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This paper describes a newly developed driver model that focuses on the control of car steering. The model 
represents visual anticipation of road curvature and compensation of lateral positioning error. It also 
incorporates a neuromuscular system, inspired by Hoult and Cole (2008), including an internal model of the 
steering system compliance, muscle co-activation by α and γ signals and the stretch reflex. Preliminary 
driving simulator experiments with five participants showed that the identification of model parameters 
yielded consistent results. Moreover, the model was able to steer the driving simulator by itself and showed 
a behavior similar to that of the human driver who provided the data for parameter identification. This 
model may be used for the design of automation for shared control of steering. 

 
 

SHARED CONTROL AS AN OBJECTIVE 
 
Shared control of steering between human and automation 

has recently received increased attention (Abbink & Mulder, 
2010). The working principle behind these systems is that both 
the driver and the assistance device exert forces on the 
steering wheel in such a way that the automation blends into 
the driver’s sensorimotor control  loop,  providing  continuous  
support without taking authority. 

First marketed systems and most of recent research efforts 
were mainly designed for driving on motorways, which 
consists of straight lines and bends of very low curvatures. In 
that case, the problem is to determine the profile of additional 
torque applied on the steering system when the car drifts away 
from the centerline of the road (Switkes, Rossetter, Coe & 
Gerdes, 2006). In tighter bends, the problem is complicated by 
the fact that drivers use the whole lane width and adapt speed 
as a function of road curvature. Since this can be considered as 
a strategy to minimize lateral acceleration and load transfer, 
the reference path could be determined on the basis of road 
geometry and vehicle dynamics only. However, this would not 
take into account the large interindividual differences in the 
way drivers negotiate bends. Another approach would be to 
base the automation control algorithm on a driver model that 
represents how humans use visual and haptic cues to anticipate 
changes in road curvature, stay inside the lane boundaries and 
apply motor commands on the steering wheel. Idiosyncrasies 
in the way drivers use the perceptual cues and perform action 
on the steering wheel may be represented by a set of specific 
parameters, which would be determined by means of advanced 
identification methods. 

Based on these considerations, a central objective in the 
PARTAGE research program is to define a cybernetic model 
which is i) consistent with what is known about sensorimotor 
control in humans, ii) accurate (predictive) enough to support 
the development of an efficient steering assistance system and 
iii) simple enough to be used in the context of real-time 
control embedded systems. This paper presents the first 
developments in this research. The theoretical foundations of 
the model architecture will be developed. Then, the 
identification approach chosen and preliminary experimental 

results will be briefly presented. Further details on 
mathematical formulations of the model and the identification 
method can be found in Saleh, Chevrel, Mars, Lafay and 
Claveau (2011). 

 
THEORETICAL BACKGROUND 

 
Modeling the steering control of a car is not a new issue 

(Cacciabue, 2007). Since Donges (1978), it has been widely 
assumed that performing the task relies on both visual 
anticipation and compensation of lateral positioning error, 
which determined the common structure of many control 
theoretic steering models (Plöchl & Edelmann, 2007). These 
so-called two-level control models mainly differ in their 
mathematical realization. However, they do not necessarily 
represent the perceptual and motor processes that the human 
driver brings into play. 

Visual anticipation is made possible through the 
observation of the distant road. In some models, the road 
geometry is considered as a direct input, assuming that the 
driver correctly perceives the curvature ahead without 
specifying which visual cues are used (see Donges, 1978 and 
Hess & Modjtahedzadeh, 1990, for examples). In others, the 
curvature is estimated through the pursuit of a target located in 
the environment such as a lead car or some particular feature 
of the road far ahead of the vehicle (Salvucci & Gray, 2004; 
Sentouh, Chevrel, Mars & Claveau, 2009). This is in 
accordance with the observation by Land and Lee (1994) that 
drivers spend a significant amount of time looking at the 
tangent point, i.e. the point where the direction of the inside 
edge line seems to reverse from the driver’s viewpoint. The 
authors proposed that the angle between the direction of 
heading and the direction of the tangent point is used by 
drivers in order to anticipate the variations of road curvature. 
Hence, looking at the tangent point may be a way of “reading” 
the road curvature at the sensorimotor level. An alternative 
hypothesis states that drivers look at the points in the world 
through which one wishes to pass and that fixation on or near 
the tangent point results from trying to take a trajectory that 
cuts the corner (Wilkie, Kountouriotis, Merat & Wann, 2010). 
Actually, Mars (2008) demonstrated that tracking any visual 
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PRESENTATION OF THE MODEL 
 
Figure 1 presents the general architecture of the model, 

based on the hypothesis that the driver uses in parallel a 
distant visual cue to anticipate road curvature and close visual 
information to compensate for lateral positioning errors. The 
outputs of both modules are added to formulate a reference 
signal to the NMS, considered as the desired steering wheel 
angle ߜመ௦௪. The NMS block represents muscles co-activation 
by α- and γ-motoneuron signals, incorporating an internal 
model of the steering column stiffness. An appropriate 
steering torque Γௗ is computed and applied to the steering 
wheel. Details about each of the model components follow. 

As far as vision is concerned, steering is considered as a 
tracking task with compensatory and anticipatory components. 
Visual anticipation acts upon the far angle ߠ௙௔௥, which is the 
angle between the car heading and the tangent point. The 
compensator Gc acts upon the near angle ߠ௡௘௔௥, which 
represents the relative placement of the vehicle compared to 
the road center (figure 2). 

  

 
 

Figure 2: ߠ௙௔௥ and ߠ௡௘௔௥, inputs to visual anticipation 
and compensation of lateral positioning errors 

 
Visual anticipation is modeled as a simple proportional 

controller, with a gain Kp fed by ߠ௙௔௥. The tangent point was 
chosen as the target point (although alternatives exists, see 
Theoretical Background). 

The near point is used to maintain a central lane position 
and it is assumed to be a convenient distance ℓ௦ in front of the 
vehicle that is near enough to monitor lateral position but far 
enough to be seen through the vehicle windshield (fixed here 
at 5 m). The near angle ߠ௡௘௔௥ is calculated as a function of the 
heading angle Ψ௅ and lateral deviation ݕ௅. The lead-lag 
compensator Gc is determined by a gain ܿܭ ⁄ݒ , where Kc 
represents the driver's cautiousness about driving too close to 
the lane markers. As speed increases, less compensation 
occurs, which reflects a lesser reliance on near visual 
information. Tl defines the compensation frequency band and 
TL the compensation rate. Tl may be a useful indicator of 
driver fatigue (Pilutti & Ulsoy, 1999). The time needed to 
process visual information in terms of a “desired” steering 
wheel angle is represented by a Padé approximation of time-
delay ߬௣. 

In order to convert the desired steering wheel angle ߜመ௦௪ 
into an appropriate α motor command, the NMS incorporates 
an internal model of the steering system stiffness. The angle to 

torque coefficient Kr.v depends on the vehicle speed. The 
NMS also compares the desired angle (γ-motoneuron signals) 
to its actual measurement by muscle spindles. The stretch 
reflex nullifies the difference between both variables. The gain 
of the stretch reflex Kt defines the force by which the driver 
will reject external disturbances. After taking into account the 
auto-alignment torque feedback Γ௦, the NMS computes the 
torque output Γௗ of the model. The inertia, passive damping 
and passive stiffness of the arms are represented by the 
neuromuscular dynamics module GNM, where TN stands for the 
neuromuscular time constant. 

 
METHODS 

 
The identification of the model parameters was performed 

from data of five participants, S1 to S5, who were asked to 
drive on fixed-base driving simulator. The setup is a single-
seat cockpit with full instrumentation and is equipped with an 
active steering system based on a real electric power steering 
column for a realistic "scale one" force-feedback. The 
SCANeRII software package was used. The visual 
environment was displayed on three 32-inch LCD monitors 
covering 115° of visual angle. Participants drove on a 
meandering track of about 2.5 km long (figure 3). The test 
track consisted of curves of radius between 55 and 120 m, 
which provided sufficient input signals to the identification 
procedure. The participants were instructed to adopt a speed of 
60 km/h between P1 and P3. The data collected between P1 
and P2 was used for identification, while data collected 
between P2 and P3 was used for validation. 

 

 
 

Figure 3: Schema of the test track 
 
 
Identification approach 
 
Powerful methods exist to objectively validate control-

theoretic models through identification using experimental 
observation of driver behavior and vehicle responses (Mulder, 
van Paassen & Boer, 2004). This paper presents the first step 
in the validation of this approach before it can be applied to 
more elaborated experimental observations.  
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Starting with results reported by others, a rough first 
estimate of the parameter values was obtained. The 
significance of each parameter was investigated, keeping other 
parameters constant. A suitable range of values was chosen for 
each parameter, after which multiple simulations were run 
using the model. This allowed us to obtain default values for 
all parameters of the model (Table 1).  

Then, a parametric identification of the driver model was 
performed, using near/far angles, steering angle and steering 
force feedback as inputs, steering wheel torque as output. The 
« Prediction Error Method » (PEM) has been chosen, to get 
the parameters π = (Kp, Kc/v, Tl, TL, ߬௣, Kr, Kt, TN) that leads 
to the smallest L2-norm of the prediction error. This method 
was preferred to others because it is well adapted to closed-
loop identification of non linear systems (Ljung, 1999). The 
unknown parameters of the model were identified using the 
grey box identification concept, using the PEM algorithm 
implemented in the System Identification toolbox of Matlab 7.  

An initial analysis highlighted the low identifiability of 
the model when considering the torque output only. This 
resulted in an identified model with a high fit, but that did not 
track the road properly. For this reason, the steering wheel 
angle was considered as an additional output of the model. 

Further details about the equations used for model 
identification can be found in Saleh et al. (2011). 

 
 
Validation 
 
A validation test was carried out to confirm that the model 

successfully steered itself along a road and showed a behavior 
close to that of human drivers. Participant S1 was asked to 
drive twice, along highway of about 1.5 km (figure 4a), first in 
charge of both lateral and longitudinal control of the vehicle, 
then in charge of longitudinal control only. In the second case, 
lateral control was delegated to the model identified from data 
collected earlier. S1 was asked to keep the same speed profile 
in both tests, always keeping speed between 0 and 110 km/h. 

 
RESULTS 

 
Identification 
 
As seen in table 1, the identification procedure converged 

to the same ranges of values for all subjects, with the model 
explaining about 69% of the steering wheel angle, on average. 
No parameter showed abnormal values, except ߬௣, which was 
null in all cases. This can be explained by the fact that the 
identification process could not distinguish the human 
processing time delay from the one associated to the transport 
delay of the simulator (computing the vehicle dynamics, 
graphics, etc.). 

Three parameters showed very little inter-subject 
variation. This was the case for TN, which represents a rough 
estimation of the neuromuscular dynamics and was not 
expected to differ across subjects. Many precedent works has 
led to the same value of 100 ms. Thus, this parameter should 
be fixed in future work. Similarly, Kr gave rise to nearly equal 
values. Since the steering system stiffness was the same for all 

participants, this result confirms that drivers built a correct 
internal representation of the mechanical compliance of the 
steering wheel. As for Kp, there was no reason to expect more 
or less reliance on visual anticipation in the present conditions. 

By contrast, the parameters that showed variability across 
participants may reflect idiosyncrasies in driving style. The 
variations observed for the three parameters of the 
compensator Gc may reflect the driver's cautiousness about 
driving too close to the edge lines or to operate more or fewer 
steering reversals, for instance. Similarly, the differences 
observed in the values of Kt may signify that drivers held the 
steering wheel more or less loosely. Further work needs to be 
conducted to confirm these hypotheses and to determine how 
sensitive the various parameters are. 

 
 

 pK
 cK  IT  LT  pτ  rK  tK  NT  

steering 
angle fit (R2)

Default 
value 

3.40 15 1 3.0 0.04 1 12 0.10 - 

S1 3.32 12.21 1.11 3.6 0 1.07 10.43 0.12 70% 

S2 3.21 11.20 0.84 3.0 0 1.05 11.57 0.14 68% 

S3 3.23 12.58 0.89 2.96 0 1.05 10.91 0.14 68% 

S4 3.25 10.71 1.18 3.86 0 1.05 11.32 0.14 75% 

S5 3.17 11.49 1.05 3.27 0 1.01 12.43 0.12 62% 

 
Table 1: Model parameters identification values 

 
 

 
 

Figure 4: Comparison between human driver and 
driver model. A: Schema of the road. B: Compared 

trajectory in one bend. C: Speed profile 
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Validation 
 
Figure 4 illustrates the comparison between S1 and the 

driver model when they were steering around a series of 
bends. In both cases, the human driver was in charge of speed 
control. It can be observed that speed profile was similar, as 
instructed (figure 4c). The driver and his identified model also 
exhibited very similar trajectory (figure 4b). The maximum 
lateral deviation from the centerline was 0.9 m for S1 and 
0.81 m for the model (SD = 0.21 in both cases). The standard 
deviation of the steering wheel angle was 0.26 rad for S1 and 
0.21 rad for the model. 

 
CONCLUSION AND PERSPECTIVES 

 
This paper has proposed a new model structure based on 

current knowledge about perceptual and motor processes 
involved in steering a car. The first model identification 
results showed that the parameters could be identified with a 
reasonable fit. We also found that the model could steer a 
driving simulator similarly to the driver who provided the data 
for the identification.  

Extensive driving simulator experiments are currently 
conducted to further validate the model. This is done by 
specifically manipulating the visual environment, the 
characteristics of steering systems and instructions given to 
the drivers. The goal is to probe the model and determine to 
what extent each parameter is sensitive to a given 
manipulation. 

These preliminary results are an encouraging step toward 
the definition of a strategy for designing automation for shared 
control of steering. The model is simple enough to be used for 
in-car real time identification of the parameters. Besides, the 
separation of visual from haptic and motor contributions 
should permit to adapt the model to changes in steering system 
characteristics by modifying the NMS parameters only. 
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