Robustness of Time Petri Nets under architectural
constraints *

S. Akshay!2, Loic Hélouét!, Claude Jard!-2, Didier Lime? and Olivier H. Roux?

! INRIA/IRISA Rennes, France
2 ENS Cachan Bretagne, Rennes, France
3 LUNAM Université, Ecole Centrale de Nantes, IRCCyN (CNRS UMR 6597), Nantes, France

Abstract. This paper addresses robustness issues in Time Petri Nets (TPN) un-
der constraints imposed by an external architecture. The main objective is to
check whether a timed specification, given as a TPN behaves as expected when
subject to additional time and scheduling constraints. These constraints are given
by another TPN that constrains the specification via read arcs. Our robustness
property says that the constrained net does not exhibit new timed or untimed be-
haviors. We show that this property is not always guaranteed but that checking
for it is always decidable in 1-safe TPNs. We further show that checking if the
set of untimed behaviors of the constrained and specification nets are the same is
also decidable. Next we turn to the more powerful case of labeled 1-safe TPNs
with silent transitions. We show that checking for the robustness property is un-
decidable even when restricted to 1-safe TPNs with injective labeling, and exhibit
a sub-class of 1-safe TPNs (with silent transitions) for which robustness is guar-
anteed by construction. We demonstrate the practical utility of this sub-class with
a case-study and prove that it already lies close to the frontiers of intractability.

1 Introduction

Robustness is a key issue for the implementation of systems. Once a system is imple-
mented on a given architecture, one may discover that it does not behave as expected:
some specified behaviors are never met or unspecified behaviors appear. Thus, start-
ing from a description of a system, one wants to ensure that the considered system
can run as expected on a given architecture with resource constraints (e.g., processors,
memory), scheduling schemes on machines implementing several components of the
system, imprecision in clocks, possible failures and so on.

We address this issue of robust implementability for systems in which time and
concurrency play a key role. We start with a Petri net model of a concurrent system,
which is constrained by another Petri net defining some implementation details (for
example, the use of resources). We then want to check that such implementation features
do not create or introduce new behaviors, which were not present in the original model.
If the implementation features can only restrict (but not enlarge) the set of original
behaviors, we say the model is robust with respect to the implementation constraints.
We lift these ideas to the timed setting by using the model of time Petri nets. Time

* This work was funded by the project ANR ImpRo (ANR-2010-BLAN-0317)

Fig. 1. Ilustrative examples (a) and (b) of TPNs with read-arcs: transitions are represented as
black rectangles, places as circles, arcs as thick lines, read arcs as dotted lines. Transitions can be
labeled by letters (observable actions), or unlabeled (silent moves) and by intervals (constraints).

Petri nets (TPN5s) are Petri nets whose transitions are equipped with timing constraints,
given as intervals. As soon as a transition is enabled, a clock attached to this transition
is reset and starts measuring time. A transition is then allowed to fire if it is enabled and
if its clock’s value lies within the time interval of the transition. When a TPN contains
read arcs, places that are read can enable/disable a transition, but tokens from read
places are not consumed at firing time. In the literature of timed systems (for e.g., [15]),
robustness in timed automata usually refers to invariance of behaviors under small time
perturbations. We use the term “robustness” in a more general context: we consider
preservation of specified behaviors when new architectural constraints (e.g., scheduling
policies, resources) are imposed.

In this paper, we focus our study of robustness to TPNs whose underlying Petri
nets are 1-safe (i.e., have at most one token in any place of a reachable marking). We
consider bipartite architectures: a specification of a distributed system is given as a
TPN, called the ground net and the architectural constraints are specified by another
TPN, called the controller net. The controller net can read places of the ground net,
but cannot consume tokens from the ground net, and vice versa. The net obtained by
considering the ground net in the presence of the controller is called the controlled net.
We first ask if the untimed language of the controlled net is contained in the untimed
language of the ground net. This problem is called untimed robustness. Next, we ask if
the untimed language is exactly the same in the presence of control, which we call the
untimed equivalence problem. Finally the timed robustness problem asks if the timed
language of the controlled net is contained in the timed language of the ground net.

Though our setting resembles supervisory control [12], there are some important
differences. Supervisory control is used to restrict the behaviors of a system in order to
meet some (safety) property P. The input of the problem is the property P, a descrip-
tion of the system, and the output a controller that restricts the system: the behavior of a
system under control is a subset of the original specification satisfying P. In our setting,
there is no property to ensure, but we want to preserve as much as possible the spec-

ified behaviors. We will show in the example below that architectural contraints may
add behaviors to the specification. This situation can be particularly harmful, especially
when the architecture changes for a system that has been running properly on a former
architecture. New faults that were not expected may appear, even when the overall per-
formance of the architecture improves. Detecting such situations is a difficult task that
should be automated. The last difference with supervisory control is that we do not ask
for synthesis of a controller. In our setting, the controller represents the architectural
constraints, and is part of the input of the robustness problem. The question is then
whether the ground net preserves its behaviors when controlled.

An example is shown in Figure 1-a, containing a ground net A/, with four transi-
tions a, a’, b, b, and a controller Cy, that acts as a global scheduler allowing firing of a
or b. In N7, transitions a, a’ and b, b’ are independant. The net V] is not timed robust
w.r.t. the scheduling imposed by C;: in the controlled net, a can be fired at date 3 which
is impossible in A alone. However, if we consider the restriction of N to b, b, the
resulting subnet is timed robust w.r.t ;. Figure 1-b shows a ground net A5 with four
unobservable transitions, and one observable transition c¢. This transition can be fired
at different dates, depending on whether the first transition to fire is the left transition
(with constraint [1, 2]) or the right transition (with constraint [2, 3]) below the initially
marked place. The net Co imposes that left and right transitions are not enabled at the
same time, and switches the enabled transition from time to time. With the constraints
imposed by C», c is firable at date 5 in the controlled net but not at date 6 while it is
firable at both dates 5 and 6 in N> alone. This example is timed robust w.r.t Ca, as it
allows a subset of its original behaviors.

Our results are the following. The problem of untimed robustness for 1-safe TPNs
is decidable. The timed variant of this problem is decidable for 1-safe TPNs, under the
assumption that there are no e transitions and the labeling of the ground net is injective.
However, with arbitrary labeling and silent transitions the timed robustness problem
becomes undecidable. Further, even with injective labeling, timed robustness is unde-
cidable as soon as the ground net contains silent transitions. We then show a natural
relaxation on the way transitions are controlled and constrained, which ensures timed
robustness. In the untimed setting we also consider the stronger notion of equivalence
of untimed languages and show that checking this property is decidable with or with-
out silent transitions. The paper is organized as follows: Section 2 introduces the TPN
models and the problems considered. Section 3 shows decidability of robustness in the
untimed setting, or when nets are unlabeled. Section 4 shows that this problem becomes
undecidable in the timed setting as soon as silent transitions are introduced. Section 5
shows conditions on ground nets and control schemes ensuring timed robustness. Sec-
tion 6 provides a case-study to show the relevance of these conditions, before conclud-
ing with Section 7. Missing proofs can be found in an extended version available at [1].

As further related work, we remark that several papers deal with control of Petri
Nets where transitions are divided into untimed controllable and uncontrollable transi-
tions. Among them, Holloway and Krogh [9] first proposed an efficient method to solve
a control problem for a subclass of Petri Nets called safe marked graphs. Concerning
TPNs, [7] propose a method inspired by the approach of Maler [11]. The controller is
synthesized as a feedback function over the state space. However, in all these papers,

the controller is given as a feedback law, and it is not possible to design a net model of
the controlled system. To overcome this problem, [8] propose a solution using monitors
to synthesize a Petri Net that models the closed-loop system. The method is extended
to real time Supervisory Control in [13]. The supervisor uses enabling arcs (which are
equivalent to read arcs) to enable or block a controllable transition. In [16], robustness
is addressed in a weaker setting called schedulability: given an TPN N, the question is
whether the untimed language of A/, and the language of the underlying untimed net
(i.e. without timing constraints) is the same. This problem is addressed for acyclic nets,
or for nets with restricted cyclic behaviors.

2 The model and the questions

Let QT,R™ denote the set of non-negative rationals and reals respectively. Then, Z
denotes the set of time intervals, i.e., intervals in R™ with end points in Q* U {+o0}.
Aninterval I € Z canbe open (I, 1), closed [[~,I"], semi-open (=, 1], [I~,IT)
or unbounded [I~, +00), (I, +0c), where I~ and It € Q.

2.1 Time Petri nets

Definition 1 (place/transition net with read arcs). A time Petri net (TPN for short)
with read arcs is a tuple N = (P, T,W, R, I) where P is a finite set of places, T is
a finite set of transitions, with PNT = 0, W : (P x T)U (T x P) — {0,1} and
R:(PxT)—{0,1}s.t, W=Y1)Nn R™(1) = 0 are flow relations and I : T — T is
a map from the transitions of N to time intervals T.

Every TPN can be seen as a union of an untimed Petri Net N = (P, T, W, R) and
of a timing function I. The untimed net N will be called the underlying net of N'.

Semantics. The net defines a bipartite directed graph with two kinds of edges: there
exists a (consume) arc from z to y (drawn as a solid line) iff W (z,y) = 1 and there
exists a (read) arc from z to y (drawn as a dashed line) iff R(z,y) = 1. For all z €
P U T, we define the following sets: *x = {y € PUT | W(y,z) = 1} and z* =
{ye PUT | W(z,y) = 1}.Forallz € T, we define °z = {y € P | R(y,z) = 1}.
These definitions extend naturally to subsets by considering union of sets. A marking
m : P — N is a function such that (P, m) is a multiset. For all p € P, m(p) is the
number of tokens in the place p. A transition ¢ € T is said to be enabled by the marking
m if m(p) > 0 for every place p € (°t U °t). en(IN, m) denotes the set of transitions
of N enabled by m. The firing of an enabled transition ¢ produces a new marking m/’
computed as Vp € P,m/(p) = m(p) — W (t,p) + W(p,t). We fix a marking m® of N
called its initial marking. We say that a transition ¢’ is in conflict with a transition ¢ if
(tU°t) N (*') # 0 (firing ¢’ consumes tokens that enable t).

The semantics of a TPN is usually given as a timed transition system (TTS) [10].
This model contains two kinds of transitions: continuous transitions when time passes
and discrete transitions when a transition of the net fires. A transition ¢;, is said to be
newly enabled by the firing of the firable transition ¢; from the marking m, and denoted

Ten(ty, m,t;), if the transition tj is enabled by the new marking (m \ ;) U t? but was
not by m \ (*;). We will denote by fen(m, ;) the set of transitions newly enabled by
the firing of ¢; from m. A valuation is a map v : T" — R such that Vt € T, v(t) is the
time elapsed since ¢ was last newly enabled. For § € R™, v + ¢ denotes the valuation
that associates v/(t) + J to every transition ¢ € T'. Note that () is meaningful only if ¢
is an enabled transition. O is the null valuation such that V¢, 0(¢) = 0.

The semantics of TPN A is defined as the TTS (Q, qo, —) where a state of Q is
a couple (m, v) of a marking and valuation of NV, g9 = (mo,0) and —€ (Q x (T'U
R™) x Q) is the transition relation describing continuous and discrete transitions. The
continuous transition relation is defined for all § € R™ by:

(m,v) LN (m,v') if v/ = v+ § and Vt;, € en(m), we have,
V' (tg) < I(ty) T if I(t) is of the form [a, b] or (a, b]
V' (tg) < I(ty) T if I(ty) is of the form [a, b) or (a,b)

Intuitively, time can progress iff letting time elapse does not violate the upper constraint
I(t)™ of any transition ¢ (recall that we write I ()™ for the right endpoint of the interval
I(t)). Now, the discrete transition relation is defined for all ¢; € T by:

) t; € en(m),m = (m\ *%;) Ut?
(m,v) = (m/, V) if v(t;) € 1(t;),
Vi, V' () = 0if fen(tx, m,t;) and v(ty) otherwise.

That is, transition ¢; can fire if it was enabled for a duration included in the time con-
straint I (¢). Firing ¢; from m resets the clocks of newly enabled transitions.

A run of a TTS is a sequence of the form p; — py —2 ... =25 p,, where p; = qo,
and for all 7 € {2, Ce ,n}, (pi_l,ozi,pi) c—vanda; =t; € Tora; = 6; € RT.
Each finite run defines a sequence over (7" U R™)* from which we can obtain a timed
word over T of the form w = (¢1,d1)(te,ds) ... (tn, d,) where each ¢t; is a transition
and d; € R™ the time at which transition ¢; is fired. More precisely, if the sequence of
labels read by the run is of the form d1 - .. 0k, t10k, 410k, 42 - - - Oyt . . . Ty, then the
timed word obtained is (t1,d1) ... (tn,dn) where d; = 3y, . 0;. We define a dated

d d"L7 n
run of a TPN A as the sequence of the form ¢; ﬂ qo ... M qn, Where d;’s

are the dates as defined above and each ¢; is the state reached after firing ¢; at date d;.

We denote by L;,,(N) the timed words over T' generated by the above semantics.
This will be called the timed (transition) language of N'. We denote by L, (N) the
untimed language of sequences of transitions obtained by projecting onto the first com-
ponent. Furthermore, given a timed word w over 7', if we consider a subset of transitions
X C T, we can project w onto X to obtain a timed word over X. We will denote this
projected language by L., (N)|x. For simplicity, we have not considered final states
in our TTS and hence we define prefix-closed languages as is standard in Petri nets.
However, our results continue to hold with an appropriate definition of final states.

In this paper, we limit the study of robustness to TPNs where the underlying PN
is I-safe i.e., nets such that Vp € P, m(p) < 1, for all reachable markings m in the

underlying PN. The reason for using a property of the underlying net is that decid-
ing if an untimed PN is 1-safe is PSPACE-complete [6], whereas checking if a TPN
is bounded is undecidable [14]. Reachability of a marking m in a 1-safe net is also
PSPACE-complete [6]. For 1-safe Petri nets a place contains either O or 1 token, hence
we identify a marking m with the set of places p such that m(p) = 1. In the sequel, as
we always consider 1-safe nets, we will frequently omit saying this explictly.

2.2 The Control relation

Let us consider two Time Petri nets N' = (P, T, Wi, Ry, Iy, mY) and C =
(Pe,Te,We, Re, Ly, mg). C models time constraints and resources of an architecture.
One can expect these constraints to restrict the behaviors of the original net (we will
show however that this is not always the case), that is C could be seen as a controller.
Rather than synchronizing the two nets (as is often done in supervisory control), we
define a relation R C (Pc x Thr) U (Pyr X T¢), connecting some places of C to some
transitions of A/ and vice versa. The resulting net NV (¢ is still a place/transition net
defined by N'(¢:7) = (PyUPe, TarUTe, WarUWe, RvyUReUR, In U, m%/Umg).
We call N the ground net, C the controller net and N/ (€.R) the controlled net.

The reason for choosing this relation is two-fold. Firstly, the definition of control
above preserves the formalism as the resulting structure is a time Petri net as well. This
allows us to deal with a single formalism throughout the paper. Secondly, one can define
several types of controllers. By allowing read arcs from the controller to the ground net
only, we model blind controllers i.e., controllers whose states evolve independently of
the ground net’s state. The nets in Figure 1 are examples of such controlled nets. In
the reverse direction, if read arcs are allowed from the ground net to the controller, the
controller’s state changes depending on the current state of the ground net. For the sake
of clarity, all examples in the paper have blind controllers but our results hold even with
general controllers and bi-directional read arcs.

Our goal is to compare the behaviors of N with its behaviors when controlled
by C under R, i.e., N¢5) Therefore, the language of (timed and untimed) transi-
tions, i.e., Liw(N), L (C), Low(N), L1y (C), are as usual but when talking about the
language of the controlled net, we will always mean the language projected onto transi-
tions of NV, i.e., Ly (N C1) |7, or L,,(N(€R))| 1. Abusing notation, we will write
L (NP (similarly £,,(N(€))) to denote their projections onto T.

2.3 The robustness problem
We now formally define and motivate the problems that we consider in this paper.

Definition 2. Given TPNs N and C, and a set of read arcs R C (Pe x Ty)U(Py xTe),
N is said to be untimed robust under (C, R) if L.,(N©T) C L, (N).

For time Petri nets, the first problem we consider is the untimed robustness problem,
which asks whether a given TPN A is untimed robust under (C, R). This corresponds
to checking whether the controlled net A"(®:®) only exhibits a subset of the (untimed)
behaviors of the ground TPN N . The second question addressed is the untimed equiv-
alence problem, which asks if the untimed behaviors of the controlled net N’ (€.R) and

ground net NV are the same, i.e., if £, (N) = L, (N). In fact these questions can
already be asked for “untimed Petri nets”, i.e., for Petri nets without the timing function
I and we also provide results for this setting.

Note that untimed robustness only says that every untimed behavior of the controlled
net V(©:F) is also exhibited by the ground net /. However some fimed behaviors of
the controlled net A"(¢:f) may not be timed behaviors of the ground net \. For obvious
safety reasons, one may require that a controlled system does not allow new behaviors,
timed or untimed. Thus, we would like to ensure or check that even when considering
timed behaviors, the set of timed behaviors exhibited by the controlled net N (C.R) g
a subset of the set of timed behaviors exhibited by the ground net AV. We call this the
timed robustness problem.

Definition 3. Given TPNs N and C, and a set of read arcs R C (Pe x Ty)U(Pyx xT¢),
N is said to be timed robust under (C, R) if Lt4,(NCT) C Lty (N).

One can further ask if the timed behaviors are exactly the same, which means that
the controller is useless. In our setting, it means that the architectural constraints do not
affect the executions of the system, nor their timings. While untimed equivalence of
unconstrained and constrained systems seems a reasonable notion, timed equivalence is
rarely met, and hence seems too restrictive a requirement. We will see in Section 4 that
introducing silent transitions gives a new meaning to these notions.

3 Controlling (time) Petri nets

Let us first consider untimed 1-safe Petri nets. Let N be an untimed net, and C be an
untimed controller. We can observe that C' can only restrict the behaviors of N, under
any choice of R. Hence N is always untimed robust under (C, R). Furthermore one can
effectively check if the controlled net has the same untimed language as the ground net,
by building their marking graphs, and then checking inclusion. Thus, the robustness and
equivalence problems are decidable for untimed nets.

Proposition 1. Let N, C be two untimed (1-safe) Petri nets. Then,

1. Forany R C (Pc x Ty) U (Py x T¢), N is untimed robust under (C, R).
2. For a fixed set of read arcs R C (Po x Tn) U (Py X T¢) checking if L,(N) =
L., (NCR) is PSPACE-complete.

This property of untimed Petri nets has a counterpart for time Petri nets: let us consider
unconstrained nets N and C, i.e., such that Ixr(t) = [0,00) for every t € Tjs, and
Ic(t) = [0,00) for every t € T¢. Let N and C be the underlying nets of N and
C. One can easily show that for any R, £,(N©E) C L, (N). As any timed word
w = (a1,d1) ... (an,dpn) in Liyy(NCE) (resp. in L4, (N)) is such that a; ...a, €
L, (NCT) (resp. L,,(N)) where each dy, . .., d, can be arbitrary dates, we also have
Liw(NCT) C L4, (N). Thus, unconstrained time Petri nets are also untimed robust.
The question for Time Petri Nets is whether the controlled TPN only restricts the
set of behaviors of the original TPN. Unlike in the untimed case, in the timed setting the
controlled TPN may exhibit more (and even a different set of) behaviors than the ground

Fig. 2. An example of control of TPN through read-arcs leading to new behaviors

TPN, because of the urgency requirement of TPNs. Consider the example in Figure 2.
The ground net A always fires ¢ in the absence of the controller C but in the presence
of C with R as in the picture, transition ¢ is never fired and ¢’ is always fired. Thus set
of (timed and untimed) behaviors of A" and A/(®-®) are disjoint. Discrepancies between
untimed languages can be checked using the state class graph construction [5, 10], from
which we obtain the following theorem.

Theorem 1. For (1-safe) TPNs, the untimed robustness and untimed equivalence prob-
lems are both PSPACE-complete.

Next we consider timed robustness properties for TPNs, for which we obtain the
following result.

Theorem 2. For (I-safe) TPNs, the timed robustness problem is decidable.

Proof (sketch). Let N and C be 1-safe TPNs, and R be a set of read arcs. We can
check if L4,,(N©1) C £, (N) by using the state class timed automaton construc-
tion from [10]. It is shown that from the state class graph construction of a 1-safe TPN,
N, we can build a deterministic timed automaton A4 over the alphabet T, called the
state class timed automaton, such that £, (N) = L, (A). As aresult, L4,,(N') can be
complemented and its complement is accepted by some timed automaton .A’, which is
computed from A (see [2] for complementation of deterministic timed automata). On
the other hand, the state class timed automaton B constructed from A (€% is over the
language T\ U T¢. By projecting this language onto T, we obtain the timed (tran-
sition) language Ly, (N (C’R)). We remark that the timed automaton corresponding to
the projection, denoted B, can be easily obtained by replacing all transitions of C in the
timed automaton B by e-transitions [2,4]. Now we just check if L, (B)N Ly (A') = 0,
which is decidable in PSPACE [2] (in the sizes of A’ and B). O

4 Controlling TPNs with silent transitions

We now consider ground nets which may have silent or e-transitions. The (timed and
untimed) language of the ground net contains only sequences of observable (i.e., not
€) transitions and the robustness question asks if the controller introduces new timed
behaviors with respect to this language of observable transitions. From a modeling per-
spective, robustness means that sequences of important actions remain unchanged in

the presence of architectural constraints, which is a desirable property to have. Silent
transitions can be used to model unimportant or unobservable transitions in the ground
net. In this setting, it is natural to require that control does not add to the language of
important/observable transitions, while it may allow new changes in other transitions.

An example of such a control is given in the introduction in Figure 1-(b). In that
example, the ground net has a unique critical (visible) action c. All other transitions are
left unlabeled and so we are not interested whether timed or untimed behaviors on those
transitions are different in the ground and controlled nets. Then the timed robustness
problem asks if ¢ can occur in the controlled net at a date when it was not allowed to
occur in the ground net. A more practical example will be studied in detail in Section 6.

With this as motivation, we introduce the class of e-TPN, which are TPNs where
some transitions may be silent, i.e. labeled by €. The behavior of such nets is determin-
istic except on silent actions: from a configuration, if a discrete transition that is not
labeled e is fired, then the net reaches a unique successor marking.

Definition 4. Ler X be a finite set of labels containing a special label €.

1. An LTPN over X is a structure (N, \) where N is a TPN and X : Ty — X is the
labeling function.
2. An €-TPN is an LTPN (N, \) over X such that, for all t € Ty, if A(t) # € then

A(t) £ A) foranyt’ #t € Ty

For an e-TPN or LTPN W/, its timed (resp. untimed) language denoted Ly, (N, \)
(resp. L, (N,) is the set of timed (resp. untimed) words over X' \ {€} generated
by the timed (resp. untimed) transition system, by ignoring the ¢ labels. A TPN N
from Definition 1 can be seen as the LTPN (A, X) over X' such that for all ¢ € Ty,
A(t) = t, that is,) is the identity map. An e-TPN can be seen as an LTPN (N,) over
Y =Txn U{e} such that A\(t) = ¢t or A(t) = e forall ¢t € T)s. In [3] it was shown that
LTPNs are expressively as powerful as timed automata. As a consequence, we have:

Proposition 2. [3] The universality problem for timed automata reduces to the univer-
sality problem for LTPNs, and hence universality for LTPNs is undecidable.

We are interested in the problem of timed robustness, i.e.,

Definition 5. Given two e-TPNs (N, \) and (C, \') over X and a set of read arcs R
Sfrom (Pe x Ti) U (P x T¢),

— the controlled e-TPN (N, \)'©™ is defined as the e-TPN (N'©B) " over &
where X' (t) = \(t) fort € Ty and X' (t) = e for t € Te.
— the timed robustness problem asks if L, (N, \)SF) C Ly (N).

Note that the labels in C are ignored (i.e., replaced by ¢), since robustness only
compares labels of the ground nets. We remark that untimed robustness and even un-
timed equivalence are decidable for e-TPNs and LTPNs, since Theorem 1 can be easily
adapted to deal with € or labels. We now consider timed robustness and show that this
problem is undecidable for e-TPNs and LTPNs.

Theorem 3. The timed robustness problem is undecidable for e-TPNs (and LTPNs).

W) wy s

Fig. 3. Construction of a e-TPN equivalent to a LTPN.

The proof follows in three steps: First we show that LTPNs can be simulated by
e-TPNs. Thus, e-TPNs are expressively as powerful as LTPNs. Then, we show that
checking universality of a labeled net can be reduced to checking timed robustness of a
related net. Finally, we use Proposition 2 above, which shows that checking universality
of labeled nets is undecidable. We now prove the first step.

Lemma 1. Given an LTPN (N, \) over X, there exists a e-TPN (UN'), \') over X
such that Ly, UN), N') = Liy(N, N).

Proof. The construction is depicted in Figure 3. The idea is to have a unique transition
t,, for each letter a which is urgent and will be fired for each transition labeled a in the
original net, and use e-transitions (and extra places) to capture the timing constraints
on the different transitions (of the original net) labeled by a. Note that the place p, is
included in addition to ensure that the resulting net remains 1-safe.

Formally, given a LTPN (N, \) over X, we construct the e-TPN (U(N), \') as
follows. We split each transition ¢ € T into two transitions ¢; and ¢, and also add a
place p; in U (N'). Further for each action a € X, such that A(t) = a for some transition
teT v, we add three places pq, pl,, P, and a transition ¢,. Then

- we replace every incoming edge into ¢ in N, say (p,t) for some p, by the edge
(p, t1) inU(N).

— we replace every outgoing edge from ¢ in A, say (¢,p’) for some p’, by the edge
(to,p') inU(N).

- inU(N), we add edges from ¢; to p;, from ¢ to p,, from p, to 4,

- from ¢, to p, and from p/, to t5. We also add an edge from p, to each transition ¢;
and from ¢, to p, such that ¢ is labeled by a. Note that this procedure is applied for
each action a and every transition ¢ labeled by a, so as a result, we can obtain a net
with several outgoing edges from p/, or incoming edges to p,.

— Finally, for the timing constraints, we assign to each ¢; in U (N') the constraint /()
assigned to ¢ in V. All other transitions of /() are assigned the constraint [0, 0],
hence forcing them to be urgent.

10

Ci, N

[0,00)

N, M

(Noy M) over ¥ = {a U €}

(NS A) (N Au)

Fig. 4. Reducing checking universality of LTPN to checking robustness of a new e-TPN

Then,)\ is defined by X' (t,) = a for each t,, i.e., the transition of ¢/(N') that was
added above for each a € X, and \'(t) = ¢ for all other transitions ¢ of 2/ (). By
construction, ((N), \') is uniquely labeled. Each transition ¢ of A is simulated by a
sequence of transitions ¢, ¢4, t2 (place p, ensures atomicity of this sequence). Then we

can easily show that Ly, (U(N), N') = Ly (N, N). O
Next we show a reduction from universality for LTPNs to timed robustness for e-TPNs.

Lemma 2. The universality problem for LTPNs can be reduced to the timed robustness
problem for e-TPNs.

Proof. We use a gadget net (NVy, \,) which accepts the universal language of timed
words over Y. Such a net is shown in Figure 4 (right). The net depicted in the figure is
only over the single discrete alphabet a, but we can by replicating it obtain the universal
net over any finite alphabet. Now, as shown in Figure 4 (left), we construct a ground net
(N7, A1) which starts with a place and chooses between accepting the timed language
of the LTPN (M, \) and the universal language by using (N, A\,).

Formally, this is defined by adding arcs from the last transition on the left (resp.
right) side to the places in the initial marking of N (resp. V). Now by adding disjoint
time constraints [1, 1] and [2, 00) on the transitions, we ensure that (N7, A1) always
chooses the left transition ¢; and hence, in the absence of controller, the language ac-
cepted is Ly = {(w1,d1) ... (wn,dy) € (X X RY)* | (wy,dy — 2) -+ (wp,d,, — 2) €
LN, N)}, ie., the timed language of (A, \) delayed by 2. In the presence of the
controller (C1, \g), only transition ¢5 can be fired (as ¢; is disabled by the controller)
and hence, the language accepted is Lo = {(w1,d1)...(wn,,d,) € (X x RT)* |
(w1,dy —2) - (Wn,dyp —2) € L1y(Nuy, Ay)} - the universal language delayed by 2.

Then checking timed robustness corresponds to checking if Lo C L1, and check-
ing Ly C L reduces to checking that L4, (N, \) contains the universal language, or
equivalently if Ly, (N, \) is universal, which is undecidable. Note that (N7, A1) is not
uniquely labeled since every action a definitely occurs in (N, \,,) and may also occur
more than once in (N, \). Thus the above proof only shows that checking timed ro-
bustness for LTPNs is undecidable. But now, using Lemma 1, we can build the e-TPN
(U(N1), \}) over X, with the same timed language as (N7, \;). Hence by the above
argument checking timed robustness of e-TPNs is also undecidable. a

11

Checking if Ly, (N (€)= L4, (N), i.e., timed language equivalence is a weaker
notion in the context of e-TPNs than in TPNs (as it only requires preserving the times
of “important” observable actions). For instance in Figure 1(b), we may want to check
if ¢ can occur in the controlled net at every date at which it can occur in the ground
net (even if the other e-transitions are perturbed). Unfortunately, we easily obtain the
undecidability of this problem as an immediate corollary of the above theorem, and
even in restricted settings (see [1]).

S Ensuring robustness in TPNs with silent transitions

The situation for e-TPNs is unsatisfactory since checking timed robustness is undecid-
able. Hence, we are interested in restrictions that make this problem decidable, or in
ensuring that this property is met by construction. In this section, we will show that we
can restrict the controlling set of read-arcs to ensure that a net is always timed robust.
Indeed, it is natural to expect that a “good” controller never introduces new behaviors
and we would like to ensure this.

We consider the restriction in which all transitions of the ground nets that have
controller places in their preset are not urgent, i.e., the time constraint on the transition
is [, 00) or (av, 00) for some v € QT. We call such controlled nets R-restricted e-
TPNs. We now show that R-restricted e-TPNs are always timed robust (as in the case
of untimed PNs shown in Proposition 1). That is,

Theorem 4. Let N and C be two ¢-TPNs, and R be a set of read arcs such that for
every (p,t) € R0 (Pe x Ty), I(t)* = oo, then L1,,(NC1)) C Ly (V).

Proof. We start with some notations. Let ¢(¢:%) be a state of N'(©:%) and p(¢-T) be
a dated run of N'(©-%). We denote by pN(q(QR)) the projection of ¢(¢:%) obtained
as follows: we keep in the state description, only places of the ground net and clocks
associated with uncontrollable transitions of the ground net. Note that the obtained state
is described by the same variables as a state of N but a priori, may not be reachable
in the ground net V. Similarly, we denote by par(p(¢%)) the projection of a dated run
of N'(©:1) onto the variables of A i.e. onto transitions of the ground net and states as
defined above. Finally, we denote the last state of the dated run p by last(p).

We will now prove that for any dated run p(%) of N (€ there exists a dated
run p of A such that p = pp-(p(©%)). The proof is done by induction on the number
of transitions in the dated runs. The property obviously holds with no actions (same
initial states: gp = [)N(qO(C’R))). Suppose it holds upto n > 0. Now, consider some run

p/ R = 5(C.R) (da), q;© 1) of N(CB) such that p(©-F) has n transitions.

By induction hypothesis, there exists run p of A such that p = pa-(p(©%). Now
consider transition ¢ (occuring at date d): either ¢ € T is a transition of the con-
troller and hence is silent in the controlled net by definition, so we can discard it, and

pan(p (C’R)) = p;ort € T)r is a transition of the ground net and two cases may arise:

— either ¢ is not controlled, then, two new cases may arise:
(1) either no controlled transitions are in conflict with ¢ in A(©:®) and since
last(p) = pa (last(p©1))), it can occur in the ground net at the same date d;

12

(2) or a controlled transition ¢ is in conflict with ¢ in A/(¢:®) and the controller

blocks ' and allows the firing of ¢. But then, by definition, we have I(t')* =

oo. Thus, t’ is not urgent in the ground net, i.e., it is always possible to delay it

and hence fire ¢’ at a date greater than d in the ground net. As a result ¢ can be

fired in the ground net at date d leading to a state g5 = pp(q;(© %)

— or it is controlled, and then we have I(¢)™ = oo and so I(t) = [a, 00) (or (a, 00),

but this is handled similarly so we only consider the closed case) for some o € Q.

Then, by induction hypothesis the previous transition that newly enables ¢ in the
ground net and the controlled net were fired at the same date d’. Thus

e if there is no transition in conflict with ¢ in the ground net, then in the controlled

b}

net A% for the run last(p(¢-1)) (da), q;© 1), we are guaranteed that
d —d > «.In p, several transitions of the controller may disable and then
re-enable ¢, hence allowing d to be any date greater that d’ + «. However, as
I (t) = oo, for every choice of d in the controlled net, firing ¢ at date d is
allowed in the ground net, leading to a state g5 = par(qs (C’R)) as before.

e Potential conflicts are handled by observing that any delay forced on the ground
net will also be forced on the controlled net. More precisely, if there are tran-
sitions in conflict with ¢ in the ground net N, the problematic cases are when
they either (i) disable ¢ due to urgency or (ii) force ¢ to be delayed by an arbi-
trary amount possibly greater than « (for instance, a conflicting transition may
empty and refill the preset of ¢ after o time units) in . But now any delay in
firing of ¢ forced on the ground net A/ will also be forced on the controlled net
N(CR) Thus, if t is either disabled or forced to be delayed beyond d in AV, then
in A/ too it will be disabled/ forced to delay beyond d which contradicts
the assumption that ¢ was firable in V'(¢:%) at date d. Thus the delay forced in
N(©B) can only be more than the delay forced in N and hence ¢ is firable at
date d in "¢ implies (due to I(t)™ = co) that ¢ is firable at date d in V.

. d, 5 ,
Then there exists a run p’ = p (da), qs of N such that ¢ = par(q;©™) which
concludes the induction. O

Note that while timed robustness is ensured for nets and control schemes that are
R-restricted, timed equivalence remains undecidable for such nets (see [1] for details).
The R-restricted condition in Theorem 4 is quite strong, but relaxing it rapidly leads to
undecidability:

Proposition 3. The timed robustness problem is undecidable for e-TPNs with at least

one read arc from a place of the controller to any transition t of the ground net such
that I(t)T # co.

Proof. The proof of Theorem 3 actually gives the result if ¢ is a silent transition. Now,
if ¢ is a non-silent transition, then that proof does not work off-the-shelf anymore and
we need to modify the construction of Fig. 4. The resulting net is shown in Fig.5.

As before, (N, \) is any LTPN on some alphabet X and (N, \,) is an e-TPN
universal on Y. Apart from those components, (A7, A1) contains only one non-silent
transition (a ¢ X). This transition furthermore has a controller place in its preset and its

13

(NS A) (N Au)

Fig. 5. Reducing universality to robustness in an e-TPN

time interval has a finite upper bound. So, using Lemma 1, A] and N, 1(C’R) can indeed
be transformed into e-TPNs satisfying our relaxed condition.

From the intial configuration, transition a can fire exactly at date 1. The two € tran-
sitions at the top of the ground net simulate an arbitrary delay greater than 2, which
can occur only once before firing a. Hence, the timed language of the ground net is the
empty word plus the set of all the words of the form (a,z)w with x = 1 or x > 3 and
w is either the empty word or any timed word in L4, (N, \) delayed by z time units.

Similarly, in the controlled net, a can only fire at a date greater than 2. So, the timed
language of the controlled net is the empty word plus the set of all the words of the form
(a,z)w with z > 3 and w is either the empty word or any timed word in L, (N, A)
delayed by x time units, or of the form (a, 3)w’ where w’ is either the empty word or
any timed word in Ly, (N, \y,) delayed by 3 time units. Thus, the net is timed robust
iff Loy (Nuy i) C Lo (N,), iee., iff (A, \) is universal. 0

6 A small case study

We consider a heater-cooler system depicted in Figure 6, which improves the hardness
of a particular material by first heating and then cooling it. The heater-cooler is equipped
with two sensors: Toohot is raised when the heater reaches its maximal temperature. If
it occurs, the heating stops automatically. Cold is raised when the temperature is cold
enough in the cooling stage. If it occurs, the cooler stops automatically. The heater-
cooler starts in the heating state and the operator can push the StartCooling button if
the constraints of the system allow it.

We assume architectural constraints imposing that the StartCooling action is not
allowed after 20 t.u. in the heating stage, and if the toohot sensor has been raised, then
it cannot occur before 120 t.u. The constraints are encoded as a controller C, and read
arcs as shown in Figure 6.

We can show that £,,(N¢®) = L, (N). Hence, A is untimed robust and even
untimed equivalent under (C, R). The net NV is not an e-TPN (the StartCooling action
label occurs twice), but can be converted to an e-TPN (by Lemma 1). The resulting
net is R-restricted, so according to Theorem 4, we have L,,(N(¢®) C £, (N) and
therefore NV is timed robust under (C, R).

14

(&
Toohot

[20, 100] 20, 20] e

(10, 00)
StartCooling Cy
cooling StartCooling [100, 100] €
,,,,,,,,,,,,,,,,, Cs
30, 40] Cold (15, 00)
Ground net ‘ Controller C

Fig. 6. Case Study

7 Conclusion and discussion

We have defined and studied notions of timed and untimed robustness as well as un-
timed equivalence for time Petri nets. We are interested in checking or/and guaranteeing
these properties. The results are summarized in the table below.

] H TPN \R-restricted e-TPN\ e-TPN \ LTPN ‘

Untimed robustness || Pc (thm 1) G (thm 4) Pc Pc
Untimed equivalence|| Pc (cor 1) Pc Pc Pc
Timed robustness D (thm 2) G (thm 4) U (thm 3)|U (thm 3)

U stands for undecidable, D for decidable, Pc for PSPACE-complete, and GG for guaranteed.

Overall, with injective labels and no ¢, robustness is decidable. We believe that the
timed robustness problem is also PSPACE-complete (as is the case for the other de-
cidable problems), but we leave the formal development of this complexity analysis
for future work. From a modeling perspective it is important to allow silent transitions.
With silent transitions, the untimed properties are still decidable, but timed properties
become undecidable. To overcome this problem, we proposed a sufficient and practi-
cally relevant condition to guarantee timed robustness which we showed is already at
the border of undecidability. We also showed that while untimed equivalence is easily
decidable in all these cases, timed equivalence is undecidable in most cases. This is
not really a surprise nor a limitation, as asking preservation of timed behaviors under
architectural constraints is a rather strong requirement.

As further discussion, we remark that other criteria can be used for comparing the
controlled and ground nets such as (timed) bisimulation or weak bisimulation. While
these would be interesting avenues to explore, they seem to be more restrictive and
hence less viable from a modeling perspective. Possible extensions could be to de-
fine tractable subclasses of nets, for instance by considering semantic properties of
the net rather than syntactic conditions to ensure decidability. It would also be inter-
esting to consider robustness of nets up to some small delay. Formally, we can fix a
delay as a small positive number 6, and define £2,(N) = {(w1,t1) ... (wn,tn) |
Hwy, t)) ... (W, th) € Lyw(N),Vi € 1...n,|t; —t;| < d}. Then a possible ex-
tension of the definitions would be to consider é-robustness under C, R as the timed
inclusion Ly, (NC)) C £2 (N).

15

References

1.

10.

11.

12.

13.

14.

15.

16.

S. Akshay, L. Hélouét, C. Jard, D. Lime, and O. H. Roux. Robustness of
time Petri nets under architectural constraints, 2012. Technical report available at
http://people.rennes.inria.fr/Loic.Helouet/Papers/AHJLR12.pdf.

. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,

126(2):183-235, 1994.

. Béatrice Bérard, F. Cassez, S. Haddad, D. Lime, and O. H. Roux. Comparison of the ex-

pressiveness of timed automata and time Petri nets. In Paul Pettersson and Wang Yi, editors,
3rd International Conference on Formal Modelling and Analysis of Timed Systems (FOR-
MATS 2005), volume 3829 of Lecture Notes in Computer Science, pages 211-225, Uppsala,
Sweden, September 2005. Springer-Verlag.

. Beatrice Berard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of the

expressive power of silent transitions in timed automata. Fundam. Inform., 36(2-3):145—
182, 1998.

. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems

using time Petri nets. IEEE transactions on software engineering, 17(3):259-273, March
1991.

. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets. Theoretical Com-

puter Science, 147(1-2):117-136, 1995.

. Guillaume Gardey, Olivier (F.) Roux, and Olivier (H.) Roux. Safety control synthesis for

time Petri nets. In 8th International Workshop on Discrete Event Systems (WODES’06),
pages 222-228, Ann Arbor, USA, July 2006. IEEE Computer Society Press.

. A. Giua, F. DiCesare, and M. Silva. Petri net supervisors for generalized mutual exclusion

constraints. In Proc. 12th IFAC World Congress, pages 267-270, Sidney, Australia, jul 1993.

. L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of controlled

Petri nets. IEEE Trans. on Automatic Control, 35(5):514-523, may 1990.

Didier Lime and Olivier (H.) Roux. Model checking of time Petri nets using the state class
timed automaton. Journal of Discrete Events Dynamic Systems - Theory and Applications
(DEDS), 16(2):179-205, 2006.

Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems. In E.W. Mayr and C. Puech, editors, Proc. STACS ’95, number 900 in LNCS,
pages 229-242. Springer—Verlag, 1995.

P. Ramadge and W. Wonham. The control of discrete event systems. Proceedings of the
IEEE; Special issue on Dynamics of Discrete Event Systems, 77(1):81-98, 1989.

M. Uzam, A.H. Jones, and L. Yucel. Using a Petri-net-based approach for the real-time super-
visory control of an experimental manufacturing system. Journal of Electrical Engineering
and Computer Sciences, 10(1):85-110, 2002.

V. Valero, D. Frutos-Escrig, and F. Cuartero. On non-decidability of reachability for timed-
arc Petri nets. In Proc. 8th International Workshop on Petri Nets and Performance Models
(PNPM 99), 1999.

M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed automata.
Formal Methods in System Design, 33(1-3):45-84, 2008.

Dianxiang Xu, Xudong He He, and Yi Deng. Compositional schedulability analysis of real-
time systems using time Petri nets. I[EEE Transactions on Software Engineering, 28(10):984
-996, 2002.

16

