined using a variety of measures, ranging 
from coarse yet critical real-world outcomes 
such as crashes (Dixit et al., 2016; Louw et al., 
2016; Strand, Nilsson, Karlsson, & Nilsson, 
2014; van den Beukel & van der Voort, 2013, 
2017; Wan & Wu, 2018) through to detailed 
measures of changes in gaze and/or steer-
ing behaviors (DinparastDjadid et  al., 2017; 
Naujoks et  al., 2017; Navarro et  al., 2016; 
Petermeijer, Cieler, & de Winter, 2017; Vogel-
pohl et al., 2018). By far the most commonly 
discussed measure of transition performance, 
however, attempts to balance sensitivity with 
applicability to real-world scenarios. The reac-
tion time (RT; how quickly individuals take 
control of their vehicles) has been used for 
assigning AV safety boundaries, which has 
led to RTs becoming the predominant way 
of evaluating drivers’ actions (Liu & Green, 
2017; Eriksson & Stanton, 2017a; see Zhang, 
de Winter, Varotto, Happee, & Martens, 2019 
for a meta-analysis). The use of RTs in the lit-
erature will consequently be the primary focus 
of this section, followed by an evaluation of 
the additional measures used in this literature.

Reaction Times When Responding 
During Transitions

RTs are typically recorded from the start of a 
takeover request (Blommer et al., 2017; Dogan 
et al., 2017; Eriksson, Banks, & Stanton, 2017; 

Eriksson & Stanton, 2017a; Feldhütter et  al., 
2016; Gold, Damböck, Lorenz, & Bengler, 
2013; Körber, Gold, Lechner, & Bengler, 2016; 
Körber, Weißgerber, Kalb, Blaschke, & Farid, 
2015; Lorenz, Kerschbaum, & Schumann, 
2014; Melcher, Rauh, Diederichs, Widlroither, 
& Bauer, 2015; Naujoks et al., 2017; Naujoks, 
Mai, & Neukum, 2014; Naujoks, Purucker, Neu-
kum, Wolter, & Steiger, 2015; Payre, Cestac, 
Dang, Vienne, & Delhomme, 2017; Petermei-
jer, Bazilinskyy, Bengler, & de Winter, 2017; 
Politis, Brewster, & Pollick, 2017; Radlmayr, 
Gold, Lorenz, Farid, & Bengler, 2014; Telpaz, 
Rhindress, Zelman, & Tsimhoni, 2015; van 
der Meulen, Janssen, & Kun, 2016; Vogelpohl 
et al., 2018; Wan & Wu, 2018; Zeeb, Buchner, 
& Schrauf, 2015) up to the point when the AV 
system becomes deactivated by the user (most 
commonly by the execution of a driving action: 
movement of the wheel or pedals, or a button 
press). Sometimes a takeover request is not 
present, so some studies identify RTs as starting 
from the moment that the event which precipi-
tates the handover is initiated (e.g., a parked car 
becomes visible or a crosswind begins; Johns, 
Mok, Talamonti, Sibi, & Ju, 2017; Larsson, 
Kircher, Hultgren, & Andersson, 2014; Louw, 
Markkula, Boer, Madigan, Carsten, & Merat, 
2017; Shen & Neyens, 2017; Strand et  al., 
2014). The assumption underlying the use of 
RTs is that an early response (shorter RT) will 
result in safer steering control, and therefore 
RTs act as a useful proxy measure of steering 
coordination. This logic aligns with sequen-
tially stepping through the perceptual-motor 
control loop (the driver as depicted in the red 
box of Figure 3): if a driver is quicker to sample 
and process perceptual inputs, then they should 
be faster at selecting an appropriate action, 
resulting in a motor output that is safe because 
there is sufficient time to execute it smoothly 
and accurately (Benderius & Markkula, 2014). 
At the limits of the action time window, this 
assumption seems uncontroversial (slow RTs 
could cause braking that occurs so late that a 
collision is unavoidable), and there are sugges-
tions that later steering responses will be more 
aggressive and jerky (Hoc et al., 2006; Navarro 
et  al., 2016). Indeed, transition scenarios that 
elicit earlier responses are associated with 
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less aggressive steering movements, causing 
smoother and less variable steering trajectories 
compared with scenarios that elicit delayed 
responses (Kircher, Larsson, & Hultgren, 2014; 
Louw et  al., 2017; Louw, Merat, et  al., 2015; 
Madigan, Louw, & Merat, 2018; Mok et  al., 
2015; Petermeijer, Cieler, et  al., 2017; Politis 
et al., 2017; Shen & Neyens, 2017; Zeeb et al., 
2016). However, as we shall discuss later, there 
are limits to applying these assumptions to all 
transition scenarios, particularly when the RT 
window is less critical.

As well as using RTs as a measure of steering 
response, they can also be used to measure gaze 
response. Rather than using the first steering 
response as the RT endpoint, the first glance can 
be used (either looking away from the second-
ary task or toward a predefined region of inter-
est such as the car windscreen; Feldhütter et al., 
2016; Gold et al., 2013; Kerschbaum, Lorenz, 
& Bengler, 2014; Lorenz et al., 2014; Vogelpohl 
et al., 2018; Zeeb et al., 2015, 2016; Zeeb, Här-
tel, Buchner, & Schrauf, 2017). RTs for eye 
movements are in some respects a purer mea-
sure of perceptual-motor performance than 
steering RTs: eye movements have a very low 
latency (Leigh & Zee, 2015) and will be near 
the lower bound of physiological responses to 
visual inputs relevant to steering, whereas steer-
ing responses may only be executed after the 
driver has decided which type of action to take 
(and therefore these measures may sometimes 
incorporate fairly high level decision making). 
However, the relevance of gaze RTs for driving 
safety depends on whether steering behavior 
can be inferred from early or late responses. In 
the literature (covered in Gaze and Steering 
Coordination), eye movements lead steering 
responses by ~1s in highly predictable condi-
tions, such as curve negotiation (Land & Lee, 
1994; Land & Tatler, 2001; Lappi et al., 2013; 
Lehtonen et  al., 2014). In transition experi-
ments, the lag between gaze and steering RTs 
are of a similar order of magnitude, ranging 
from approximately 1 to 2.5 s (Feldhütter et al., 
2016; Gold et  al., 2013; Kerschbaum et  al., 
2014; Lorenz et  al., 2014; Vogelpohl et  al., 
2018; Zeeb et al., 2015, 2016, 2017). This simi-
larity may suggest that gaze-steering RT lag 
times in transitions capture at least some aspects 

of the nature of gaze and steering coordination 
observed in manual steering. However, to mea-
sure the reliably of RTs, it is usually necessary 
to repeat the same task multiple times in order 
to derive an estimate of central tendency. This 
limitation in experimental design can make 
takeover events much more predictable than 
would be the case in real driving, possibly lead-
ing to artificially low RTs. It has also been well 
documented that subtly different gaze locations 
can lead to very different mechanistic explana-
tions when considering gaze and steering coor-
dination (Lappi, 2014). The risk of wrongfully 
inferring psychological mechanisms increases 
as the area of interest increases (Orquin & Hol-
mqvist, 2017), so the wide catchment areas 
used for measuring gaze RTs (e.g., the first fixa-
tion to any area of the windscreen; Eriksson  
et al., 2019; Gold et al., 2013; Kerschbaum et 
al., 2014; Lorenz et al., 2014; Zeeb et al., 2015, 
2016, 2017) risk inferential errors, for example 
assuming that drivers are sampling road infor-
mation when they may be looking at an object 
close to the road. Louw et  al. (2016) used an 
area of interest approach (by dividing the wind-
screen into a central 6° circle and four sur-
rounded segments) to examine the fixation 
placement at 200 ms after takeover and found 
that only 35–55% (depending on condition) of 
fixations were directed to the road center, sug-
gesting that gaze and steering coordination is 
only partially captured by typical RT measures.

It seems then that although RTs are useful for 
identifying safety boundaries, these sorts of tem-
poral indicators (of gaze or steering) are 
restricted to time-stamping processes within the 
perceptual motor control loop (Figure 2). Gaze-
on-road RT measures provide an estimate of 
when the process of sampling task-relevant per-
ceptual inputs may have started, and turn- 
initiation RTs give an estimate of when the deci-
sion-making process is sufficiently advanced to 
trigger an initial motor output. However, it 
seems that there are some conditions (e.g., visual 
distractions during nonurgent control transi-
tions) that have little influence over the time it 
takes to return hands to the wheel or eyes to the 
road, yet they will affect the nature of the steer-
ing response (Zeeb et al., 2016). Consequently, 
some authors have taken pains to draw a 
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distinction between the time taken to return 
hands to the wheel or the eyes to the road ahead 
and the subsequent steering “quality” (smooth-
ness and variability) of steering control (Louw 
et al., 2017; Vogelpohl et al., 2018; Zeeb et al., 
2016, 2017). The next section briefly reviews 
the current approaches in the transition literature 
to reporting steering quality.

Beyond Reaction Times: Steering 
Quality During Transitions

Transition researchers have adopted a variety 
of approaches when reporting steering qual-
ity (see Table A3). The most frequently used 
metrics capture behavioral extremes (prevalent 
examples are maximum lateral error or maxi-
mum lateral acceleration), but these necessarily 
capture only a snapshot of the driver’s trajec-
tory, which may or may not have ramifications 
for driver safety. For example, high lateral 
acceleration may occur during short and sharp 
obstacle avoidance maneuvers that are effective 
and safe. Some researchers have attempted to 
assess the quality of steering across whole tra-
jectories by taking (most commonly) the stan-
dard deviation of lane position (SDLP). Vari-
ability of vehicle position is often used to infer 
how smoothly a driver is controlling the vehicle: 
Greater variability is associated with producing 
many steering corrections. Supporting the use of 
this metric, some papers have reported a spike 
in SDLP in the first few seconds after takeover 
(presumably when drivers are making the most 
corrections) that takes a further few seconds to 
dissipate (Dogan et  al., 2017; Naujoks et  al., 
2017).

If these sorts of variability measures of vehi-
cle behavior are considered in isolation, it can 
sometimes be difficult to classify good perfor-
mance, or indeed infer what sort of control strat-
egy underpins the trajectories taken. There is an 
implicit assumption that smoother trajectories 
are synonymous with better performance, how-
ever, fewer large steering corrections would usu-
ally be classified as smoother steering but could 
lead to large errors in lane positioning. It is often 
more informative, therefore, to couple vehicle 
position metrics with other metrics relating to 
the driver’s actions on the wheel. For example, 
Eriksson and Stanton (2017b) found little 

difference in lane position between manual and 
automation modes but found large differences in 
steering wheel angle variability.

With metrics from both steering actions and 
vehicle position, one can build a better picture of 
the driver’s control strategy (it is reassuring that 
recent studies have provided detailed plots of 
both steering wheel angle and vehicle position; 
see Table A3). For example, Louw et al. (2017) 
demonstrated that the steering wheel amplitude 
of an avoidance maneuver was related to the crit-
icality of the near-collision situation. Consider-
ing both steering actions and vehicle position 
allows the evaluation of whether unstable steer-
ing is related to poor calibration (as in the case of 
Russell et  al., 2016) or whether it is due to 
impaired coordination of gaze and steering 
(which may be the case in many of the papers 
cited in this review, especially for drivers looking 
away from the future path during takeover, for 
example when looking toward a displayed sec-
ondary task). Similarly, jerky steering during the 
few seconds after takeover can be examined to 
see whether this results from successful compen-
satory steering (jerky steering that keeps vehicle 
position within acceptable limits, Donges, 1978), 
a behavior that might be encouraged (e.g., by 
training the driver to look in the near region 
ahead of the vehicle). However, if jerky steering 
does not lead to good road positioning, perhaps 
different gaze behavior patterns that enable 
smoother trajectories should be encouraged. 
Addressing these issues around perceptual motor 
control requires a common framework among 
researchers, so the next section works to situate 
the existing evidence in the perceptual-motor 
control framework (Figure 3).

Comparing Existing Transition Evidence 
to the Perceptual-Motor Control Loop

This final section of the review of the tran-
sition literature highlights the usefulness of 
adopting the conceptual framework presented 
in Figure 3, both with helping to interpret exist-
ing transition phenomena and for the future of 
autonomous vehicle design.

One situation where the processes under
pinning perceptual-motor calibration could offer 
insight is when RTs apparently fail to capture 
steering quality (e.g., where RTs are similar 
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across conditions but steering quality differs; see 
Reaction Times When Responding During Tran-
sitions). Miscalibration does not necessarily 
lead to longer RTs (Benson et al., 2011). Further-
more, longer RTs might result from explicit cor-
rective strategies that can improve performance 
by compensating for inaccurate calibration 
(Benson et al., 2011; Taylor et al., 2014). There-
fore, while similar RTs for different transition 
conditions indicate that steering movements 
were initiated equally quickly, it would be wrong 
to assume that the driver is equally well cali-
brated in these cases. Transitions when the driver 
is poorly calibrated may be identified by exam-
ining steering quality in the first few seconds of 
takeover (e.g., Russell et al., 2016).

Perceptual-motor calibration may explain 
differences in steering quality across conditions 
where changes in perceptual stimuli and/or time 
spent without active control may have altered/
decayed perceptual-motor mappings. However, 
steering quality can vary even when the percep-
tual stimuli and time spent without active con-
trol have been kept constant (so the mappings 
have not changed) and only the amount of time 
between the takeover request and manual con-
trol recovery (takeover lead time) has varied. 
Shorter takeover lead times are more likely to 
result in variable and unsafe steering behaviors 
than longer takeover request lead times (e.g., 
Gold et al., 2013; Mok et al., 2015; Wan & Wu, 
2018). The difference could be partly due to 
changes in gaze and steering coordination: Lon-
ger lead times allow the driver to establish use-
ful gaze behaviors (e.g., tracking a point where 
the driver wishes to go) that provide the neces-
sary perceptual inputs to feed into safe and 
smooth steering behaviors. Examining how gaze 
relates to the driver’s future trajectory across 
takeover request lead times may shed light on 
the requisite perceptual-motor behaviors for 
smooth steering after takeover.

Despite the potential issues with interpreting 
RTs, there are some fairly concrete findings 
emerging from comparing RTs across different 
scenarios and pooling the results (Zhang et al., 
2019). Transition RTs seem to increase with traf-
fic density (Feldhütter et al., 2016; Gold, Kör-
ber, Lechner, & Bengler, 2016; Happee, Gold, 
Radlmayr, Hergeth, & Bengler, 2017; Körber 

et al., 2016; Radlmayr et al., 2014), or the addi-
tion of a secondary task (Dogan et  al., 2017; 
Payre et al., 2017; Merat et al., 2014), whereas 
RTs are quicker when the takeover is cued audi-
torily rather than visually (Naujoks et al., 2014; 
Politis et al., 2017; Walch, Lange, Baumann, & 
Weber, 2015) or when drivers have prior experi-
ence taking control from automated systems 
(Happee et al., 2017; Hergeth, Lorenz, & Krems, 
2017; Larsson et  al., 2014; Payre, Cestac, & 
Delhomme, 2016; Zeeb et  al., 2016). When 
combined, these findings begin to illustrate key 
situations where takeover may be unsafe (e.g., a 
novice user of automation who is distracted in 
heavy traffic). This being the case, one might 
wonder why it is necessary to look beyond RTs 
and consider the detailed issues highlighted ear-
lier. We would contend that a theoretical under-
standing of the mechanisms underlying driver 
behavior during transitions will be invaluable. It 
is tempting to believe that enough experiments 
recording RTs from a multitude of different sce-
narios would be sufficient to capture human 
responses during transitions with a degree of 
precision sufficient to inform safe AV design. 
However the danger is that ignoring the issues 
identified in this article will only ever lead to a 
partial understanding and the measured disrup-
tion will be qualitatively different from the 
actual changes in steering control. New types of 
AV-transition scenarios are bound to occur, and 
for systems to be safe, we need to be confident 
in predicting likely steering behaviors in condi-
tions beyond those currently studied. It is simply 
impossible to test all possible scenarios; how-
ever a deeper understanding should lead to via-
ble computational models (e.g., Markkula et al., 
2018) that allow virtual testing across a much 
wider range of scenarios, extrapolating our 
understanding of these cases to find those where 
there is most risk. Ultimately, we need to iden-
tify effective solutions that aid drivers reengag-
ing with their vehicles, with the aim being to 
identify what information the driver needs in 
order to reengage the perceptual-motor loop 
most effectively. The concepts of calibration and 
gaze and steering coordination will help to pro-
vide an operational (and theoretically grounded) 
method of examining the extent to which some-
one is in control and safe to drive. As shall be 
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discussed in the next section, there will be ben-
efits to having this fundamental understanding 
of the underpinning processes in order to push 
forward research applied to the field of 
transitions.

Conclusions and Future 
Directions

This article has outlined two key perceptual-
motor processes: perceptual-motor calibration 
and gaze and steering coordination. These 
processes may be disrupted during automation 
with potentially detrimental effects on steering 
capability upon takeover, but they have hitherto 
received only a small amount of attention in cur-
rent transition research (see Russell et al., 2016 
for some promising advances in this area). For 
each process, three concrete research questions 
have been highlighted that are important for the 
design of safe AVs. These research questions 
map onto three categories: (a) breaking, (b) 
reengaging, or (c) maintaining the operational 
control loop (see Table 1).

The answers to the research questions 
arranged in Table 1 will ultimately determine the 
practical significance of the perceptual-motor 
control issues raised in this article. The next step 
will be to understand how the uncovered percep-
tual-motor issues connect with existing theoreti-
cal frameworks as currently used by those inves-
tigating automated driving. Recently, Merat 

et  al. (2018) have usefully defined driver 
engagement using three distinct stages: in-the-
loop, where a driver is in physical control of the 
vehicle and monitoring their environment; on-
the-loop, where a driver is not in physical con-
trol but is monitoring the environment; and out-
of-the-loop, where the driver is not monitoring 
the environment (regardless of whether he or 
she is in physical control). These definitions are 
complementary yet distinct from the percep-
tual-motor control issues raised in this article. 
Merat et al.’s proposals aim to provide a shared 
framework to shape research questions. How-
ever, judicious applications of the definitions 
proposed by Merat et  al. require a precise 
description of what processes physical control 
and monitoring actually consist of. We contend 
that such a description needs to start at the 
perceptual-motor level (Figure 2 and 3): per-
ceptual-motor control is central to any transi-
tion scenario, and the framework presented 
here (Figures 2 and 3) provides researchers with 
a common starting point for interpreting steer-
ing behavior after takeover. Experiments 
addressing RQ1 through RQ6 (Table 1) could 
lead to operational definitions for concepts such 
as physical control and monitoring, allowing 
researchers to specify how far a driver is from 
being safely in-the-loop (Figure 2).

One of the benefits of improving our under-
standing of the perceptual-motor processes 

Table 1: Six Key Research Questions Emerging From Applying Perceptual-Motor Control Processes to 
Transitions out of Automation Driving

Process

1. Breaking the 
operational control loop 

(effect of automation)

2. Reengaging the operational 
control loop (effect of 

automation on takeover)

3. Maintaining the 
operational control loop 

(assistance)

Perceptual-
motor 
calibration

RQ1. How long does a 
well-calibrated human 
driver’s mapping 
persist without active 
control?

RQ2. What factors determine 
how quickly a driver can 
recalibrate to new conditions 
after a control transition?

RQ3. How can we help 
drivers remain well 
calibrated during 
automated driving?

Steering 
and gaze 
coordination

RQ4. How does gaze 
behavior change 
during automation?

RQ5. Do changes in gaze 
during automation affect 
steering control upon 
takeover? And if so, by what 
mechanism?

RQ6. How can we help 
drivers to maintain 
gaze patterns during 
automated driving that 
facilitate timely and well-
calibrated reengagement?
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supporting steering control is the facilitation of 
technological solutions to support automated 
driving. It is currently difficult to propose con-
crete practical solutions to the issues raised in 
this article. However, we see clear opportunities 
for the use of technological advances to address 
RQ3 and RQ6 once answers to RQs 1, 2, 4, and 
5 (Table 1) have been resolved. Two main 
obstacles for maintaining good calibration dur-
ing transitions of control are the potentially 
rapid decay of perceptual-motor mappings 
(RQ1), and the need for active control in order 
to recalibrate (RQ2). These obstacles arise from 
transitions between 100% AV control to 100% 
human control, but there are intermediate AV 
systems often referred to as haptic shared con-
trol systems (for a comprehensive review, see 
Abbink et  al., 2018). With these systems, the 
AV and human jointly control the vehicle, with 
the steering commands of the human being 
mediated by the AV system (Abbink, Cleij, 
Mulder, & van Paassen, 2012; Mulder, Abbink, 
& Boer, 2012). The benefit of such systems is 
that they are able to provide haptic feedback to 
the driver, potentially allowing sufficient active 
exploration to prevent decay of perceptual-
motor mappings during automated driving 
(Mars, Deroo, & Hoc, 2014; Mars, Deroo, & 
Charron, 2014) and/or reduce the time needed 
for recalibration during progressive transitions 
of control (Guo et al., in press).

In the section entitled How Will AVs Affect 
Gaze and Steering Coordination? we examined 
the potential issues with altered gaze behavior 
during automation (RQ4) and considered the 
effects of disrupting coordination on manual 
control (RQ5). Head-up displays (HUD) offer 
the possibility of superimposing visual informa-
tion over the visual scene (using augmented 
reality) that could encourage useful and appro-
priate gaze behaviors to assist coordination 
before and during a transition. In the literature, 
HUDs have typically been employed to increase 

the salience of symbolic information (such as 
roadside hazards, signs, or other cars; Eyraud 
et al., 2015; Halmaoui, Joulan, Hautière, Cord, 
& Brémond, 2014; Langlois & Soualmi, 2016; 
Rusch et al., 2013) in order to aid decision mak-
ing, but these systems could be adapted to aid 
the reestablishment of coupled gaze and steer-
ing. For instance, Mars (2008a, 2008b) demon-
strated that guiding gaze by means of a virtual 
target moving ahead (as a function of the 
changes in road curvature) improved steering 
stability during manual driving. If gaze patterns 
during AV control are found to have a major 
impact on resumption of control, then the use of 
a HUD that informs drivers where they need to 
look based on their current direction of travel, 
and other environmental conditions, could be a 
promising avenue for investigation. The bene-
fits of these types of technology (shared-control 
systems or HUDs) can only be realized after we 
have accurate and detailed models of human 
perceptual-motor control behaviors during 
(transitions out of) automated driving. Shared 
control systems will need not only models of 
human sensorimotor coordination (Abbink 
et  al., 2012; Abbink, Mulder, Van der Helm, 
Mulder, & Boer, 2011; Mars, Saleh, Chevrel, 
Claveau, & Lafay, 2011; Mulder et  al., 2011; 
Saleh, Chevrel, Mars, Lafay, & Claveau, 2011), 
but also an appreciation of the calibration mech-
anisms to ensure that appropriate feedback is 
provided. Similarly, HUDs require a sophisti-
cated mechanistic model of how steering and 
gaze are coordinated in order to appropriately 
direct gaze.

Our hope is that by addressing the RQs raised 
in Table 1—and considering the perceptual-
motor control issues raised in this article along-
side existing practices—the field of transition 
research may come closer to realizing the bene-
fits of automated driving technologies and 
ensure the automotive future is as bright as has 
been promised.
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Table A1: Targeted Literature Searches on Perceptual-Motor Calibration and Steering and Gaze 
Coordination

Concept Search Term Variations Results

Search 1 
(coordination)

(steering) AND (gaze) AND (coordination) AND 
(“autonomous driving” OR “automated driving” OR 
“automated vehicles” OR “autonomous vehicles”) 
-robotic -”computer vision”

185 results;
5 papers included

Search 2 
(calibration)

(“motor calibration” OR “motor learning” OR “motor 
adaptation”) AND (“autonomous driving” OR 
“automated driving” OR “automated vehicles” OR 
“autonomous vehicles”) -robotic -”computer vision”

74 results;
5 papers included

Table A2: References Supporting the Literature Presented in the Current Evidence Section

Aspect of 
perceptual-
motor behavior

References
(53 Total) Comments

Steering timings Blommer et al., 2017; Dixit et al., 2016; Dogan et al., 2017; 
Eriksson, Banks, et al., 2017; Eriksson, Petermeijer, et al., 
2019; Eriksson & Stanton, 2017a; Feldhütter et al., 2016; 
Gold et al., 2013, 2016; Happee et al., 2017; Hergeth 
et al., 2017; Johns et al., 2017; Kerschbaum et al., 2014; 
Körber et al., 2015, 2016; Liu & Green, 2017; Lorenz et al., 
2014; Louw, Merat, & Jamson, 2015; Louw et al., 2017; 
Melcher et al., 2015; Naujoks et al., 2014, 2015, 2017; 
Navarro et al., 2016; Payre et al., 2016, 2017; Petermeijer, 
Bazilinskyy, et al., 2017; Politis et al., 2017; Radlmayr 
et al., 2014; Shen & Neyens, 2017; Strand et al., 2014; 
Telpaz et al., 2015; van der Meulen et al., 2016; Vogelpohl 
et al., 2018; Walch et al., 2015; Wan & Wu, 2018; Zeeb 
et al., 2015, 2016, 2017

(n = 39)

Papers that include 
a measure that 
timestamps an 
aspect of steering 
behavior (e.g., 
when the hands 
were returned to 
the wheel or when 
the wheel angle 
exceeded a certain 
threshold).

Gaze timings Damböck et al., 2013; Eriksson et al., 2019; Feldhütter 
et al., 2016; Gold et al., 2013; Kerschbaum et al., 2014; 
Lorenz et al., 2014; Louw et al., 2016; Navarro et al., 2016; 
Vogelpohl et al., 2018; Zeeb et al., 2016, 2017

(n = 11)

Papers that include 
a measure that 
timestamps aspect 
of gaze behavior 
(e.g., first glance to 
obstacle, mirror, or 
windscreen).

(continued)

Appendix
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Aspect of 
perceptual-
motor behavior

References
(53 Total) Comments

Steering quality DinparastDjadid et al., 2017; Dogan et al., 2017; Eriksson 
& Stanton, 2017a, 2017b; Feldhütter et al., 2016; Gold 
et al., 2013, 2016; Happee et al., 2017; Hergeth et al., 
2017; Johns et al., 2017; Kerschbaum et al., 2014; Kircher 
et al., 2014; Körber et al., 2016; Lorenz et al., 2014; Louw, 
Merat, et al., 2015; Louw, Kountouriotis, et al., 2015; Louw 
et al., 2017; Madigan et al., 2018; Merat et al., 2014; Mok 
et al., 2015; Naujoks et al., 2014, 2017; Navarro et al., 
2016; Petermeijer, Bazilinskyy, et al., 2017; Petermeijer, 
Cieler, et al. 2017; Politis et al., 2017; Russell et al., 2016; 
Saito, Wada, & Sonoda, 2018; Shen & Neyens, 2017; van 
der Meulen et al., 2016; Vogelpohl et al., 2018; Wada & 
Kondo, 2017; Wan & Wu, 2018; Zeeb et al., 2016, 2017

(n = 35)

Papers that examine 
steering quality 
report quantitative 
measures that 
either directly or 
indirectly relate to 
steering actions 
are reported (e.g., 
standard deviation 
of lane position 
or steering wheel 
acceleration).

Gaze patterns Damböck et al., 2013; Dogan et al., 2017; Eriksson et al., 
2019; Feldhütter et al., 2016; Gold et al., 2016; Kircher 
et al., 2014; Louw et al., 2016; Louw, Kountouriotis, et al., 
2015; Louw & Merat, 2017; Merat et al., 2014; Navarro 
et al., 2016; Payre et al., 2017; Petermeijer, Cieler, et al. 
2017; Shen & Neyens, 2017; Telpaz et al., 2015; van der 
Meulen et al., 2016; Zeeb et al., 2015

(n = 17)

Papers that examine 
gaze patterns 
report gaze 
metrics that confer 
information beyond 
time stamping 
gaze behavior 
(e.g., proportion of 
fixations within a 
catchment area or 
variability of gaze 
angles).

Gaze and 
steering 
coordination

Navarro et al., 2016 Papers that examine 
gaze and steering 
coordination go 
beyond timings and 
explicitly address 
mechanisms.

Perceptual-
motor 
calibration

Russell et al., 2016 Papers explicitly 
attempt to examine 
perceptual-motor 
recalibration/
adaptation to a new 
set of conditions.

TABLE A2: (continued)
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Table A3: Nature of Steering Quality Reported in the Beyond Reaction Times Section

Category Papers

Vehicle position (e.g., max 
error, mean lane position)

DinparastDjadid et al. 2017; Eriksson & Stanton, 2017b; Happee et al., 
2017; Johns et al., 2017; Kircher et al., 2014; Madigan et al., 2018; 
Naujoks et al., 2014, 2017; Navarro et al., 2016; Petermeijer, Bazilinskyy, 
et al., 2017; Petermeijer, Cieler, et al. 2017; Politis et al., 2017; Shen & 
Neyens, 2017; Zeeb et al., 2016, 2017

(n = 15)
Vehicle acceleration (e.g., 

maximum or minimum 
lateral acceleration)

Feldhütter et al., 2016; Gold et al., 2013, 2016; Happee et al., 2017; 
Hergeth et al., 2017; Kerschbaum et al., 2014; Kircher et al., 2014; 
Körber et al., 2016; Lorenz et al., 2014; Louw, Merat, & Jamson, 2015; 
Louw, Kountouriotis, et al., 2015; Madigan et al., 2018; Wada & Kondo, 
2017; Wan & Wu, 2018; Zeeb et al., 2016

(n = 15)
Vehicle variability (e.g., 

SDLP, SD of yaw)
Dogan et al., 2017; Kerschbaum et al., 2014; Madigan et al., 2018; Merat 

et al., 2014; Mok et al., 2015; Naujoks et al., 2014, 2017; Saito et al., 
2018; van der Meulen et al., 2016, Wada & Kondo, 2017

(n = 10)
Vehicle signals over time 

(e.g., trajectories, yaw)
DinparastDjadid et al. 2017; Eriksson & Stanton, 2017b; Gold et al., 2013; 

Happee et al., 2017; Kerschbaum et al., 2014; Lorenz et al., 2014; Saito 
et al., 2018; Petermeijer, Bazilinskyy, et al., 2017; Petermeijer, Cieler, 
et al. 2017; Russell et al., 2016; Zeeb et al., 2016

(n = 11)
Driver actions on wheel: 

estimates without 
variability (max/min 
SWA).

DinparastDjadid et al. 2017; Happee et al., 2017; Kerschbaum et al., 
2014; Lorenz et al., 2014; Louw et al., 2017; Navarro et al., 2016; 
Petermeijer, Cieler, et al. 2017; Saito et al., 2018; Shen & Neyens, 2017

(n = 9)
Smooth driver action: 

steering wheel variability 
(SD of velocity); reversals

DinparastDjadid et al. 2017; Eriksson & Stanton, 2017a, 2017b; Johns 
et al., 2017; Merat et al., 2014; Mok et al., 2015; Russell et al., 2016; 
Saito et al., 2018; Vogelpohl et al., 2018

(n = 9)
Steering wheel signal plots 

over time (e.g., SWA 
measures)

DinparastDjadid et al. 2017; Eriksson & Stanton, 2017b; Madigan et al., 
2018; Petermeijer, Bazilinskyy, et al., 2017; Petermeijer, Cieler, et al. 
2017; Russell et al., 2016; Saito et al., 2018

(n = 7)



Transitions out of Automated Driving	 1059

Acknowledgments
CDM, OTG, GM, and RMW were funded by 

EPSRC UK grant EP/P017517/1. CDM was sup-
ported by travel grants from the Experimental 
Psychology Society and the University of Leeds 
Research Mobility Programme to visit FM and 
OL. FM was funded by Agence Nationale de la 
Recherche (AUTOCONDUCT project, grant ANR-
16-CE22-0007-05). OL was supported by a post-
doctoral grant from the Finnish Cultural Foundation 
(00150514), and a researcher mobility period in 
Leeds for OL was supported by the Academy of 
Finland (279905).

Key Points
•• During successful steering control, driving is 

supported by a rapid perception-action loop that 
regularly updates perceptual-motor mappings to 
remain well calibrated to changing conditions; 
this perception-action loop tightly couples gaze 
and steering behaviors.

•• The perceptual-motor loop is likely to be disrupted 
during automated driving if perceptual-motor 
mappings are allowed to decay and gaze control is 
no longer coordinated with steering control.

•• Miscalibration and uncoordinated gaze and steer-
ing behaviors are expected to lead to unstable 
steering control during the initial period of steer-
ing after transitions out of automated driving.

•• Incorporating an understanding of perceptual-
motor mechanisms into transition research will 
lead to an improved ability to address the issues that 
arise during transitions out of automated driving.
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