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Abstract. (Priced) timed games are two-player quantitative games in-
volving an environment assumed to be completely antogonistic. Classical
analysis consists in the synthesis of strategies ensuring safety,
time-bounded or cost-bounded reachability objectives. Assuming a ran-
domized environment, the (priced) timed game essentially defines an
infinite-state Markov (reward) decision proces. In this setting the ob-
jective is classically to find a strategy that will minimize the expected
reachability cost, but with no guarantees on worst-case behaviour. In this
paper, we provide efficient methods for computing reachability strate-
gies that will both ensure worst case time-bounds as well as provide
(near-) minimal expected cost. Our method extends the synthesis algo-
rithms of the synthesis tool Uppaal-Tiga with suitable adapted rein-
forcement learning techniques, that exhibits several orders of magnitude
improvements w.r.t. previously known automated methods.

1 Motivation

Sparse time and resources are common problems to projects in almost any do-
main, ranging from manufacturing to office work-flow and program paralleliza-
tion. In a real world setting, the duration of a process is dependent on the tasks
it is composed of. The durations and arrival pattern of tasks are not static,
but uncertain by nature. Furthermore, tasks are often solved by different agents
running in parallel, creating races for shared resources. A scheduler is needed to
handle these conflict situations.

The above type of scheduling problem may conveniently be represented as a
timed game (TG) [27], being a two-player quantitative game involving an ad-
versary (modeling the environment – here the tasks) which is assumed to be
completely antagonistic. Classical analysis consists in the synthesis of strategies
ensuring safety or time-bounded reachability objectives. In all cases, decidability
for TGs are obtained from the existence of equivalent finite-state games con-
structed using the classical notion of regions for timed automata [3]. Moreover,
efficient symbolic on-the-fly algorithms using have been developed and imple-
mented as found in Uppaal-Tiga [4]. The assignment of resources to tasks
incurs a cost – e.g. energy-consumption. This naturally leads to the extended
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setting of priced timed games [10,11] (PTG), for which – unfortunately – the
corresponding synthesis problem of cost-bounded reachability strategies is un-
decidable in general [13], with the one-clock case being a notable exception [11].

Now, assuming a randomized environment – e.g. where the duration of tasks
are stochastic – the (priced) timed game essentially defines an infinite-state
Markov (reward) decision process, here named (priced) timed Markov decision
processes (PTMDP). In this setting the objective is to find a strategy that will
minimize the expected reachability cost, but with no guarantees on worst-case
behavior.

In this paper, we provide efficient methods for synthesizing reachability strate-
gies for PTMDPs that subject to guaranteeing a given worst case time-bound,
will provide (near-) minimal expected reachability cost.

Assume a (deterministic) strategy has been synthesized guaranteeing a given
time-bound, we may – as a first attempt – apply statistical model checking as
found in Uppaal SMC [16], to estimate the expected reachability cost in the
(priced) timed game under the given strategy. Statistical model checking [26] is
a highly scalable technique which achieves its estimates by random sampling of
runs, the number of which depending on the desired precision and confidence.
However, there may be several strategies guaranteeing the given time-bound and
we want the one with minimal expected reachability cost. For this much more
ambitious goal, we apply suitable adapted reinforcement learning techniques:
starting from a uniformized version of the most permissive strategy guaranteeing
the given time bound, the learning technique iteratively improves the strategy
– by observing the effect of control-choices in sampled runs – until a strategy
with satisfactory expected reachability-cost is found. Crucial to the efficiency of
our simulation-based synthesis method is the effective and space-efficient rep-
resentation and manipulation of strategies. Besides the symbolic (zone-based)
representation used for TGs, we consider a number of techniques well-known
from Machine Intelligence (covariance matrices, logistic regression) as well as
a new splitting data-structure of ours. The resulting method is implemented
in a new version of Uppaal-Tiga that supports the statistical model-checking
techniques of Uppaal. The experimental evaluation has been performed on a
large collection of job-shop-like problems (so-called Duration Probabilistic Au-
tomata) demonstrating several order or magnitude improvements with respect
to previous exact synthesis methods [22].

Example. Consider the PTMDP of Fig. 1 modeling a process consisting of a
sequence of two uncontrollable steps (indicated by dashed edges), r, d, with a
possible control action (indicated by full edges), a, b, w being taken after the
first step. The first step r is taken between 0 and 100 time-units according to
a uniform distribution1 as can be seen by the invariant x<=100 and the absent
guard, and with cost-rate c’==0. In the next step, the controller may suggest to
play any of the time-action pairs (d, a), (d, b) with d ≤ 100 or (100, w). These

1 Following the stochastic semantics for timed automata components applied in Up-
paal SMC.
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will be in competition with the uniformly distributed choices of the environment
(e, d) with e ∈ [90, 100]. It is clear that in terms of worst-case time, the best
choice for the controller is (100, w) with 200 as worst-case overall time. In con-
trast, the worst choice for the controller is (100, b) with 340 as worst-case time.
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Fig. 1. A Priced Timed MDP

For expected cost, the optimal and
worst choices are (0, b) respectively
(90, a) with 2 ∗ 80 = 160 respectively
4 ∗ 90 + 3 ∗ 90 = 630 as expected re-
maining reachability cost due to the
uniform distributions resolving the
delays. Thus, in case there is no up-
per time bound to be guaranteed (or
it is above 240) the cost-optimal strat-
egy will be to choose b immediately,
yielding an expected cost of 160.

Now assume that the END loca-
tion must be reached within an upper
time-bound of 210. The on-the-fly method of Uppaal-Tiga (exploiting early
termination) may (in fact will) produce the strategy which deterministically
chooses (100, w). This clearly meets the given upper time-bound, and yields an
expected reachability cost of 4 ∗ 95 = 380. The most permissive strategy guar-
anteeing the time-bound 210 (also obtainable by Uppaal-Tiga) will have the
choice depend on the time-point t when CHOICE is reached: if t > 90 only (100, w)
is a legal choice; if 70 < t ≤ 90 also (d, a) with d ≤ 90− t are legal choices, and
finally if t ≤ 70 also (e, b) with e ≤ 70− t are legal. The strategy with minimal
expected reachability cost while guaranteeing the time-bound 210, will (obvi-
ously) deterministically make the “cheapest” legal choice for a given value of t,
i.e. (100, w) for t > 90, (0, a) when 70 < t ≤ 90, and (0, b) when t ≤ 70. This
yields 204 as minimum expected value

Related Work. A number of models combining continuous time and Markov
decision processes have previously been proposed. We mention some of these
below, and point out that they are all special cases of our proposed PTMDP
formalism.

Probabilistic timed automata (PrTA) [21,24] extends the fully non-determini-
stic formalism of timed automata with probabilistic resolution of discrete choices,
thus providing an infinite-state MDP with choices of dealys to be resolved by the
strategy. Decidability for PrTA w.r.t. optimal (minimum and maximum) reach-
ability probabilities as well as general model checking with respect to PCTL
are obtained using region-constructions. Tool support for analysis of PrTAs are
provided in Prism [23]. More recently, cost-bounded reachability for priced ex-
tensions of PrTAs has been considered, showing undecidability for more than 3
clocks [6] and with the semi-decision algorithmic based tool Fortuna [7].

Continuous-time Markov decision processes (CTMDPs) are also special cases
of PTMDPs, where the delay choice of the environment is always made ac-
cording to exponential distributions, and with choices of the strategy being
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instantaneous. In the setting of CTMDPs a number of bounded reachability
synthesis problems has been recently addressed. In [19] multi-dimensional max-
imal cost-bounded reachability probability over CTMDPs are considered, offer-
ing a numerical approximation algorithm. In [8] a marriage of CTMDPs with
timed automata is considered showing the existence of finite optimal schedulers
for time-bounded reachability objectives. In [12], stochastic real-time games are
considered where states are partitioned into environment nodes - where the be-
haviour is similar to CTMDPs - and control nodes - where one player chooses a
distribution over actions, which induces a probability distribution for the next
state. For this game model, objectives are given by deterministic timed automata
(DTA), with results focusing on qualitative properties.

Our real-time synthesis problem – aiming at optimal expected cost subject
to worst-case time bounds – extends the notion of beyond worst-case synthesis
in [14] introduced for finite state MDPs, with consideration of minimizing ex-
pectation of mean-payoff (shown to be in NP∩coNP) as well reachability cost
(shown to be NP-hard). The DPA formalisms considered in [22] is a proper sub-
class of PTMDP of this paper. In [22] exact methods for synthesizing strategies
with minimal expected completion time are given and implemented. However, no
worst-case guarantees are considered. As we shall demonstrate our reinforcement
learning method produces identical solutions and with an order of magnitude
time-improvement. [25] uses a version of Kearns algorithm to find a memoryless
scheduler for expecting reward, however with no implementation provided, and
no real-time consideration. Our use of statistical model checking for learning
optimal strategies of PTMDPs extends that of [20] from finite-state MDPs to
the setting of timed game automata based, infinite state MDPs requiring the
use of symbolic strategies. Finally, statistical model checking has been used for
confluent MDPs in [9].

2 Priced Timed Markov Decision Processes

Priced Timed Games [27] are two-player games played on (priced) timed
automata [3,5]. Here we recall the basic results. Let X = {x, y, ...} be a finite
set of clock. We define B(X) as the set of clock constraints over X generated by
grammar: g, g1, g2 ::= x �� n | x − y �� n | g1 ∧ g2, where x, y ∈ X are clocks,
n ∈ N and �� ∈ {≤, <,=, >,≥}.
Definition 1. A Priced Timed Automaton (PTA) A = (L, �0, X,Σ,E, P, Inv)
is a tuple where L is a finite set of locations, �0 ∈ L is the initial location,
X is a finite set of non-negative real-valued clocks, Σ is a finite set of actions,
E ⊆ L×B(X)×Σ×2X×L is a finite set of edges, P : L → N assigns a price-rate
to each location, and Inv : L → B(X) sets an invariant for each location.

The semantics of a PTA A is a priced transition system SA = (Q, q0, Σ,→),
where the set of states Q consists of pairs (�, v) with � ∈ L and v ∈ R

X
≥0 such

that v |= Inv(�)}, and q0 = (�0, 0) is the initial state. Σ is a finite set of actions,
and → ⊆ Q × (Σ ∪ R≥0) × R≥0 × Q is the priced transition relation defined
separately for action a ∈ Σ and delay d ∈ R≥0 as:
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– (�, v)
a−→0 (�′, v′) if there is an edge (�

g,α,r−−−→ �′) ∈ E such that v |= g,
v′ = v[r �→ 0] and v′ |= Inv(�′),

– (�, v)
d−→p (�, v + d), where p = P (�) · d, v |= Inv(�) and v + d |= Inv(�).

Thus, the price of an action-transition is 0, whereas the price of a delay transition
is proportional to the delay according to the price-rate of the given location.
We shall omit price-subscripts when the actual price do not matter. We shall
assume that SA is deterministic in the sense that any state q ∈ Q has at most
one successor qα for any action or delay α ∈ (Σ ∪R≥0). A run of a PTA A is an
alternating sequence of priced action and delay transitions of its priced transition

system SA: π = q0
d0−→p0 q′0

a0−→0 q1
d1−→p1 q′1

a1−→0 · · · dn−1−→pn−1 q′n−1

an−1−→0

qn · · · , where ai ∈ Σ, di, pi ∈ R≥0, and qi is a state (�qi , vqi). We denote the set

of runs ofA as ExecA, and ExecfA (ExecmA ) for the set of its finite (maximal) runs.
For a run π we denote by π[i] the state qi, and by π|i (π|i) the prefix (suffix) of π
ending (starting) at qi. For a finite run π, C(π) denotes its total accumulated cost
∑n−1

i=0 pi. Similarly T (π) denotes the total accumulated time
∑n−1

i=0 di. An infinite

run π is said to be cost-divergent provided limn→∞
∑n−1

i=0 pi = +∞. We say that
A is (cost-) non-Zeno provided every infinite run is time-(cost-)divergent.

Definition 2. A Priced Timed Game G (PTG) is a PTA whose actions Σ are
partitioned into controllable (Σc) and uncontrollable (Σu) actions.

We note, that for PTAs and PTGs with P (�) = 1 in all locations �, we obtain
standard timed automata (TA) and timed games (TG). Given a (P)TG G, a set
of goal-locations G ⊆ L and a cost- (time-) bound B ∈ R≥0, the (G,B) cost-
(time-) bounded reachability control problem for G consists in finding a strategy σ
that will enforce G to be reached within accumulated cost (time) B. Informally,
a strategy σ decides to continue a run π either by a proposed controllable action
a ∈ Σc or by a delay - indicated by the symbol λ. The formal definition of this
control problem is based on definitions of strategy and outcome.

Definition 3. A strategy σ over a PTG G is a partial function from ExecfG to
P (Σc ∪ {λ}) \{∅} such that for any finite run π ending in state q = last(π), if

a ∈ σ(π) ∩Σc, then there must exist a transition q
a−→ q′ in SG.

Given a PTG G and a strategy σ over G, the outcome Out(σ) is the subset of
ExecG defined inductively by q0 ∈ Out(σ), and:

– If π ∈ Out(σ) then π′ = π
e−→ q′ ∈ Out(σ) if π′ = ExcelG and either one of

the following three conditions hold:

1. e ∈ Σu, or
2. e ∈ Σc and e ∈ σ(π), or

3. e ∈ R≥0 and for all e′ < e, last(π)
e′−→ q′ for some q′ s.t. σ(π e′−→ q′) � λ.

Let (G,B) be a cost- (time-) bounded reachability objective for G. We say
that a maximal, finite run π is winning w.r.t. (G,B), if last(π) ∈ G × R

X
≥0 and
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C(π) ≤ B. A strategy σ over G is a winning strategy if all runs in Out(σ) are
winning (w.r.t. (G,B)).

A memoryless strategy σ only depends on the last state of a run, e.g. whenever
last(π) = last(π′), then σ(π) = σ(π′). For unbounded reachability and safety ob-
jectives for TGs, memoryless strategies suffices [27], For TGs with an additional
clock time, which is never reset (here named clocked TGs), memoryless strategies
even suffices for time-bounded reachability objectives.

The notion of strategy in Def. 3 is non-deterministic, thus inducing a natural
order of permissiveness : σ � σ′ iff σ(π) ⊆ σ′(π) for any finite run π. Deter-
ministic strategies – returning singleton-sets for each run – are least permissive.
For safety objectives – being maximal fixed-points – strategies are closed under
point-wise union, yielding (unique) most permissive strategies. For TGs being
non-Zeno, time-bounded reachability objectives are safety properties.

Theorem 1. Let G be a non-Zeno, clocked TG. If a time-bounded reachability
objective (G, T ) has a winning strategy, then it has (a) deterministic, memoryless
winning strategies, and (b) a (unique) most permissive, memoryless winning
strategy σp

G(G, T ).

The tool Uppaal-Tiga [4] provides on-the-fly, symbolic (zone-based) algo-
rithms for computing both types of memoryless safety strategies for TGs. For
PTGs, the synthesis problem for cost-bounded reachability problems is in general
undecidable [13].

Priced Timed Markov Decision Processes. The definition of outcome of
a strategy in the previous Section assumes that an environment behaves com-
pletely antagonistically. We will now assume a randomized environment, where
the choices of delay and uncontrollable actions are stochastic according to a
(delay,action)-density function for a given state.

Definition 4. A Priced Timed Markov Decision Process (PTMDP) is a pair
M = 〈G, μu〉, where G = (L, �0, X,Σc, Σu, E, P, Inv) is a PTG, and μu is a
family of density-functions, {μu

q : ∃�∃v.q = (�, v)}, with μu
q (d, u) ∈ R≥0 assigning

the density of the environment aiming at taking the uncontrollable action u ∈ Σu

after a delay of d from state q.

In the above definition, it is tacitly assumed that μu
q (d, u) > 0 only if q

d,u−→
in G. Also, we shall wlog for time-bounded reachability objectives assume that∑

u(
∫
t≥0

μu
q (t, u)dt) = 12. In case the environment wants to perform an action

deterministically after an exact delay d, μu
q will involve the use of Dirac delta

function (see [15]).
The presence of the stochastic component μu makes a PTMDP a de facto

infinite state Markov decision process. Here we seek strategies that will minimize
the expected accumulated cost of reaching a given goal set G.

2 For a time-bounded reachability objective (G,T ), we may without affecting control-
lability assume that each location has each action (controllable or uncontrollable)
action enabled after T .
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Definition 5. A stochastic strategy μc for a PTMDP M = 〈G, μu〉 is a family
of density-functions, {μc

q : ∃�∃v.q = (�, v)}, with μc
q(d, c) ∈ R≥0 assigning the

density of the controller aiming at taking the controllable action c ∈ Σc after a
delay of d from state q.

Again it is tacitly assumed that μc
q(d, c) > 0 only if q

d,c−→ in G. Now, a
PTMDP M = 〈G, μu〉 and a stochastic strategy μc defines a race between the
environment and the control strategy, where the outcome is settled by the two
competing density-functions. More precisely, the combination of M and μc de-
fines a probability measure PM,μc on (certain) sets of runs.

For �i ∈ L and Ii = [li, ui] with li, ui ∈ Q, i = 0..n, we denote the cylinder set
by C(q, I0�0I1 · · · In−1�n) consisting of all maximal runs having a prefix of the

form: q
d0−→ a0−→ (�1, v1)

d1−→ a1−→ · · · dn−1−→an−1−→ (�n, vn) where di ∈ Ii for all i < n.
Providing the basis for a σ-algebra, we now inductively define the probability
measure for such sets of runs3:

P〈G,μu〉,μc

(C(q, I0�0I1 · · · In−1�n)
)
=

∑

p∈{u,c}

∑

a∈Σp

�q
a→�1

∫

t∈I0

μp
q(t, a) ·

( ∫

τ>t

μp
q(τ )dτ

) · P〈G,μu〉,μc

(C((qt)a, C(I1 · · · In−1�n)
)
dt

The above definition requires a few words of explanation: the outermost sums
divide into cases according to who wins the race of the first action (c or u),
and which action a the winner will perform. Next, we integrate over all the legal
delays the winner may choose according to the given interval I0 using the relevant
density-function. Independently, the non-winning player (p) must choose a larger
delay; hence the product of the probability that this will happen. Finally, the
probability of runs according to the remaining cylinder I1�1, · · · , In−1�n from
the new state (qt)a is taken into account.

Now let π ∈ Execm and let G be as set of goal locations. Then CG(π) =
min{C(π|i) : π[i] ∈ G} denotes the accumulated cost before π reaches G4. Now
CG is a random variable, which for a given stochastic strategy, μc, will have ex-
pected value EM

μc (CG) given by the Lesbegue integral
∫
π∈Execm CG(π)PM,μc(dπ).

Now, we want a (near-optimal) stochastic strategy μo that minimizes this ex-
pected value, subject to guaranteeing T as a worst-case reachability time-bound
– or alternatively – subject to μo being a stochastic refinement (≺5) of the
most permissive time-bounded reachability strategy σp(G, T ) for M. That is
E
M
T (CG) = inf

{
E
M
μc (CG) | μc ≺ σp(G, T )

}
. We note that letting μc range over

deterministic strategies σd suffices in attaining E
M
T (CG).

3 With the base case, e.g. n = 0, being 1.
4 Note that CG(π) will be infinite in case π does not reach G. However, this case will
never happen in our usages.

5 μc ≺ σ iff μc
q(d, a) > 0 only if λ ∈ σ(qe) for all e < d and a ∈ σ(qd).
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Fig. 2. Optimal scheduler approximation using reinforcement learning

3 Optimal Scheduler Approximation

Given a PTMDP M and a time-bounded reachability goal (G, T ), we present
a method for approximating E

M
T (CG) by computing a (deterministic) sched-

uler obtained using reinforced learning. In general, the technique of statistical
model-checking (SMC) is used to generate runs according to a given stochastic
semantics and then to analyze their outcomes w.r.t some property or expecta-
tion. In our context, given a PTMDP M and a stochastic control strategy μc,
we use SMC to generate runs that are used both to estimate E

M
μc (CG) and to

iteratively improve μc towards μo. We combine the techniques of Uppaal-Tiga
to guarantee a given time-bound and Uppaal SMC for expected-cost optimality.
The core concept is similar to [20] but differs on the goal of the scheduler. We
also differ on the termination criteria since our algorithm can reset itself to get
out of local minima. We start with an overview of the procedure:

Figure 2 shows the general flow of the algorithm. The idea is to reinforce
a current stochastic strategy representing distributions over controllable actions
noted μc. This strategy is initialized to a uniform strategy noted U(σP ) based on
a most permissive (zone-based) strategy σP obtained from Uppaal-Tiga. This
strategy allows all possible moves that still guarantee the controller to meet its
goal within the given time-bound. The algorithm reinforces μc with μc′ unless
μc′ is not improving too many times in a row, in which case it is reset to the
initial uniform strategy. When it is improving and it is better than the currently
best known strategy μc

b, then it replaces it. A strategy is better if it exhibits a
lower expected cost.

The different steps are detailed as follows. First, the simulation step uses
Uppaal SMC to generate at most maxGood good runs that are used for learning.
To do so, at most maxRuns runs in total are generated. The result is a set of runs
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Π . It may happen that Π is empty, in which case μc is reset and the simulation
is restarted. This is not depicted on the figure. Second, the set of runs Π is then
filtered where at most maxBest best runs among those are kept. We retain the
subset Π ′ ⊆ Π of runs that have minimum cost. In practice this is done with
a heap structure to keep a set of maxBest runs with their associated costs used
for ordering the runs.

Then, central to the algorithm, comes the learning phase where the actual
algorithm depends on the data structure used to represent μc. This phase com-
putes a new μc′ and we detail in the following section different ways to represent
μc. Also, the strategy σP from Uppaal-Tiga is used here to ensure that any
learned strategy still guarantees the required bound.

The resulting strategy is then determinized before being evaluated. This step
uses Uppaal SMC again to evaluate the expected time (or cost) for the rein-
forced strategy det(μc′) on a number of evalRuns runs. The resulting μc′ may
have a lower cost than μc, in which case we update μc (and possibly the best
known strategy μc

b if it is better than this one too). However, if μc′ is not better
than μc maxNoBetter times then we reset it to μc = U(σP ). This makes sure
that the reinforcement learning does not get stuck into local minima. Finally,
the algorithm loops at most maxIteration times if μc has been reset no more
than maxResets times.

When the algorithm stops, the best known deterministic strategy det(μc
b) is

outputted. It is then possible to “zonify” the strategy, meaning to approximate
it with the zone-based representation σd

z used in Uppaal-Tiga, thus allowing
for model checking of additional properties.

4 Strategies: Data Structures, Algorithms and Learning

Non-determistic Strategies. Crucial to our reinforcement learning algorithm
Fig. 2 is the efficient representation and manipulation of control strategies. In
Uppaal-Tiga, non-deterministic strategies are represented using zones, e.g. sets
Z of valuations described by a guard in B(X). In a representation R, each lo-
cation � has an associated finite set R� = {(Z1, a1), . . . , (Zk, ak)} of zone-action
pairs, where ai ∈ Σc∪{λ}. NowR represents the strategy σR where σR((�, v)) � a
iff (Z, a) ∈ R� for some Z with v ∈ Z. In Uppaal-Tiga R is efficiently imple-
mented as a hash-table with the location � as key, and using difference bounded
matrices (DBMs) [17] for representing zones.

For a non-determistic strategy σ and (l, v) a state, we write (l, v)
d→σ to

denote that σ allows a delay of d, i.e. for all d′ < d, λ ∈ σ(l, v + d′). Sim-

ilarly, we write (l, v)
c→σ to denote that the controllable action c is allowed,

i.e. c ∈ σ(l, v). Uniformization and zonification are operations between non-
deterministic and stochastic strategies. Uniformization is an operation that re-
fines a non-deterministic strategy σ into a stochastic strategy μσ, subject to the

condition that μσ
(l,v)(d, c) > 0 if and only if (l, v)

d→σ
c→σ. Several implemen-

tations of uniformization may easily be obtained from the representation of a
non-determistic strategy. Dually, zonification is an operation that abstracts a
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stochastic strategy μ into a non-determistic strategy σR, with a zone-based rep-
resentation R, and subject to the condition that whenever μ(l,v)(d, c) > 0 then

(l, v)
d→σR

c→σR .

Stochastic and Non-Lazy Strategies. For stochastic strategies, we shall in
the following restrict our attention to so-called non-lazy strategies6, μc, where
the controller either urgently decides on an action, i.e. μc

q(d, a) = 0 if d > 0, or
prefer to wait until the environment makes a move, i.e. μc

(�,v)(d, a) = 0 whenever

v(time) + d ≤ T with T being the time-bound of the reachability property in
question. We shall use w to denote such an indefinite delay choice. Thus, for non-
lazy stochastic strategies, the functionality may be recast as discrete probability
distributions, i.e. μc

q : (Σc ∪ {w}) → [0, 1]. In particular, we note that any non-
lazy, stochastic strategy can trivially be transformed to a deterministic strategy
by always selecting the action with the highest probability.

In the following we introduce three different data structuring and learning
algorithms for stochastic strategies. Given that memoryless strategies suffices,
we will learn a set of sub-strategies μc

� = {μc
q : ∃v.q = (�, v)}, where � ∈ L.

The sub-strategies are then learned solely from a set of (action,valuation) pairs.
Given a set of runs Π the relevant information for the sub-strategy μc

� is given
as In�:

In� = {(sn, v) ∈ (Σc ∪ R)× R
X
≥0 | (q0 s0→p0 . . .

sn−1→ pn−1 (�, v)
sn→pn . . . ) ∈ Π}

Thus, in the following we only describe methods for learning sub-strategies.

Sample Mean and Covariance. For each controllable action c and location �,
we approximate the set of points representing clock valuations from which that
action was successfully taken in � by its sample mean and covariance matrix.
Suppose we have N points corresponding to clock valuations v1, . . . , vN . The
sample mean vector v is the arithmetic mean, component-wise, for all the points:
v = 1

N

∑N
k=1 vk. The sample covariance matrix is defined as the square matrix

Q = [qij ] =
1

N−1

∑N
k=1(vk − v)(vk − v)T .

Intuitively, if the sample covariance qij between two clocks xi and xj is posi-
tive, then bigger (resp. smaller) values of xi correspond to bigger (resp. smaller)
values of xj . If it is negative, then the bigger (resp. smaller) values of xi corre-
spond to the smaller (resp. bigger) values of xj . If it is zero then there is no such
relation between the values of those two variables.

Note that the covariance matrix has size n2 where n is the number of clocks
but it is symmetric. Furthermore, for the matrix to be significant we need at
least n(n + 1)/2 sample points that correspond to the number of (potentially)
different elements in the matrix, otherwise we default to using only the mean
vector.

6 In [22] it is shown that non-lazy strategies suffices for optimal scheduling of so-called
DPAs.
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Distribution. The purpose of this representation is to derive a distance from an
arbitrary point to this “set” that is used to compute a weight for each controllable
action. For a given valuation, such a distance d(v) is evaluated as follows: d(v)2 =
(u−v)TQ−1(u−v). If there are too few sample points then we default to using the
Euclidian distance to the mean v. The weight is then given by w(v) = N ·e−d(v).
The weights for the different actions define a probability distribution.

Algorithm and Complexity. When generating runs using SMC, controllable ac-
tions are chosen according to the represented distribution that is initialized to
be uniform. The time complexity is O(n2), n being the number of clocks. For
the learning phase, the covariance matrix is computed using the filtered “best”
samples. Then we need to invert it (once) before the next learning phase. The
time complexity is O(n3). This is done for every action.

Logistic Regression. We consider a sub strategy μc
� where the only options are

either to take a transition (a) or wait until the environment takes a transition
(w) (the case with more options is addressed later). The goal is to learn the
weights β0, β1, . . . , β|X| ∈ R to use in the logistic function: Equation 4.

f(v) =
1

1 + e−(β0+β1·v(x1)+···+β|X|·v(x|X|))
,

where x1, . . . , x|X| ∈ X . This function, combined with the learned weights
β0, β1, . . . , β|X|, defines a stochastic sub-strategy s.t. μc

(�,v)(a) = f(v) and

μc
(�,v)(w) = 1 − f(v). Using Figure 3 we here give an intuition on how, given

an input set In�, we learn the weights β0, . . . , β|X| (for details, see [18]). We
assume that there exists only two options (a and w) in the location �, and (for
simplicity and wlog) a single clock in the system. For each input (sn, v) ∈ In�:

– If sn = a, construct a point at (v(x), 1) where x ∈ X is the clock. These are
the triangles in Figure 3.

– Otherwise, construct a point at (v(x), 0) where x ∈ X is the clock. These
are the circles in Figure 3.

We use L1-regularized logistic regression provided by LIBLINEAR [18] for
fitting the function to the constructed points. The output of this process is the
weights β0, β1, . . . , β|X| and the result is shown in Figure 3. In the case of more
than two options (e.g. if we also had an action b) we use the one-versus-all
method. This method learns a function for each action7.

Complexity. The complexity of fitting the points using this method is O(|In�|+i)
[29], where i is the number of iterations before the fitting algorithm converges
thus for multiple actions, the complexity for learning is O(c · (|In�|+ i)) where
c is the number of options. We need to store c · |X | weights per location, this is
the space complexity.

7 If e.g. we have three actions, a, b and w, we will learn three functions, one which is
a versus b and w, one which is b versus a and w, and one which is w versus a and b.
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f (v)

v(x)

f(v) =
1

1 + e−(−1.131+0.647v(x))

Fig. 3. Example of logistic regression with one clock x and two options a and w. For
valuation v, f(v) gives the probability of selecting action a (triangle) and 1−f(v) gives
the probability of selecting action w (circle). The probabilities are equal at v(x) = 1.747
because f(0.5) = 1.747.

Splitting. Here we represent a sub-strategy as a binary tree, where an internal
node is a four-tuple (x, s, low, high), where low and high are either internal nodes
or leaf nodes, x ∈ X is the clock we split on and s ∈ R>0 is the discriminating
value for the clock. A leaf node is a function W mapping actions, a, from Σc∪{w}
to weights, W (a) ∈ R>0. Figure 4 shows an example of a tree with a splitting
for the clock x at value 2. For a given clock valuation v, the tree is traversed
to the leaf node W to which it “belongs”, with W represented by the pairs
(a,W (a)) with W (a) > 0. This defines a stochastic sub-strategy μc

� s.t. μ
c
�,v)(a) =

W (a)/
∑

b∈Σc∪{w}W (b) for all a ∈ Σc ∪ {w}. Initially, the tree consists of only a
single leaf node assigning weight 1 to all actions. In each iteration of the learning
algorithm presented in Section 3, a percentage of the leaf nodes are split on one
clock according to the following algorithm:

1. Select nodes to split. Given a set In�, count how many of these did not
perform the action with the highest weight in the corresponding leaf node.
The leaf nodes over all locations with the highest counts are chosen for
splitting, the remaining have their weights updated using reinforced learning.

2. Select clock to split on. For each node to split:

(a) Let Inn
l be the runs from In l which satisfy the constraints of the tree,

to this leaf node.
(b) For every clock x ∈ X :

i. Find the minimum and maximum v(x) where (sn, v) ∈ Inn
l and call

the average of these two s.
ii. In the set {(sn, v) ∈ Inn

� | v(x) ≤ s} count for each a ∈ Σc ∪ {w}
how many runs choose a. Insert these points in a vector. Make a
corresponding vector for the set {(sn, v) ∈ Inn

� | v(x) > s}.
iii. Compute Euclidean distance of the vectors.

3. Update tree. For clock x and split s with largest Euclidian distance, split
the leaf node by replacing the node itself with internal node (x, s, low, high)
where low and high are new leaf nodes. Compute weights using reinforced
learning for the new leaf nodes.
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x, 2

{( , 3),( , 1),
( , 3)}

{( , 1),( , 6),
( , 1)}

Fig. 4. A binary tree with a splitting on clock x and value 2

Complexity. The complexity of step 1 is O(nl · |Π |) where nl is the current
number of leafs in the tree, and Π is the number of good runs in the batch. The
complexity of step 2 is O(nl · |X | · |Π |) and the complexity of step 3 is O(|Π |).
This means the complete complexity of the whole learning is O(nl · |X | · |Π |). In
step 1 we select a percentage of the clocks to split on, thus the space complexity
of this method is exponential in the worst case, however we bound this by not
allowing splitting a leaf on a clock with a range shorter than a predefined (small)
constant.

5 Experiments

We now present experiments for evaluating the algorithms proposed in Section
4. Table 1 shows a selection of results. The results are elaborated in the following
sections. The full set of results will be available in a full version of this paper to be
found on arXiv.org of Cornell University. In each of the experiments, we use 2000
runs pr. iteration. We have evaluated the learned strategies using Uppaal SMC,
also with 2000 runs.

Small Examples. The first row in Table 1 shows the statistics for the moti-
vational example in Figure 1, for obtaining the optimal strategy w.r.t. expected
cost under the constraint that END is guaranteed to be reached within 210 time
units. Recall from Section 1 that the optimal expected cost for this case is 204.
An optimal strategy according to SMC is found using all the methods, achieving
an expected cost very close to the optimal expected cost.

The second row shows the statistics for a Go-To-Work example from [14]. We
first use Uppaal-Tiga to ensure that you are guaranteed to get to work in 60
time units and then minimize the expected time for going to work under this
constraint. The three different methods find strategies with the same expected
time, the splitting is the fastest and uses slightly less memory than the others.

Duration Probabilistic Automata. In Section 1, we initially mentioned a
type of scheduling problems where tasks have uncertainty in execution time
and depends no an amount of resources. This class of job-shop-like scheduling
problems can be represented as Duration Probabilistic Automata (DPAs) [22].
A DPA is a multiset of resources and a set of Simple Duration Probabilistic
Automata (SDPAs). An SDPA is a series of tasks which cannot be executed in
parallel, be preempted and must be executed according to some order. Each task
requires a multiset of resources and has a uniformly distributed duration with a
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Table 1. Computed expected cost (1st row) and time/memory consumption for syn-
thesis (2nd and 3rd rows) for various strategies. 4th row shows resets/iterations to find
optimal strategy. For uniform strategies, only the computed expected cost is reported.
Time/memory consumption for computing exact optimal strategies by Kempf et al.
[22] reported where available.

Model Uniform Co-variance Splitting Regression Exact [22]

Motivational 404.299 205.169 206.328 203.721
example 33.78s 30.55s 42.61s

8.17MB 15.79MB 8.46MB
2/82 4/109 1/52

38.64 32.69 32.81 32.81
GoWork 9.8s 24.41s 14.18s

7.96MB 8.38MB 8.08MB
5/72 0/10 4/71

18.08 17.53 17.34 17.38
p0s3p1s4 4 28.84s 27.06s 51.92s 1062.77s

8.75MB 17.25MB 8.88MB 145.47MB
3/54 3/40 2/58

18.56 17.75 16.90 16.83
p0s3p1s4 16 36.67s 46.13s 69.51s 176.15s

8.63MB 14.38MB 9.07MB 35.60MB
6/119 0/22 0/27

19.90 19.27 19.21 19.27
p0s4p1s4 5 45.91s 47.1s 60.11s 8547.52s

9.03MB 26.11MB 9.23MB 486.92MB
1/31 3/86 5/115

3946.76 2213.35 2303.47 2218.34
ran-4-3 196.19s 242.7s 330.64s

19.65MB 124.06MB 20.28MB
2/59 1/37 3/141

8068.02 4111.77 4221.75 3641.61
ran-4-4 323.35s 281.58s 459.08s

34.46MB 167.66MB 28.88MB
5/190 6/159 5/194

3965.73 2765.19 2780.45 2765.77
tiga-ran-4-3 230.06s 351.45s 337.39s

17.44MB 127.10MB 25.23MB
4/88 5/165 6/164

8058.78 6343.45 6307.29 6358.3
tiga-ran-4-4 262.09s 323.7s 270.93s

26.37MB 170.63MB 20.76MB
2/32 5/121 2/30

given time-interval. The DPA scheduling problem is now: given a configuration of
an DPA, which SDPA should be allocated which resources at what time in order
to minimize expected completion time? For this scheduling problem, Kempf et
al. [22] provide a method for exact optimal scheduler synthesis under uncertainty.
We will use their results as a benchmark. Poulsen et al. [28] provides a method
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for translating DPA into TAs with a uniform scheduler, it is trivial to adapt this
for translating DPAs into PTMPDs.

Qualitative Comparison. Rows 3-5 show the statistics of obtaining the optimal
strategy for three small models (2 processes, 2 tasks) from Kemp et al. [22]8

using our approach. If we examine the synthesized strategies, we see that these
are in fact the same strategies as those found using the exact computation (with
decision boundaries located within 0.5 time units of the optimal boundaries).
We also observe that even though an optimal strategy is found, this does not
affect the expected time significantly. Furthermore, the exact computation of
[22] for these models took between 176 − 8547 seconds, whereas our method
synthesize optimal strategies in less than 70 seconds in each case, thus an order
of magnitude faster and less memory-consuming.

Scalability Comparison. For testing the method on larger models, we randomly
generate a number of larger DPAs (3-5 processes, 3-5 tasks). On two of these
DPAs we first ran Uppaal-Tiga to find the best possible worst case time guar-
antee (rows 8, 9 in Table 1). Then on all four (rows 6 − 9 in Table 1) we ran
the three different methods to synthesize a strategy with near-minimal expected
completion-cost subject to the possible time-bound guarantee.

Generally we observe, that it is specific to the example which method performs
the best. We observe that all three methods are able to learn a strategy which
is significantly better than the uniformly random strategy. We see that in the
examples, where we constrain the allowed strategies using Uppaal-Tiga only
little overhead is incurred, but the strategy we learn does not improve as much as
otherwise. This is natural as Uppaal-Tiga constrain the choices we are allowed
to learn.

6 Conclusion and Future Works

In this paper, we have presented a new technique that combines classical con-
troller synthesis with reinforcement learning to compute strategies that provide
near optimal expected cost and time-bound guarantees. Our experiments show
very good results on the class of DPA models. The framework presented is gen-
eral and not limited to neither DPAs or PTMDPs. In particular, if a time-bound
is not required then we can omit the Uppaal-Tiga step and apply our tech-
nique to hybrid MDPs by utilizing Uppaal SMC’s support for stochastic hybrid
systems [15]. Future works include developing suitable data structures for more
general classes of strategies than non-lazy ones. Though our method is guaran-
teed to converge to the optimal strategy (under the assumption of non-lazyness),
it would be usefull if an estimation of how close a given proposed solution is to
the optimal one. However, given the difficulty in obtaining such error-bounds in
much simpler cases such as job-shop and task-graph scheduling [2,1], we believe
that this will be very difficult.

8 Models and results available
at http://www-verimag.imag.fr/PROJECTS/TEMPO/DATA/201304_dpa/

http://www-verimag.imag.fr/PROJECTS/TEMPO/DATA/201304_dpa/
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