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This paper describes a newly developed driver model that focuses on the control of car steering. The model
represents visual anticipation of road curvature and compensation of lateral positioning error. It also
incorporates a neuromuscular system, inspired by Hoult and Cole (2008), including an internal model of the
steering system compliance, muscle co-activation by a and y signals and the stretch reflex. Preliminary
driving simulator experiments with five participants showed that the identification of model parameters
yielded consistent results. Moreover, the model was able to steer the driving simulator by itself and showed
a behavior similar to that of the human driver who provided the data for parameter identification. This
model may be used for the design of automation for shared control of steering.

SHARED CONTROL AS AN OBJECTIVE

Shared control of steering between human and automation
has recently received increased attention (Abbink & Mulder,
2010). The working principle behind these systems is that both
the driver and the assistance device exert forces on the
steering wheel in such a way that the automation blends into
the driver’s sensorimotor control loop, providing continuous
support without taking authority.

First marketed systems and most of recent research efforts
were mainly designed for driving on motorways, which
consists of straight lines and bends of very low curvatures. In
that case, the problem is to determine the profile of additional
torque applied on the steering system when the car drifts away
from the centerline of the road (Switkes, Rossetter, Coe &
Gerdes, 2006). In tighter bends, the problem is complicated by
the fact that drivers use the whole lane width and adapt speed
as a function of road curvature. Since this can be considered as
a strategy to minimize lateral acceleration and load transfer,
the reference path could be determined on the basis of road
geometry and vehicle dynamics only. However, this would not
take into account the large interindividual differences in the
way drivers negotiate bends. Another approach would be to
base the automation control algorithm on a driver model that
represents how humans use visual and haptic cues to anticipate
changes in road curvature, stay inside the lane boundaries and
apply motor commands on the steering wheel. Idiosyncrasies
in the way drivers use the perceptual cues and perform action
on the steering wheel may be represented by a set of specific
parameters, which would be determined by means of advanced
identification methods.

Based on these considerations, a central objective in the
PARTAGE research program is to define a cybernetic model
which is i) consistent with what is known about sensorimotor
control in humans, ii) accurate (predictive) enough to support
the development of an efficient steering assistance system and
iii) simple enough to be used in the context of real-time
control embedded systems. This paper presents the first
developments in this research. The theoretical foundations of
the model architecture will be developed. Then, the
identification approach chosen and preliminary experimental

results will be briefly presented. Further details on
mathematical formulations of the model and the identification
method can be found in Saleh, Chevrel, Mars, Lafay and
Claveau (2011).

THEORETICAL BACKGROUND

Modeling the steering control of a car is not a new issue
(Cacciabue, 2007). Since Donges (1978), it has been widely
assumed that performing the task relies on both visual
anticipation and compensation of lateral positioning error,
which determined the common structure of many control
theoretic steering models (Plochl & Edelmann, 2007). These
so-called two-level control models mainly differ in their
mathematical realization. However, they do not necessarily
represent the perceptual and motor processes that the human
driver brings into play.

Visual anticipation is made possible through the
observation of the distant road. In some models, the road
geometry is considered as a direct input, assuming that the
driver correctly perceives the curvature ahead without
specifying which visual cues are used (see Donges, 1978 and
Hess & Modjtahedzadeh, 1990, for examples). In others, the
curvature is estimated through the pursuit of a target located in
the environment such as a lead car or some particular feature
of the road far ahead of the vehicle (Salvucci & Gray, 2004;
Sentouh, Chevrel, Mars & Claveau, 2009). This is in
accordance with the observation by Land and Lee (1994) that
drivers spend a significant amount of time looking at the
tangent point, i.e. the point where the direction of the inside
edge line seems to reverse from the driver’s viewpoint. The
authors proposed that the angle between the direction of
heading and the direction of the tangent point is used by
drivers in order to anticipate the variations of road curvature.
Hence, looking at the tangent point may be a way of “reading”
the road curvature at the sensorimotor level. An alternative
hypothesis states that drivers look at the points in the world
through which one wishes to pass and that fixation on or near
the tangent point results from trying to take a trajectory that
cuts the corner (Wilkie, Kountouriotis, Merat & Wann, 2010).
Actually, Mars (2008) demonstrated that tracking any visual
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feature following the dynamics of the tangent point, but not
necessarily the tangent point proper, improves steering
control. Whatever the exact nature of gaze strategies, the fact
remains that drivers look in the vicinity of the tangent point to
anticipate the changes in road curvature. In addition, it has the
advantage of being easily extracted from the visual scene by
humans but also by in-car vision-based detection algorithms
(Gallen & Glaser, 2009).

Vision is not only used to anticipate road curvature, but
also to operate short-term corrections to the lateral positioning
of the vehicle (Land & Horwood, 1995). This is presumably
based on seeing edge lines a few meters ahead through
peripheral vision. This can be modeled as a compensatory
module, by which the driver regulates some perceptual
variables in order to keep the car inside the boundaries of the
lane. The driver compares the desired position with a
predicted vehicle state that would be achieved if the current
steering action were maintained. The difference between these
desired and predicted states is used to make immediate
steering corrections which are continually adjusted to
minimize this difference. In existing models, the compensator
has often two feedback loops of heading angle and lateral lane
position (e.g., Hess & Modjtahedzadeh, 1990).

Recently, Salvucci and Gray (2004) redefined the two-
level control model of steering as a proportional-integral
controller that uses two inputs based on visual angles in front
of the vehicle. A near point corresponds to the lane centre at a
short distance ahead of the vehicle, which represents the
perception of the mid-position between both lane edges. A
distant point may be the vanishing point when driving down a
straight road or a salient point, such as the tangent point or a
lead car that the driver tracks when negotiating bends. This
model is a simple and elegant representation of the visual
control of steering, but it does not tell how the driver operates
the steering wheel. The output of the model is an intention
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variable, which still needs to be converted into appropriate
commands by the neuromuscular system (NMS).

Modeling the NMS implies the representation of two
basic functional mechanisms: how the driver takes into
account the mechanical compliance of the steering system to
determine how much torque should be applied on it and how
force feedback on the steering wheel is used to make some
adjustment to the motor command. Toffin, Reymond, Kemeny
and Droulez (2007) demonstrated that drivers could adapt to a
wide range of force feedback laws. This adaptation seems to
occur at the haptic level, that is, through an internal model of
the steering system compliance, rather than through an internal
model of vehicle dynamics. Besides, Hoult and Cole (2008)
proposed a physiologically grounded model of the NMS,
based on the principles of antagonist muscles co-contraction
and muscle co-activation by a- and y-motoneuron signals. In
brief, the arm muscles are simultaneously activated by
feedforward and feedback actions. Muscles are directly
stimulated by a-motoneurons. Simultaneously, position and
velocity signals arising from arm muscles spindles are
compared to reference signals transmitted by y-motoneurons.
The stretch reflex operates from this difference and allows
rejecting external disturbances. The relationship between the
o and vy signals is thought to be determined by an
internal model of the relationship between the hand wheel
angle and muscle torque. Co-contracting antagonist muscles
increases the stiffness of the arms, which allows the hand
wheel angle to follow more closely the reference value
provided by the y signal.

In what follows, we present a model that integrates and
builds upon the conceptual framework presented above. As
such, it makes explicit assumptions about visual, haptic and
motor processes involved in steering control, linking
perception of the environment to action on the controls of the
vehicle.
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Figure 1: Block diagram of the model
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PRESENTATION OF THE MODEL

Figure 1 presents the general architecture of the model,
based on the hypothesis that the driver uses in parallel a
distant visual cue to anticipate road curvature and close visual
information to compensate for lateral positioning errors. The
outputs of both modules are added to formulate a reference
signal to the NMS, considered as the desired steering wheel
angle §,,. The NMS block represents muscles co-activation
by a- and y-motoneuron signals, incorporating an internal
model of the steering column stiffness. An appropriate
steering torque [; is computed and applied to the steering
wheel. Details about each of the model components follow.

As far as vision is concerned, steering is considered as a
tracking task with compensatory and anticipatory components.
Visual anticipation acts upon the far angle 6,., which is the
angle between the car heading and the tangent point. The
compensator G, acts upon the near angle 6,4, Wwhich
represents the relative placement of the vehicle compared to
the road center (figure 2).

Figure 2: 04, and 6,,,4,, inputs to visual anticipation
and compensation of lateral positioning errors

Visual anticipation is modeled as a simple proportional
controller, with a gain K|, fed by f,,. The tangent point was
chosen as the target point (although alternatives exists, see
Theoretical Background).

The near point is used to maintain a central lane position
and it is assumed to be a convenient distance £ in front of the
vehicle that is near enough to monitor lateral position but far
enough to be seen through the vehicle windshield (fixed here
at 5 m). The near angle 6,,.,, is calculated as a function of the
heading angle W, and lateral deviation y;. The lead-lag
compensator G. is determined by a gain Kc/v, where K,
represents the driver's cautiousness about driving too close to
the lane markers. As speed increases, less compensation
occurs, which reflects a lesser reliance on near visual
information. 7; defines the compensation frequency band and
T, the compensation rate. 7; may be a useful indicator of
driver fatigue (Pilutti & Ulsoy, 1999). The time needed to
process visual information in terms of a “desired” steering
wheel angle is represented by a Padé approximation of time-
delay 7,.

In order to convert the desired steering wheel angle 8,
into an appropriate o motor command, the NMS incorporates
an internal model of the steering system stiffness. The angle to

torque coefficient K,..v depends on the vehicle speed. The
NMS also compares the desired angle (y-motoneuron signals)
to its actual measurement by muscle spindles. The stretch
reflex nullifies the difference between both variables. The gain
of the stretch reflex K, defines the force by which the driver
will reject external disturbances. After taking into account the
auto-alignment torque feedback I, the NMS computes the
torque output [; of the model. The inertia, passive damping
and passive stiffness of the arms are represented by the
neuromuscular dynamics module Gyy,, where Ty stands for the
neuromuscular time constant.

METHODS

The identification of the model parameters was performed
from data of five participants, S1 to S5, who were asked to
drive on fixed-base driving simulator. The setup is a single-
seat cockpit with full instrumentation and is equipped with an
active steering system based on a real electric power steering
column for a realistic "scale one" force-feedback. The
SCANeRIl software package was used. The visual
environment was displayed on three 32-inch LCD monitors
covering 115° of visual angle. Participants drove on a
meandering track of about 2.5 km long (figure 3). The test
track consisted of curves of radius between 55 and 120 m,
which provided sufficient input signals to the identification
procedure. The participants were instructed to adopt a speed of
60 km/h between P1 and P3. The data collected between P1
and P2 was used for identification, while data collected
between P2 and P3 was used for validation.
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Figure 3: Schema of the test track

Identification approach

Powerful methods exist to objectively validate control-
theoretic models through identification using experimental
observation of driver behavior and vehicle responses (Mulder,
van Paassen & Boer, 2004). This paper presents the first step
in the validation of this approach before it can be applied to
more elaborated experimental observations.



PROCEEDINGS of the HUMAN FACTORS and ERGONOMICS SOCIETY 55th ANNUAL MEETING - 2011 1425

Starting with results reported by others, a rough first
estimate of the parameter values was obtained. The
significance of each parameter was investigated, keeping other
parameters constant. A suitable range of values was chosen for
each parameter, after which multiple simulations were run
using the model. This allowed us to obtain default values for
all parameters of the model (Table 1).

Then, a parametric identification of the driver model was
performed, using near/far angles, steering angle and steering
force feedback as inputs, steering wheel torque as output. The
« Prediction Error Method » (PEM) has been chosen, to get
the parameters 7 = (K,, K/v, T}, T1, Tp, K, Ky, Ty) that leads
to the smallest L2-norm of the prediction error. This method
was preferred to others because it is well adapted to closed-
loop identification of non linear systems (Ljung, 1999). The
unknown parameters of the model were identified using the
grey box identification concept, using the PEM algorithm
implemented in the System Identification toolbox of Matlab 7.

An initial analysis highlighted the low identifiability of
the model when considering the torque output only. This
resulted in an identified model with a high fit, but that did not
track the road properly. For this reason, the steering wheel
angle was considered as an additional output of the model.

Further details about the equations used for model
identification can be found in Saleh et al. (2011).

Validation

A validation test was carried out to confirm that the model
successfully steered itself along a road and showed a behavior
close to that of human drivers. Participant S1 was asked to
drive twice, along highway of about 1.5 km (figure 4a), first in
charge of both lateral and longitudinal control of the vehicle,
then in charge of longitudinal control only. In the second case,
lateral control was delegated to the model identified from data
collected earlier. S1 was asked to keep the same speed profile
in both tests, always keeping speed between 0 and 110 km/h.

RESULTS
Identification

As seen in table 1, the identification procedure converged
to the same ranges of values for all subjects, with the model
explaining about 69% of the steering wheel angle, on average.
No parameter showed abnormal values, except T,, which was
null in all cases. This can be explained by the fact that the
identification process could not distinguish the human
processing time delay from the one associated to the transport
delay of the simulator (computing the vehicle dynamics,
graphics, etc.).

Three parameters showed very little inter-subject
variation. This was the case for Ty, which represents a rough
estimation of the neuromuscular dynamics and was not
expected to differ across subjects. Many precedent works has
led to the same value of 100 ms. Thus, this parameter should
be fixed in future work. Similarly, K, gave rise to nearly equal
values. Since the steering system stiffness was the same for all

participants, this result confirms that drivers built a correct
internal representation of the mechanical compliance of the
steering wheel. As for K,,, there was no reason to expect more
or less reliance on visual anticipation in the present conditions.

By contrast, the parameters that showed variability across
participants may reflect idiosyncrasies in driving style. The
variations observed for the three parameters of the
compensator G, may reflect the driver's cautiousness about
driving too close to the edge lines or to operate more or fewer
steering reversals, for instance. Similarly, the differences
observed in the values of K, may signify that drivers held the
steering wheel more or less loosely. Further work needs to be
conducted to confirm these hypotheses and to determine how
sensitive the various parameters are.

Default | 3.40 15 1 3.0 0.04 1 12 0.10 -
value
S1 332 1221 1.11 3.6 0 1.07 1043 0.12 70%
S2 321 1120 0.84 3.0 0 1.05 11.57 0.14 68%
S3 323 1258 089 296 0 1.05 1091 0.14 68%
S4 325 1071 1.18 386 0 1.05 1132 0.14 75%
S5 317 1149 105 327 0 1.01 1243 0.12 62%

Table 1: Model parameters identification values
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Validation

Figure 4 illustrates the comparison between S1 and the
driver model when they were steering around a series of
bends. In both cases, the human driver was in charge of speed
control. It can be observed that speed profile was similar, as
instructed (figure 4c). The driver and his identified model also
exhibited very similar trajectory (figure 4b). The maximum
lateral deviation from the centerline was 0.9 m for S1 and
0.81 m for the model (SD = 0.21 in both cases). The standard
deviation of the steering wheel angle was 0.26 rad for S1 and
0.21 rad for the model.

CONCLUSION AND PERSPECTIVES

This paper has proposed a new model structure based on
current knowledge about perceptual and motor processes
involved in steering a car. The first model identification
results showed that the parameters could be identified with a
reasonable fit. We also found that the model could steer a
driving simulator similarly to the driver who provided the data
for the identification.

Extensive driving simulator experiments are currently
conducted to further validate the model. This is done by
specifically manipulating the visual environment, the
characteristics of steering systems and instructions given to
the drivers. The goal is to probe the model and determine to
what extent each parameter is sensitive to a given
manipulation.

These preliminary results are an encouraging step toward
the definition of a strategy for designing automation for shared
control of steering. The model is simple enough to be used for
in-car real time identification of the parameters. Besides, the
separation of visual from haptic and motor contributions
should permit to adapt the model to changes in steering system
characteristics by modifying the NMS parameters only.
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