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This paper reviews a set of scientific studies on how driver modelling may serve as the basis for designing 

advanced driving assistance systems. The work was aimed at explicitly representing the human visual 

and motor processes involved in the control of steering, and took into account current knowledge in the 

behavioural sciences. The nature and structure of the model, and its calibration using experimental data 

(identification), were addressed. Two design applications were considered: 1) estimating the driver state 

in various conditions of distraction and 2) building an automatic controller for haptic shared control of 

the steering wheel. 
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. Introduction 

One of the key problems for the design of advanced driver as-

istance systems has been to predict the driver behaviour. The

hort-term prediction of the driver state, behaviour or intention

ould lead to the adaption of a future interaction. For example, the

rediction of a driver’s action on the vehicle’s commands at a given

oint in time may give warning of an imminent critical situation.

onversely, an assessment that could be judged as critical on the

asis of the observation of the vehicle-road system alone could be

ssessed as non-critical if it was predicted that the driver was al-

eady engaged in a correction maneuver. To address this question,

e incorporated a driver model into the design process of driver

ssistance systems. 

We used an interdisciplinary approach that consists of the de-

ign of human-machine systems on the basis of a model that ex-

licitly represents the human perceptual, motor and cognitive pro-

esses involved in the task. The driver model used is termed cy-

ernetic in accordance with A. N. Kolmogorov’s definition of cy-

ernetics: “the study of systems of any nature which are capable

f receiving, storing and processing information so as to use it for

ontrol." Our goal was indeed to understand, study and reproduce

he human way of driving. This model and its application focuses

pecifically on steering control, although the same approach could

e adapted for other types of human-machine dynamic interac-

ion. Hence, the inspiration for the model was current knowledge

f the psychology of perception and the neurophysiology of mo-

or systems. It represents perceptually valid sensory cues used by

rivers and neurophysiologically valid sensorimotor systems. The

ationale behind such an approach was first to build a theoreti-

ally grounded model that may be relevant both for control theory

nd for human behavioural science. From a more practical point

f view, it was also a way to orient design choices as a func-

ion of specific hypotheses on the nature of perceptual and motor

ystems. 

The first section of the paper will present the model struc-

ure and its psychophysiological foundations. It will also briefly

ddress the question of its identification. Then, we will present

ow it has been used to detect and discriminate various states

f driver distraction using the model prediction error, an analy-

is of the parameter variations or by considering distraction as an

nput additive disturbance. Finally, the application of the model

n the design of a haptic shared control (HSC) automaton will

e presented to show how model prediction can help to im-

rove steering performance and to propose innovative indicators

or evaluating the quality of human-machine cooperation. In the

ppendix, notations relating to models, control and indicators are

iven. 

. A cybernetic driver model of steering control 

.1. Structure and foundations of the model 

Many attempts have been made to model driver steering be-

aviour as a lateral deviation regulator on the track. The ap-

roaches used have included optimal control, fuzzy logic, and neu-

al networks ( Plöchl & Edelmann, 2007 ). The validity of these mod-

ls is most often limited to specific driving situations, in which the

river acts as a control organ, determining the actions required
o follow the desired trajectory ( Cacciabue, 2007 ). According to

ulder, Paassen, and Boer (2004) , these models often ignore cer-

ain characteristics of human perception, which may affect control.

onversely, a cybernetic approach aims to represent the underlying

sychological and physiological processes in accordance with cur-

ent knowledge on sensorimotor control and cognition in humans.

his is the approach we adopted in this study, whilst still main-

aining our original aim to develop a simple enough model for use

n the context of driving assistance design. 

Fig. 1 presents the general architecture of the driver model. In

rder to steer the vehicle, the driver first needs to pick up relevant

nformation from the visual scene (perception of the environment).

hen, he must process this visual information to determine where

e wants to drive. It has been proposed by Donges (1978) that the

isual control of steering can be modelled as two complementary

rocesses. One is fed by far visual information and allows for the

nticipation of changes in the road curvature. The other is fed by

ear visual information and allows for the on-line correction of lat-

ral position errors. This two-levels scheme has been validated by

arious experimental and modelling studies ( Frissen & Mars, 2014;

and & Horwood, 1995; Salvucci & Gray, 2004 ). Visual informa-

ion processing gives rise to a steering intention that needs to be

onverted by the neuromuscular systems into a force applied on

he steering wheel, taking into account force and position feedback

rom the steering system. 

The cybernetic model presented in Fig. 2 is consistent with the

eneral architecture shown in Fig. 1 . This model integrates and

uilds on previous work by our group ( Sentouh, Chevrel, Mars, &

laveau, 2009 ) and that of others ( Hoult & Cole, 2008; Salvucci &

ray, 2004 ). The reader can refer to Mars, Saleh, Chevrel, Claveau,

nd Lafay (2011) for details about the model theoretical back-

round and to Saleh, Chevrel, Mars, Lafay, and Claveau (2011) for

ts implementation. The following section presents the essential

oints. 

Visual anticipation is achieved by a simple proportional ac-

ion on the angle at the tangent point, θ far ( Fig. 1 ). Land and

ee (1994) showed that drivers directed 65% of their glances to-

ard the tangent point; thus, it has been proposed that looking

t this point may be a way to read the road curvature at the sen-

orimotor level. Mars (2008) showed for instance that encourag-

ng drivers to track any point that has the dynamics of the tan-

ent point (but are not necessarily the tangent point itself) im-

roves steering performance. However, it has also been debated

hat drivers may look at the future path ( Wilkie, Kountouriotis,

erat, & Wann, 2010 ) or at the boundary of a safe trajectory

nvelope ( Mars & Navarro, 2012 ), which often falls in the area

f the tangent point. Whatever the case may be, we considered

hat using the tangent point as input to visual anticipation was

 good enough approximation of visual information pickup in hu-

an drivers. In all cases, it more adequately represents information

rocessing than solutions advocated in the past, which considered

oad geometry as a direct input to the driver model ( Donges, 1978;

ess & Modjtahedzadeh, 1990 ). 

It has been demonstrated that the visual compensation of lat-

ral position errors can be achieved through peripheral vision of

he road edge lines ( Summala, Nieminen, & Punto, 1996 ). In line

ith a study by Salvucci and Gray (2004) , we assumed that this

an be represented as the compensation of the angular deviation of

 near point ( θnear ) perceived at a distance � s = 5 m from the front
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Fig. 1. General architecture of the driver model. 

Fig. 2. The cybernetic driver model ( Mars et al., 2011; Saleh et al 2011 ). 
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of the vehicle. In some respects, this transmittance ( Fig. 2 ) repre-

sents the integration by the driver of the lateral dynamics of the

vehicle. Visual anticipation and compensation were combined to

generate an angle ˆ δsw 

, which is supposed to consist of the driver’s

intention in terms of steering wheel angle, taking into account the

processing time τ p . ˆ δsw 

serves as input to the neuromuscular sys-

tem. 

The model of the neuromuscular system is based on work

by Hoult and Cole (2008) . Like its inspiration, our model repro-

duces the principle of muscle co-activation through α- and γ -

motoneuron signals, which can be considered as feedforward and

feedback control of movement execution (see Mars, et al., 2011 for

more details). Unlike Hoult and Cole (2008) , however, the model

output is torque on the steering wheel, ( ̂  �d ), not an angle. This

property is more realistic and also consistent with the objective of

developing a haptic shared-control system that complements the

force applied on the steering wheel by the driver (see Section 4 ).

The neuromuscular system is defined by three parameters. The
ain K t represents the motor reflex that verifies the actual steer-

ng wheel angle δd conforms to the desired angle ˆ δsw 

; it does so

o compensate for any external perturbations (e.g., roadway condi-

ions or gusts of wind). The gain K r represents the internal model

f steering stiffness. It is multiplied by the speed of the vehi-

le to take into account the fact that steering stiffness increases

ith speed. Arm dynamics were modelled by a first-order trans-

ittance. At the input of the neuromuscular subsystem, the torque

s accounts for the steering wheel force feedback, as perceived by

he driver. Such haptic feedback improves the driver’s perception

nd contributes to the stabilization of the vehicle. 

.2. Cybernetic driver model identification 

The cybernetic model was identified from experimental data

hat was obtained using forward-facing cameras and steering

heel measures. The parameter vector was estimated first by 
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Fig. 3. Three ways of considering the effect of distraction on the driver model: (a) 

input disturbance, (b) parametric disturbance, (c) output disturbance. 

Table 1 

Cybernetic driver model parameters. 

Parameters Description 

K p Visual anticipation gain 

K c Visual compensation gain 

T I Visual compensation time constant 

τ p Processing delay 

K r Gain of the internal model of steering compliance 

K t Gain of the stretch reflex 

T n Neuromuscular time constant 

V Vehicle speed 
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aleh et al. (2011) , and revisited later ( Ameyoe, Mars, Chevrel,

e Carpentier, & Illy, 2015; Hermannstädter & Yang, 2013 ), using

onstrained prediction error identification (PEM, Ljung, 1999 ). The

tate-space structured linear representation of the driver model is:

˙ x ( t ) = A ( θ ) x d ( t ) + B ( θ ) u ( t ) 

y ( t ) = C ( θ ) x d ( t ) + D ( θ ) u ( t ) 
(1) 

ith x d = [ x d1 x d2 x d3 ] T the state vector, u = [ θfar θnear δd �s ] 
T 

nd y = [ ̂  �d 
ˆ δsw 

] T are the inputs and outputs vectors. The model

arameters that have to be identified are stored in the parameter

ector θ = [ K p K c T I τp K r K t T n ] . The continuous state-space ma-

rices corresponding to Eq. (1) are: 

 ( θ ) = 

⎡ 

⎣ 

− 1 
T I 

0 0 

2 
τp 

− 2 
τp 

0 

− ( K r v+ K t ) 
T n 

2 

( K r v+ K t ) 
T n 

− 1 
T n 

⎤ 

⎦ , 

B ( θ ) = 

⎡ 

⎣ 

0 

K c 
v T I 

0 0 

2 

K p 
τp 

0 0 0 

0 0 − K t 
T n 

− 1 
T n 

⎤ 

⎦ 

C ( θ ) = 

[
0 0 1 

−1 2 0 

]
and D ( θ ) = 

[
0 0 0 0 

−K p 0 0 0 

]

In Saleh et al. (2011) and Hermannstadter and Yang (2013) , off-

ine identification was performed to estimate the parameter vector.

his considered the output prediction error signal 1 power as the

riterion that needed to be minimized. The Gauss-Newton search-

cheme was used to solve the nonlinear optimization problem, as-

uming local identifiability, and considering starting values and in-

erval constraints given in Saley et al. (2011). Saley et al. (2011)

rst showed that the model could be successfully identified for

ve different drivers. The identification procedure converged to the

ame range of values in all cases. A validation test was also car-

ied out to confirm that the model could successfully steer itself

long a road and show behaviour that was close to that of human

rivers. In this test, the model was implemented in a driving sim-

lator and the results compared with those of the human driver

ho provided data for identification. The results show that the

river and the identified model exhibited very similar trajectories.

ermannstadter and Yang (2013) performed successful identifica-

ion on a set of 14 drivers, using an instrumented vehicle on real

oads. Finally, in a driving simulator study that involved 35 par-

icipants, Ameyoe, Chevrel, Le Carpentier, Mars, and Illy (2015) re-

orted that the fit ratio between the model prediction and the ex-

erimental data was above 90% for all drivers, at least when they

ere not distracted by a secondary task. 

In a study by Ameyoe, Chevrel, et al. (2015) , the problem was

onsidered as a nonlinear observation problem and solved recur-

ively using unscented Kalman filtering (UKF). The advantage of

his approach was being able to acquire continuous information on

he evolution of the model parameters over time. The parameter

ector that need to be identified is assumed to be time varying,

ith stochastic properties borrowed from a Wiener process. The

tate space equations of both the cybernetic model and the Wiener

rocess used to model the parameter vector were then discretized

nd concatenated in a single non-linear state-space model. In the

ext stage, the state of this augmented model was estimated us-

ng observer theory. The results obtained with UKF were as good

s those from using the PEM method. 
1 The difference between the observed driver steering torque and the torque that 

as predicted by the driver model. 

F  

t  

T  

t  
. Model-based estimation of driver distraction 

Distraction contributes to a significant number of road fatali-

ies; thus, a great deal of work has already been conducted to de-

ign an algorithm for the diagnosis of the driver distractive state.

his has been mainly achieved through the analysis of the driver’s

aze, steering behaviour and psychophysiological indicators ( Dong,

u, Uchimura, & Murayama, 2011; Nakayama, Futami, Nakamura,

 Boer, 1999; Yang, Mcdonald, & Zheng, 2012 ). Recently, some ef-

ort has also been made to base the diagnosis on a driver model

hrough a parameter analysis or by analyzing the model predic-

ion error. Ameyoe, Mars, et al. (2015) and Hermannstädter and

ang (2013) , adopted this approach. The goal was to create indica-

ors that help to detect distraction without the direct video mon-

toring of drivers, and possibly to discriminate the exact nature of

hat distraction. 

Assuming that distraction affects vehicular control, particularly

teering control, our study’s main motivation was to consider dis-

raction as disturbances or uncertainties affecting the cybernetic

odel. This is illustrated in Fig. 3 by considering three different

ssumptions: 

a) Distraction affects driver perception through the input distur-

bance 	u ; 

b) Distraction affects drivers in a way that impacts one or several

model parameters more than others, depending on the type of

distraction; in this case, distraction is considered as multiplica-

tive disturbances, 	θ , affecting specific model parameters (see

Table 1 ) 

c) Distraction directly affects the torque applied by the driver on

the steering wheel; this can be considered as an additive dis-

turbance 	y of the output of the cybernetic model. 

The various proposed methods to assess and categorize driver

istraction rely on the analysis of signals or parameter values ob-

ained after the identification of the cybernetic driver model. To

chieve this goal, we performed an experiment using a driving

imulator. Thirty-five participants participated in the experiment.

or each trial, the participants drove around an experimental track

hat consisted of 20 bends separated by sections of straight road.

he protocol interleaved periods of baseline driving (no distrac-

ion) with periods of distracted driving. Four types of distraction
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Fig. 4. Comparison between observed and predicted torque during undistracted 

driving for 70 s of driving data. Reproduced from Ameyoe, Chevrel, et al. (2015) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The torque prediction indicator averaged across participants as a function of 

driving conditions. Error bars represent the standard error of the mean. 

Fig. 6. The input default indicator averaged across participants as a function of 

driving conditions. Error bars represent the standard error of the mean. 
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r  
were tested: cognitive (backward counting task), visual (reading a

peripheral text), visuomotor (dialing task with mandatory visual

control) and motor (dialing whilst looking at the road). A sup-

plementary condition was added to assess the influence of driv-

ing with one hand without a secondary task. Partial results have

been presented before. They focused on disturbance estimation

( Ameyoe, Mars, et al., 2015 ) or parameter analysis ( Ameyoe, 2016;

Mars, Ameyoe, Chevrel, Carpentier, & Illy, 2017 ). They will be re-

viewed together here for the first time. The reader should refer to

Ameyoe, Mars, et al. (2015) for a complete methodological descrip-

tion of the experiment. 

3.1. Detecting distraction through output or input disturbance 

estimation 

Ameyoe, Mars, et al. (2015) showed that the cybernetic driver

model proposed by Mars et al. (2011) and Saleh, Chevrel, Mars,

Lafay, and Claveau (2011) , was able to predict human driver steer-

ing behaviour with a good accuracy in normal driving conditions.

For all participants, the fit ratio between the model prediction and

the experimental data was above 90%. Fig. 4 is an individual illus-

tration of that ability. 

One way to detect distraction is to consider the difference be-

tween the model output and the observed steering behaviour as

the consequence of distraction ( Fig. 3 c). This was the approach

used in Ameyoe, Mars, et al. (2015) . The authors proposed a new

indicator, the Torque Prediction Indicator (TPI), which is the sig-

nal power of the difference between the observed driver steering

torque and the torque predicted by the driver model during the

considered period. It was computed as follows: 

T P I = 

(
1 

T w 

∫ T w 

0 

(
�d ( t ) − ˆ �d ( t ) 

)2 
dt 

) 1 
2 

with: 

T w 

(s): length of the observation window, results were obtained

with T w 

= 70, 

�d (N m): driver torque, 
ˆ �d (N m): predicted torque. 

The results showed that the effects observed on the TPI were in

large part consistent with the steering performance indicators, es-

pecially lateral position variability. The TPI was particularly sensi-

tive to visuomotor distraction ( Fig. 5 ), which also yielded the larger

steering impairment. Visual and motor distraction also influenced

the TPI, although the effect did not reach statistical significance for
he motor distraction. Those results constituted a first step in vali-

ating the sensitivity of the driver model to driver distraction. The

PI may be considered as an alternative to steering performance

ndicators, such as the lateral position variability or the steering

eversal rate. 

Ameyoe (2016 ) also attempted to explain distraction by assum-

ng that the visual or visuomotor distraction affected the visual

nput of the driver model. In this case, distraction is regarded as

n additive input disturbance ( Fig. 3 a), which is considered as a

tochastic signal. A second order dynamic model was used to en-

apsulate the main characteristics of this virtual signal. Once con-

atenated with the driver model, the resulting model served as a

upport for the observer, capable of estimating the continuous dis-

urbance signal. This method used an ad-hoc Kalman filter to esti-

ate the disturbance signal of the visual compensation input. Ex-

erimental data obtained from the driving simulator was used. An

nput default indicator (IDI) was computed as follows: 

DI = 

(
1 

T w 

∫ T w 

0 

	u ( t ) 
2 dt 

) 1 
2 

ith: 

T w 

(s): length of the observation window, results were obtained

ith T w 

= 70, 

	u (rad): additive disturbance on the visual compensation in-

ut of the driver model. 

The results showed that it was indeed specifically sensitive to

isual and visuomotor distraction ( Fig. 6 ). 

.2. Discriminating distraction types through parameter analysis 

Another way to approach distraction estimation is to catego-

ize driver distraction on the basis of the analysis of the cybernetic
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Table 2 

Sensitivity of performance indicators and model parameters to the 

different types of distraction; sensitive ( + ) versus non-sensitive ( −). 

Steering performance Parameter analysis 

Distraction type SDLP SWRR K p K c K t T n 

Cognitive − − − − − −
Motor + + − − − + 

Visual + + − + + + 

Visuomotor + + + + + + 
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river model parameters ( Fig. 4 b). As the model parameters repre-

ent visual and motor processes that determine steering behaviour,

t can be hypothesized that some of them may be selectively sensi-

ive to some types of distraction. For this reason, Hermanstater and

ang (2013) performed an online identification, dealing iteratively

ith packets of input-output data measured on an experimental

ar. Driving without distraction was compared with driving with

isual and auditory distraction. The results revealed that the two

isual parameters, i.e., K p for anticipation and K c for compensa-

ion, were selectively influenced by visual distraction. The same

pproach was applied to the data gathered from the driving simu-

ator experiment presented earlier, which compared visual, motor,

isuomotor and cognitive distractions. Four selected driver model

arameters were identified: K p and K c , but also K t and T n for the

euromuscular system. 

The results are summarized in Table 2 . Cognitive distraction did

ot significantly influence the steering performance indicators, i.e.,

he standard deviation of lateral position (SDLP) and the steering

heel reversal rate (SWRR). Accordingly, no parameter variation

as observed. Conversely, SDLP and SWRR increased with motor,

isual and visuomotor distraction. It was not possible to discrim-

nate between these different types of distraction on the basis of

riving performance alone. In this respect, the parameter values

ere more useful. Motor distraction only influenced the arm dy-

amics time constant Tn. Visual distraction also influenced T n , to-

ether with K t , the gain of motor correction reflex, and K c , the gain

f visual compensation. Visuomotor distraction showed very simi-

ar effects on these three parameters. It was also the only condition

hat brought about a decrease in the gain of visual anticipation,

 p , most probably because the visuomotor task was much more

emanding on the visual system (gaze was directed to the side

nd downward) than the visual task (gaze was directed to the side

nly). This suggests that K p is quite robust, except in extreme cases

f distraction. Taken together, the results suggest that the driver

odel parameters are sensitive to the driver state of distraction;

ndeed, they varied as a function of the secondary task. More work

s needed now to build a robust estimator of distraction using on-

ine parameter analysis. 

.3. Conclusion 

The rationale for this work was that distraction can be catego-

ized as cognitive, visual or motor, and that each type of distraction

as a different influence on steering behaviour. So, the question is:

an a visuomotor model help to detect and discriminate distraction

pisodes? The method consisted first in parameter identification

uring a training period without distraction. Then, on-line param-

ter identification or disturbances estimation was performed when

istraction occurred. The results showed that scrutinizing how the

alues of the parameters evolve makes it possible to discriminate

etween cognitive, visual and motor distraction, at least to some

xtent. The advantage of modelling distraction using an additive

utput disturbance on the driver model obtained in normal condi-

ion (no distraction) is that robust filtering is required rather than

n-line identification. However, although distraction could be de-
ected, it was not really possible to discriminate between differ-

nt types of distraction. Lastly, modelling the distraction as addi-

ive input disturbances should make possible some sort of discrim-

nation, assuming that distractions with a visual component would

ainly affect signals associated with visual perception. However,

ore work is needed to confirm this assumption. 

. Haptic shared control of the steering wheel 

The second way our driver model has been used for driving

ssistance system design relates to haptic shared control (HSC)

f the steering wheel. Some of this work has been presented in

aleh, Chevrel, and Lafay (2012) and Saleh, Chevrel, Claveau, Lafay,

nd Mars (2012, 2013 ). It will be summarized and complemented

n the following section. 

HSC occurs when a driver and an automaton continuously and

imultaneously act on the steering wheel to achieve lateral con-

rol. It has been demonstrated to facilitate steering control whilst

eeping the driver in the loop ( Abbink, Mulder, & Boer, 2012; Mul-

er, Abbink, & Boer, 2012; Sentouh, Soualmi, Popieul, & Debernard,

013; Wang, Zheng, Kaizuka, Shimono, & Nakano, 2017 ). Like a tra-

itional lane-keeping system, it has a direct influence on the ve-

icle’s trajectory. At the same time, it provides haptic guidance to

he driver, improving comfort and workload ( Mars, Deroo, & Char-

on, 2014; Mars, Deroo, & Hoc, 2014 ). The benefit is that the driver

s aware of the system’s actions, and can choose to overrule them. 

Lane-keeping systems are often designed on the basis of a

ehicle-road model and consider driver action as a disturbing sig-

al. Thus, these systems do not guarantee global stability and can-

ot provide a robustness analysis when variations in driver be-

aviour occur. A performance analysis of lane-keeping systems has

ighlighted the fact that, together, a vehicle and its driver form

 human-machine system. Such a system should be considered as

 whole in order to develop a cooperative co-pilot that monitors

he driver’s control actions, and understands and corrects them if

ecessary. For this reason, a cybernetic approach is recommended

or modelling any interactions between the driver and the vehicle-

nvironment system ( Mulder et al., 2004 ). 

Saleh, Chevrel, Claveau, et al. (2012, 2013 ) sought to design and

valuate a HSC system based on the cybernetic driver model. The

ybernetic driver model and the road-vehicle model were aggre-

ated into the control synthesis model, known as the DVR model

see Section 4.2.2 ). The benefits of using the driver model will now

e highlighted. 

.1. Cooperation indicators for HSC 

The evaluation of control quality usually involves a tradeoff be-

ween multiple, potentially conflicting criteria. Steering assistance

ystems should assist the driver in keeping the vehicle within the

ane, and thus contribute to active safety. At the same time, these

ystems should cooperate with the driver and avoid conflict as

uch as possible. In the absence of standards to evaluate the qual-

ty of HSC, Saleh, Chevrel, Claveau, et al. (2012, 2013 ) defined dif-

erent indicators to enable the measurement of what is seen as

safe driving" and a "cooperative copilot". Some of these metrics

re commonly used to measure lane-keeping performance, whilst

thers are innovative. 

One of the most common metrics for lane-position perfor-

ance evaluation is lateral deviation error. In particular, we chose

o examine the mean absolute lateral deviation from the cen-

re line and the standard deviation of lateral position. These in-

icators do not allow the evaluation of the lane-departure risk.

uch risk can be measured, however, by using the time to lane

rossing (TLC), defined as the time available to a driver un-

il any part of the vehicle reaches one of the lane boundaries
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Fig. 7. H2-Preview controller problem. 
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( Godthelp, Milgram, & Blaauw, 1984 ). There are several ways of

computing TLC values with more or less approximation of the

road curvature and trajectory prediction ( Mammar, Glaser, & Netto,

2006 ). Here, the TLC, or TLCP (for TLC Path), was estimated by as-

suming that the vehicle yaw rate and heading speed would remain

constant in the near future. The advantage of TLCP is that it is less

sensitive to transient steering deviations, because they are filtered

by the vehicle dynamics. 

The risk of lane departure is also driver-dependent; thus, TLCP

alone cannot provide a consistent evaluation, especially when the

driver intentionally cuts bends or when he is aware of the risk

and has already acted to correct it. In these two cases, TLCP over-

estimates the risk, as it does not take into account the driver’s

intention. To overcome this deficiency, Saleh, Chevrel, Claveau,

et al. (2012) suggested that the cybernetic model be used to es-

timate the driver’s steering intention (see Fig. 2 ). The driving er-

ror ( 	δ) is then defined as the deviation of the actual driver

steering angle, δd , from the angle predicted by the driver refer-

ence model ˆ δsw 

. Finally, the Lane Departure Risk (LDR) criterion,

LDR = 	δ/T LCP , was proposed as a mean of evaluating the risk of

lane departure. The LDR value is normalized within a [0–1] risk in-

terval. As long as LDR indicates a low threat level, driving is "safe".

On the other hand, new indicators of cooperation between the

driver and the assistance system were proposed for the first time

in Saleh, Chevrel, Claveau, et al. (2012) : 

• Consistency rate T co : defined as the ratio of the period during

which the assistance torque ( �a ) is in the same direction as

driver torque ( �d ), divided by the total driving period. 

• Resistance rate T res : defined as the ratio of the period during

which �a is in the opposite direction to �d but �a is inferior

to �d , divided by the total driving period. 

• Contradiction rate T cont : defined as the ratio of the period dur-

ing which �a overcomes �d , divided by the total driving period.

• Contradiction level P c ( Saleh, Chevrel, & Lafay, 2012 ), defined as

the cosine of the angle between the torques �d and �a applied

on the steering column respectively by the driver and the assis-

tance device. These pairs constitute two signals of the Hilbert

space whose norm and scalar product can be calculated. 

P c is equal to −1 if the assistance always exerts an opposite ac-

tion to that of the driver (180 ° between the assistance torque and

the driver torque). P c is equal to 1 when the assistance systemat-

ically accompanies the driver (0 °). More generally, P c represents a

good indicator of the agreement between the driver’s action and

that of the automated device. 

4.2. Synthesis of an electronic co-pilot for HSC 

4.2.1. H2 preview 

The assistance strategy developed and evaluated by

Saleh, Chevrel, Claveau, et al. (2012) and Saleh, Chevrel, Claveau,

Lafay, and Mars (2013) , used LQ/H2-Preview control theory

( Saleh, Chevrel, & Lafay, 2012 ) applied to the global DVR model.

Such a control design is known to guarantee improved perfor-

mance when the near future of the exogenous signal, in this case

the road curvature ρref , is known (preview). Moreover, the authors

revealed that the LQ criterion can potentially take the indicators
f cooperation quality into account. Let’s first recall the general

esult. 

In Fig. 7 , the process model � is defined through Eq. (2) , the

xogenous signal model �w 

is defined by Eq. (3) , and the con-

roller �c is synthesized. 

˙ 
 = A x + B 1 u + B 2 w 

z = C x + D 1 u 

A ∈ � 

n ×n , B 1 ∈ � 

n ×m , B 2 ∈ � 

n ×r , C ∈ � 

p×n , D 1 ∈ � 

p×m (2)

x, u, w and z above respectively denote the state vector, the

ontrol input, the disturbance input and the performance vector

utput. The disturbance input w is assumed to be previewed the

ver time horizon T. So, w p (t) = w (t + T) is an input of the controller.

oreover, this signal is supposed to be a coloured noise obtained

y filtering the white noise w’ through �w (see Eq. (3) ). 

˙ 
 w 

= A w 

x w 

+ B w 

w 

′ 
 p = C w 

x w 

 w 

∈ � 

q ×q , C w 

∈ � 

r×q , B w 

∈ � 

q ×q 
(3)

The “optimal H2 preview controller problem” ( Marro & Zat-

oni, 2005 ) is defined as the problem of finding a controller �c

hat rejects the effect of the input disturbance w (known in ad-

ance over the time T) on the output z . More precisely, the con-

roller �c has to minimize the H2 performance index (6) whilst

tabilizing the closed-loop system ( Fig. 7 ). The general solution to

his problem is recalled in Theorem 1 . 

 = ‖ 

z ‖ 

2 
2 = 

∞ ∫ 
0 

z T (t) z(t) dt (4)

heorem 1. let the system ( �, �w 

) be defined by (2) and (3) . As-

ume that: 

� the pair ( A, B 1 ) is stabilizable 

� the quadruple ( A, B 1 , C, D 1 ) has no invariant zeros on i � 

� D 1 is full-column rank matrix 

� A w 

is Hurwitz 

Let R = D 

T 
1 D 1 , Q = C T C, S = C T D 1 , then, the solution of the H2-

review problem is given by the controller �c defined through the

ollowing equation: 

 (t) = −K + x (t) + 

T ∫ 
0 

�(τ ) w p (t − τ ) dτ − R 

−1 B 

T 
1 e 

A T + T M x w 

(t) (5)

here : 

K + = R 

−1 ( S T + B 1 
T P + ) is the gain feedback matrix 

�(τ ) = −R 

−1 B 

T 
1 e 

A T + (T −τ ) P + B 2 , 

P + is the stabilizing solution of the algebraic Riccati equation : 

PA + A 

T P − (S + P B 1 ) R 

−1 ( S T + B 1 
T P ) + Q = 0 

A + = A − B R 

−1 ( S T + B 

T P + ) is the closed loop matrix 
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Fig. 8. H2-Preview shared control. 
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M is the solution of the Sylvester equation : 

A 

T 
+ M + M. A w 

+ P + B 2 C w 

= 0 

For the proof, see Saleh, Chevrel, and Lafay (2012) . 

Based on this result, the synthesis of the assistance controller

as performed in continuous time to minimize the H2 perfor-

ance index with the performance vector z (see next section) con-

aining signals correlated with road tracking quality (ex. heading

ngle error ψ L ), lane keeping quality (ex. lateral deviation y L ), con-

rol effort (assist ance torque �a ), driver-assistance sharing and co-

peration quality ( �a - �d and the scalar product < �a , �d > whose

alue depends on the cosine of the angle between the two torques;

ee Section 4.1 ). In Saleh, Chevrel, and Lafay (2012) , the road cur-

ature was assumed to be coloured noise, with a zero mean value

nd a bandwidth restricted to the frequency interval [0–20] rad/s.

his is compatible with the signal model used and is incorporated

nto the H2 standard model that supports the H2 control synthesis.

Finally, the optimal preview shared control obtained consists of

hree terms ( Fig. 8 ): 

� A state-feedback term ( −K + x ), 
� An anticipation term elaborated through a finite impulse re-

sponse filter (FIR) from the previewed curvature signal ( w p (t) =
ρre f ( t + T ) on the preview horizon T , 

� A pre-compensation term, which deals with the predicted road

curvature beyond the preview horizon. 

.2.2. DVR model and control synthesis 

The state-space DVR model, which aggregates the cybernetic

river model and the road-vehicle model has the following form,

ith ρref the current road curvature: 

 

 

 

 

 

 

 

 

 

 

 

 

˙ β
˙ r 
˙ ψ L 

˙ y L 
˙ δd 

δ̈d 

˙ x 1 d 
˙ x 2 d 
˙ �d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

a 11 c a 12 c 0 0 a 15 c 0 0 

a 21 c a 22 c 0 0 a 25 c 0 0 

0 1 0 0 0 0 0 

V x l s V x 0 0 0 0 

0 0 0 0 0 1 0 

a 61 c a 62 c 0 0 a 65 c a 66 c 0 

0 0 b 12 d b 12 d / � s 0 0 a 11 d 

0 0 b 22 d b 22 d / � s 0 0 a 21 d 

b n 31 d b n 32 d b 32 d b 32 d / � s b n 35 d 0 a 31 d 

The H2 output performance vector z is defined from the output

quation (see Eq. (9) in appendix) as: 
W  
0 

0 

0 

0 

0 

b 61 c 

0 

 

0 

 

a 33 d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

β
r 
ψ L 

y L 
δd 

˙ δd 

x 1 d 
x 2 d 
�d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

0 

0 

b 61 c 

0 

0 

−b 34 d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

�a + 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

−V x 

−V x l s 
0 

0 

0 

b 21 d D far 

b 31 d D far 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

· ρre f (6) 

z = Q z 
1 / 2 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

ψ L 

y act 

a 
�a − α�d 

�d 

�a 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

where : 

 z = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

c 1 0 0 0 0 0 

0 c 2 0 0 0 0 

0 0 c 3 0 0 0 

0 0 0 c 4 0 0 

0 0 0 0 c 5 c da 

0 0 0 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(7) 

ith: 

With this, the criterion (4) is equivalent to: 

 = ‖ 

z ‖ 

2 
2 = c 1 ‖ 

ψ L ‖ 

2 
2 + c 2 ‖ 

y act ‖ 

2 
2 + c 3 ‖ 

a ‖ 

2 
2 + c 4 ‖ 

�a − α�d ‖ 

2 
2 

+ c 5 ‖ 

�d ‖ 

2 
2 + ‖ 

�a ‖ 

2 
2 + c da 

+ ∞ ∫ 
0 

�d ( τ ) × �a ( τ ) dτ (8) 

The compromise between these different quantities is obtained

y means of penalties on each signal, defined within the matrix Q z .

he penalty on the assistance torque �a is set arbitrarily to 1 for

tandardization purposes. The others are adjusted according to the

bjectives pursued (the final choice of penalties: c 1 = 200, c 2 = 20,

 3 = 3, c 4 = 5, c 5 = 1, c da = -10). The actions carried out in real time

y the electronic co-pilot can be deduced directly from the reso-

ution of the H2 preview synthesis problem (see Theorem 1 ). The

ssistance torque is thus modulated according to the compromise

o be made between the risk of Lane Departure Risk (LDR) and

he collaborative quality between the driver and the assistance de-

ice. For example, c 2 penalizes the lateral deviation, α ≈�a / �d in-

orms about the desired level of sharing, with two specific cases:

≈ 0 for manual driving, α = 1 when steering is shared equally be-

ween the assistance device and the driver, and α 
 1 for fully au-

omated driving; likewise, c da negatively penalizes the scalar prod-

ct between �a and �d , which prevents contradictory control be-

ween the driver and the assistance device (see contradiction level

 c defined above). 

.2.3. Shared control with or without the driver model 

Saleh, Chevrel, Claveau, et al. (2012) compared two driving ses-

ions with two types of shared control controllers. Both were

ased on the H2 preview scheme described above and both ex-

loited the road curvature preview. The first controller optimized

erformance and safety criteria only (i.e., heading error, lateral de-

iation from the centreline, lateral acceleration and steering wheel

orque). The other was based on the DVR model, which enabled

dditional cooperation criteria for optimization to be taken into

ccount, i.e., α ≈�a / �d and the scalar product between �a and

d . The main results obtained with a level of sharing of 50% are

llustrated in Fig. 9 . 

In both cases, the level of lane keeping performance was good.

ithout HSC, the driver applied a cumulative torque of about
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Fig. 9. Contradiction level between the driver torque �d and the assistance torque �a . From left to right: i) without HSC (driver = 100%), ii) HSC without a driver model, iii) 

HSC with a driver model. 
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- state vector: x = [ x x x ] 
30 0 0 (N m) 2 s ( Fig. 9 , left). With HSC without a driver model,

the driver torque was reduced to 2600 (N m) 2 s, combined with

a system torque of 3900 (N m) 2 s. However, the actions of the

two agents were in large part in opposing directions, which trans-

lates as an angle above 90 ° between the two vectors ( Fig. 9 , cen-

tre). HSC with a driver model lead to a much larger agreement be-

tween the driver and the assistance device (angle below 90 °). The

torque applied by the driver on the steering wheel was reduced to

1300 (N m) 2 s, whereas the system delivered 1400 (N m) 2 s. In this

case, the driver delivered 48% of the total torque, which is close to

the targeted 50%. 

4.3. Conclusion 

This section highlights the importance of the cybernetic model

for HSC, in particular: i) to make possible the definition of cooper-

ation criteria for analysis and control synthesis, and ii) as support

for robustness analysis (through μ-analysis), using parametric un-

certainties to describe the diversity of human behaviour in steering

( Saleh et al., 2013 ). 

5. General conclusion 

This paper reviewed the importance of a cybernetic driver

model by considering two case-studies: driver distraction state es-

timation and HSC of the steering wheel. 

First, the cybernetic model was presented and its psychological

significance explained. The calibration of its parameters from real

experiments was also discussed, considering either packet-based or

recursive identification. Our experience is that such an identifica-

tion is possible when driver torque can be correctly estimated. This

led to the creation of a driver model that was able to steer our

driving simulator by itself on various roads. 

Second, we studied distraction modelling using additive or mul-

tiplicative disturbances on the non-distracted driver model. Our

experience was that it provides new residues, which can be in-

valuable in detecting distraction, in some cases even distinguishing

in some cases between types of distraction (e.g., visual, visuomo-

tor and motor distraction). Based on this approach, some patents

were deposited, illustrating its industrial relevance ( Ameyoe, Illy &

Chevrel et al. (2016); Illy, Ameyoe & Chevrel et al. (2017) ). 

Third, we considered HSC, with a design process based on the

cybernetic driver model. We saw early on the importance of us-

ing such a driver model for shared control design ( Mars et al.,

2011, Saleh et al 2011 ). This was confirmed by Saleh, Chevrel,

Claveau et al. (2012) and Saleh et al. (2013) . Designing shared con-

trol with a driver-vehicle-road model enables a much more ac-

ceptable and robust solution to be found, with a wider application

range. In addition, new indicators of cooperation quality that take

into account short-term prediction of the driver action were de-

fined. Such indicators were lacking in the literature. They may be

a useful contribution for researchers who want to go beyond the

traditional performance metrics to evaluate HSC systems. 
The prediction capabilities offered by the cybernetic driver

odel were essential in the systems’ design. For HSC, the driver

odel improves the stability of the global system by minimizing

he risk of negative interferences that may occur in the near fu-

ure between the human and the automaton, such as contradictory

ctions. For distraction estimation, the contribution of the model is

ot about predicting the interaction to come. Rather, it is about de-

ecting early distraction and discriminating between different types

f distraction on the basis of the difference between current ac-

ions and model predictions. 

Future work based on the cybernetic driver model should con-

ider more in-depth investigation of human driving and system

cceptance, particularly in the context of the development of au-

onomous vehicles. It should also consider the central question of

nderstanding how drivers adapt their behaviour to assistance de-

ices. Individual tuning of the model parameters to each driver

ay offer a way to significantly improve the performance of as-

istance systems. Beyond driving, the design of automatic systems

n the basis of a cybernetic model that represents actual cogni-

ive, perceptual and motor processes may be relevant to human-

achine interaction in different contexts. 
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ppendix. Detailed notations 

. Cybernetic driver model 

- parameters: θ = [ K p K c T I τp K r K t T n ] : see Table 1 

- input and output signals: u = [ θfar θnear δd �s ] 
T and y =

[ ̂  �d 
ˆ δsw 

] T 

◦ θnear angular deviation at a near point ( θnear ) and θ far at the

tangent point, (see Fig. 1 ) 

◦ δd steering wheel angle 

◦ �s steering wheel force feedback (see also vehicle model) 

◦ ˆ �d : driver torque predicted/estimated by the model ( �d :

real driver torque,) 

◦ ˆ δsw 

driver’s intention in terms of steering wheel angle 

- 	u , 	θ , 	y : distraction signal assumed to be respectively

input, parametric, or output disturbances; in this context, u r ,

y r are the disturbed input and output of the driver model

(see Fig. 3 ); in order to symplify the notations, 	u and 	y may

designate a perturbation on a part of the signal input (e.g. vi-

sual compensation signal in Fig. 6 ) or output signals ( ̂  �d ) . 
T 
d d1 d2 d3 
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Fig. 10. Vehicle-road model for lane keeping. 

Table 3 

Peugeot 307 model parameters. 

l f Distance form Gravity Center to front axle 1.127 m 

l r Distance from Gravity Center to rear axle 1.485 m 

M Total mass 1476 Kg 

J Vehicle yaw moment of inertia 1810 Kg m 

2 

C f0 Front cornering stiffness 65,0 0 0 N/rad 

C r0 Rear cornering stiffness 57,0 0 0 N/rad 

ηt Tire length contact 0.185 m 

μ Adhesion 0.8 

K m Manual steering column coefficient 1 

R S Steering gear ratio 16 

B s Steering system damping coefficient 5.73 

I s Inertial moment of steering system 0.05 Kg m 

2 

l s Look-ahead distance 5 m 

 

I  

(  

p  

(

 

a  

g

A

W

a

. Distraction and haptic shared control (HSC) indicators and 

ariables 

SDLP: standard deviation of lateral position 

SWRR: Steering wheel reversal rate 

LDR: Lane Departure Risk 

TLC: Time to Lane Crossing 

TLCP: Time to Lane Crossing - Path, i.e. TLC estimated by as-

suming that the vehicle yaw rate and heading speed were

maintained as constant in the near future 

TPI: Torque prediction indicator 

IDI: Input default indicator 

	δ: driver error (deviation of the actual driver steering angle

from that one predicted by the model) 

z: performance vector for HSC synthesis 

�a , �d : assistance and driver torque (applied on the steering

wheel) 

Tco, Tres, Tcont: cooperation indicators for HSC systems (see

Section 4.1 ) 

c 1 , c 5 , c da : weights on signals that constitute the performance

vector; 

- c 1 : penalty for heading error 

- c 2 : penalty for lateral deviation from the road centerline 

- c 3 : penalty for the difference between the vehicle lateral accel-

eration and the expected lateral acceleration according to road

curvature 

- c 4 : penalty for the level of shared control 

- c 5 : penalty for driver torque 

- c da : penalty for contradictory action between the driver and the

automation. When c da < 0, the minimization of the quadratic

criteria is performed to avoid contradiction between the driver

torque and the automation torque. 

Relationship between the performance vector and the DVR
odel state and input: 

⎡ 

⎢ ⎢ ⎢ ⎣ 

ψ L 

y act 

a 
�a − α�d 

�d 

�a 

⎤ 

⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 0 1 0 0 0 0 0 0 
0 0 −l s 1 0 0 0 0 0 

V x a 11 c V x a 12 c 0 0 V x a 15 c 0 0 0 0 
0 0 0 0 0 0 0 0 −α
0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

β
r 
ψ L 

y L 
δd •
δd 

x 1 d 
x 2 d 
�d 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎢ ⎣ 

0 
0 
0 
1 
0 
1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. �a 

(9) 

. Vehicle-road model (VR) 

The general vehicle-road (VR) model considered for lateral con-

rol involves the dynamics of the lane keeping visual process, the

teering column, and the lateral vehicle dynamics. According to

aleh, Chevrel and Lafay (2012) , The VR model can be written as:

˙ 
 V R = A V R x V R + B 1 V R ( �a + �d ) + B 2 V R ρre f 

 V R ∈ � 

6 ×6 , B 1 V R ∈ � 

6 ×1 , B 2 V R ∈ � 

6 ×1 (10) 
Where x VR = [ β , r, ψ L , y L , δd , d δd / dt ] T is the VR state vector.

t consists of (see Fig. 10 ): the side slip angle ( β), the yaw rate

 r ), the heading angle ( ψ L ), the offset from the lane centre ( y L )

rojected forward on the look-ahead distance ( l s ), steering angle

 δd ) and steering speed ( d δd /dt ). 

The inputs of (2) are the steering torque command ( �a + �d )

nd the road curvature ( ρref ). The matrices A VR , B 1VR and B 2VR are

iven by: 

 V R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

a 11 c a 12 c 0 0 a 15 c 0 

a 21 c a 22 c 0 0 a 25 c 0 

0 1 0 0 0 0 

V x l s V x 0 0 0 

0 0 0 0 0 1 

a 61 c a 62 c 0 0 a 65 c a 66 c 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, B 1 V R 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

0 

0 

0 

b 61 c 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, B 2 V R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

0 

0 

−V x 

−V x l s 
0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(11) 

ith: 

a 11 c = −2( c f + c r ) 

M V x 
, a 12 c = 

2( c r l r − c f l f ) 

MV 

2 
x 

− 1 , a 15 c = 

2 c f 

M V x R s 

a 21 c = 

2( c r l r − c f l f ) 

J 
, a 22 c = −

2( c f l 
2 
f 
+ c r l 

2 
r ) 

J V x 
, a 25 c = 

2 c f l f 

J R s 

a 61 c = 

T Sβ

I s 
, a 62 c = 

T Sr 

I s 
, a 65 c = − T Sβ

R s I s 
, a 66 c = −B s 

I s 
, c r = c r0 μ

c f = c f 0 μ, b 61 c = 

1 

I s 
, T Sβ = 

2 K p c f ηt 

R S 

, T Sr = 

2 K p c f ηt 

R s 

l f 

V x 

b 12 d = 

1 

T I 
, a 11 d = − 1 

T I 
, b 22 d = −K c 

V x 

2 

τp 

T L 
T I 

, a 21 d = 

K c 

V x 

2 

τp 

(
T L 
T I 

− 1 

)

 22 d = − 2 

τp 
, b n 31 d = −b 34 d T Sβ, b n 32 d = −b 34 d T Sβ

l f 

V x 
, a 33 d = − 1 

T N 
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b 32 d = 

K r V x + K t 

T N 

K c 

V x 

T L 
T I 

, b n 35 d = b 33 d + 

T Sβ

R S 

b 34 d , b 34 d = − 1 

T N 

a 32 d = 2 

K r V x + K t 

T N 
, a 31 d = −K r V x + K t 

T N 

K c 

V x 

(
T L 
T I 

− 1 

)
, 

b 31 d = −K p 
K r V x + K t 

T N 
, b 33 d = − K t 

T N 
, b 21 d = 

2 

τp 
K p 

VR parameters are summarized in Table 3 with nominal values

that correspond to a Peugeot 307. This vehicle model was used on

the driving simulator and supported shared lateral control synthe-

sis. 

References 

Abbink, D. A., Mulder, M., & Boer, E. R. (2012). Haptic shared control: Smoothly
shifting control authority? Cognition Technology & Work, 14 (1), 19–28. https:

//doi.org/10.1007/s10111-011- 0192- 5 . 
Ameyoe, A. (2016). Estimation de la distraction fondée sur un modèle dy-

namique de conducteur : Principes et algorithmes (phdthesis). Ecole des

Mines de Nantes , (October 6). Retrieved from https://tel.archives-ouvertes.fr/
tel-01395282/document . 

Ameyoe, A., Chevrel, P., Le Carpentier, E., Mars, F., & Illy, H. (2015). Identification of
a linear parameter varying driver model for the detection of distraction. IFAC-

PapersOnLine, 48 (26), 37–42. https://doi.org/10.1016/j.ifacol.2015.11.110 . 
Ameyoe, A., Illy, H., Chevrel, P., Le Carpentier, E., & Mars, F. August 25,

WO2016132032 (A1). Retrieved from https://worldwide.espacenet.com/

publicationDetails/biblio?FT=D&date=20160825&DB=&locale=en _ EP&CC= 
WO&NR=2016132032A1&KC=A1&ND=4 . 

Ameyoe, A. , Mars, F. , Chevrel, P. , Le Carpentier, E. , & Illy, H. (2015). Estimation of
driver distraction using the prediction error of a cybernetic driver model. In

Proceedings of the driving simulation conference Europe 2015 (pp. 13–18) . Tübin-
gen. 

Cacciabue, P. C. (2007). Modelling driver behaviour in automotive environments:

critical issues in driver interactions with intelligent transport systems . London:
Springer . 

Donges, E. (1978). 2-level model of driver steering behavior. Human Factors, 20 (6),
691–707 . 

Dong, Y., Hu, Z., Uchimura, K., & Murayama, N. (2011). Driver inattention monitoring
system for intelligent vehicles: A review. IEEE Transactions on Intelligent Trans-

portation Systems, 12 (2), 596–614. https://doi.org/10.1109/TITS.2010.2092770 . 

Frissen, I., & Mars, F. (2014). The effect of visual degradation on anticipatory and
compensatory steering control. The Quarterly Journal of Experimental Psychology,

67 (3), 499–507. https://doi.org/10.1080/17470218.2013.819518 . 
Godthelp, H. , Milgram, P. , & Blaauw, G. (1984). The development of a time-related

measure to describe driving strategy. Human Factors, 26 (3), 257–268 . 
Hermannstädter, P., & Yang, B. (2013). Driver distraction assessment using driver

modeling. In 2013 IEEE international conference on systems, man, and cybernetics
(pp. 3693–3698) . https://doi.org/10.1109/SMC.2013.629 . 

Hess, R. A., & Modjtahedzadeh, A. (1990). A control theoretic model of driver steer-

ing behavior. IEEE Control Systems Magazine, 10 (5), 3–8. https://doi.org/10.1109/
37.60415 . 

Hoult, W., & Cole, D. J. (2008). A neuromuscular model featuring co-activation for
use in driver simulation. Vehicle System Dynamics, 46 , 175–189. https://doi.org/

10.1080/00423110801935798 . 
Illy, H., Ameyoe, A., Chevrel, P., Mars, F., & Le Carpentier, E. February 23,

WO2017029443 (A1). Retrieved from https://worldwide.espacenet.com/

publicationDetails/biblio?FT=D&date=20170223&DB=&locale=en _ EP&CC= 
WO&NR=2017029443A1&KC=A1&ND=4 . 

Land, M. F., & Horwood, J. (1995). Which parts of the road guide steering. Nature,
377 (6547), 339–340. https://doi.org/10.1038/377339a0 . 

Land, M. F., & Lee, D. N. (1994). Where we look when we steer. Nature, 369 (6483),
742–744. https://doi.org/10.1038/369742a0 . 

Ljung, L. (1999). System identification: theory for the user (2 ed.). Upper Saddle River,

NJ: Prentice Hall . 
Mammar, S., Glaser, S., & Netto, M. (2006). Time to line crossing for lane departure

avoidance: A theoretical study and an experimental setting. IEEE Transactions
on Intelligent Transportation Systems, 7 (2), 226–241. https://doi.org/10.1109/TITS.

2006.874707 . 
arro, G., & Zattoni, E. (2005). H2-optimal rejection with preview in the
continuous-time domain. Automatica, 41 (5), 815–821. https://doi.org/10.1016/j.

automatica.2004.11.030 . 
ars, F. (2008). Driving around bends with manipulated eye-steering coordination.

Journal of Vision, 8 (11). https://doi.org/10.1167/8.11.10 . 
ars, F., Ameyoe, A., Chevrel, P., Carpentier, E. L., & Illy, H. (2017). Analysis of a

driver model sensitivity to various types of distraction. Presented at the 5th in-
ternational conference on driver distraction and inattention. Retrieved from . https:

//hal.archives-ouvertes.fr/hal-01492034 . 

ars, F. , Deroo, M. , & Charron, C. (2014). Driver adaptation to haptic shared control
of the steering wheel. In Proceedings of the 2014 IEEE international conference on

systems, man, and cybernetics (pp. 1524–1528). San Diego . 
ars, F., Deroo, M., & Hoc, J.-M. (2014). Analysis of human-machine cooperation

when driving with different degrees of haptic shared control. IEEE Transactions
on Haptics, 7 (3), 324–333. https://doi.org/10.1109/TOH.2013.2295095 . 

Mars, F., & Navarro, J. (2012). Where we look when we drive with or without active

steering wheel control. Plos One, 7 (8), e43858. https://doi.org/10.1371/journal.
pone.0043858 . 

ars, F., Saleh, L., Chevrel, P., Claveau, F., & Lafay, J.-F. (2011). Modeling the vi-
sual and motor control of steering with an eye to shared-control automation.

In Proceedings of the human factors and ergonomics society annual meeting: 55
(pp. 1422–1426) . https://doi.org/10.1177/1071181311551296 . 

ulder, M. , Abbink, D. A. , & Boer, E. R. (2012). Sharing control with haptics: Seam-

less driver support from manual to automatic control. Human Factors, 54 (5),
786–798 . 

ulder, M., Paassen, M. M. v, & Boer, E. R. (2004). Exploring the roles of in-
formation in the manual control of vehicular locomotion: from kinematics

and dynamics to cybernetics. Presence, 13 (5), 535–548. https://doi.org/10.1162/
1054746042545256 . 

akayama, O. , Futami, T. , Nakamura, T. , & Boer, E. R. (1999). Development of a steer-

ing entropy method for evaluating driver workload. SAE Transactions, 108 (6),
1686–1695 . 

löchl, M., & Edelmann, J. (2007). Driver models in automobile dynamics ap-
plication. Vehicle System Dynamics, 45 (7-8), 699–741. https://doi.org/10.1080/

00423110701432482 . 
aleh, L. , Chevrel, P. , Claveau, F. , Lafay, J.-F. , & Mars, F. (2012). Contrôle latéral

partagé d’un véhicule automobile: Conception à base d’un modèle cybernétique

du conducteur et d’une commande H2 anticipative. Journal Européen Des Sys-
tèmes Automatisés, 46 (4-5), 535–557 . 

aleh, L., Chevrel, P., Claveau, F., Lafay, J.-F., & Mars, F. (2013). Shared steering control
between a driver and an automation: stability in the presence of driver behavior

uncertainty. IEEE Transactions on Intelligent Transportation Systems, 14 (2), 974–
983. https://doi.org/10.1109/TITS.2013.2248363 . 

aleh, L., Chevrel, P., & Lafay, J.-F. (2012). Optimal control with preview for lateral

steering of a passenger car: Design and test on a driving simulator. In R. Sipahi,
T. Vyhlídal, S.-I. Niculescu, & P. Pepe (Eds.), Time delay systems: Methods, applica-

tions and new trends (pp. 173–185). BerlinHeidelberg: Springer. Retrieved from .
http://link.springer.com/chapter/10.1007/978- 3- 642- 25221- 1 _ 13 . 

aleh, L. , Chevrel, P. , Mars, F. , Lafay, J.-F. , & Claveau, F. (2011). Human-like cybernetic
driver model for lane keeping. In S. Bittanti, A. Cenedese, & S. Zampieri (Eds.),

Proceedings of the 18th IFAC world congress (pp. 4368–4373) . 
alvucci, D. D., & Gray, R. (2004). A two-point visual control model of steering. Per-

ception, 33 (10), 1233–124 8. https://doi.org/10.106 8/p5343 . 

entouh, C. , Chevrel, P. , Mars, F. , & Claveau, F. (2009). A sensorimotor driver model
for steering control. In Proceedings of the 2009 IEEE international conference on

systems, man and cybernetics (pp. 2462–2467) . 
entouh, C., Soualmi, B., Popieul, J. C., & Debernard, S. (2013). Cooperative steering

assist control system. In 2013 IEEE international conference on systems, man, and
cybernetics (pp. 941–946) . https://doi.org/10.1109/SMC.2013.165 . 

ummala, H., Nieminen, T., & Punto, M. (1996). Maintaining lane position with pe-

ripheral vision during in-vehicle tasks. Human Factors, 38 (3), 442–451. https:
//doi.org/10.1518/001872096778701944 . 

ang, Z., Zheng, R., Kaizuka, T., Shimono, K., & Nakano, K. (2017). The effect of a
haptic guidance steering system on fatigue-related driver behavior. IEEE Transac-

tions on Human-Machine Systems , 1–8. PP(99) https://doi.org/10.1109/THMS.2017.
2693230 . 

ilkie, R. M., Kountouriotis, G. K., Merat, N., & Wann, J. P. (2010). Using vision to

control locomotion: Looking where you want to go. Experimental Brain Research,
204 (4), 539–547. https://doi.org/10.10 07/s0 0221- 010- 2321- 4 . 

ang, Y., Mcdonald, M., & Zheng, P. (2012). Can drivers’ eye movements be used to
monitor their performance? A case study. IET Intelligent Transport Systems, 6 (4),

4 4 4–452. https://doi.org/10.1049/iet-its.2012.0 0 08 . 

https://doi.org/10.1007/s10111-011-0192-5
https://tel.archives-ouvertes.fr/tel-01395282/document
https://doi.org/10.1016/j.ifacol.2015.11.110
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20160825&DB=&locale=en_EP&CC=WO&NR=2016132032A1&KC=A1&ND=4
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0005
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0006
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0006
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0007
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0007
https://doi.org/10.1109/TITS.2010.2092770
https://doi.org/10.1080/17470218.2013.819518
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0010
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0010
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0010
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0010
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0010
https://doi.org/10.1109/SMC.2013.629
https://doi.org/10.1109/37.60415
https://doi.org/10.1080/00423110801935798
https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20170223&DB=&locale=en_EP&CC=WO&NR=2017029443A1&KC=A1&ND=4
https://doi.org/10.1038/377339a0
https://doi.org/10.1038/369742a0
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0017
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0017
https://doi.org/10.1109/TITS.2006.874707
https://doi.org/10.1016/j.automatica.2004.11.030
https://doi.org/10.1167/8.11.10
https://hal.archives-ouvertes.fr/hal-01492034
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0022
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0022
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0022
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0022
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0022
https://doi.org/10.1109/TOH.2013.2295095
https://doi.org/10.1371/journal.pone.0043858
https://doi.org/10.1177/1071181311551296
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0026
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0026
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0026
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0026
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0026
https://doi.org/10.1162/1054746042545256
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0028
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0028
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0028
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0028
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0028
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0028
https://doi.org/10.1080/00423110701432482
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0030
https://doi.org/10.1109/TITS.2013.2248363
http://link.springer.com/chapter/10.1007/978-3-642-25221-1_13
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0033
https://doi.org/10.1068/p5343
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0035
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0035
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0035
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0035
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0035
http://refhub.elsevier.com/S1367-5788(17)30109-8/sbref0035
https://doi.org/10.1109/SMC.2013.165
https://doi.org/10.1518/001872096778701944
https://doi.org/10.1109/THMS.2017.2693230
https://doi.org/10.1007/s00221-010-2321-4
https://doi.org/10.1049/iet-its.2012.0008

	Modelling human control of steering for the design of advanced driver assistance systems
	1Introduction
	2A cybernetic driver model of steering control
	2.1Structure and foundations of the model
	2.2Cybernetic driver model identification

	3Model-based estimation of driver distraction
	3.1Detecting distraction through output or input disturbance estimation
	3.2Discriminating distraction types through parameter analysis
	3.3Conclusion

	4Haptic shared control of the steering wheel
	4.1Cooperation indicators for HSC
	4.2Synthesis of an electronic co-pilot for HSC
	4.2.1H2 preview
	4.2.2DVR model and control synthesis
	4.2.3Shared control with or without the driver model

	4.3Conclusion

	5General conclusion
	Acknowledgements
	AppendixDetailed notations
	A. Cybernetic driver model
	B. Distraction and haptic shared control (HSC) indicators and variables
	C. Vehicle-road model (VR)

	References


