
Concurrent behaviors with architectural constraints or
imperfect clocks (Deliverable 4.2)

S. Akshay1,2, Loı̈c Hélouët2, Claude Jard1,2,5, Pierre-Alain Reynier3, Didier Lime4,
Olivier.H.Roux4

1 INRIA/IRISA Rennes, France
2 ENS Cachan Bretagne, Rennes, France

3 Laboratoire d’Informatique Fondamentale de Marseille, France
4 IRCCYN, Nantes

5 Université de Nantes, AtlanSTIC & LINA

Abstract. Time in specification models is often considered asperfect, that is a
considered model is supposed implemented on an architecture that can provide ar-
bitrary precision in time measurement without drift, execute tasks instantaneously
at precisely defined dates, etc. Of course, such assumptionsare usually not met
by real implementations : clocks drift, tasks are launched at imprecise dates, and
starting them may require a small delay after a decision, etc. In addition to impre-
cision, some architectural constraints (distribution, available resources,...) may
affect the expected behavior of an idealized abstract modelat implementation
time.
For these reasons, it is of paramount importance to verify that the behavior of
a model can be preserved even under some imprecision of time measurement,
or when the implementation architecture imposes additional constraints, such as
time sharing mechanisms among processes, etc. Another verification of paramount
importance is to check wheter there exists at all some clock precision allowing
for preservation of important behaviors of a system.
This document considers Time Petri nets as model for distributed systems, and
studies robustness issues for this specification formalism. We first consider how
architectural constraints, specified as another Petri net influence the behavior of
a system. We then consider how imprecision in time, modeled as guard enlarge-
ment, influences the behavior of the original specification.

Table of Contents

1 Introduction 3
2 Definitions 3
2.1 Notations 3
2.2 Timed Transition Systems and Timed Automata 4
2.3 Time Petri Nets 5
2.4 TPNs with read arcs 6
2.5 Timed (bi)simulation : 8
3 Robustness of Time Petri Nets under architectural constraints 9
3.1 Formalization of robustness under architectural constraints 11
3.2 Controlling (time) Petri nets 13
3.3 Controlling TPNs with silent transitions 14
3.4 Ensuring robustness in TPNs with silent transitions 16
3.5 A small case study 16
3.6 Conclusion and discussion 18
4 Robustness of Time Petri Nets under Guard Enlargement 19
4.1 Perturbations in TPN and robustness problems 20
4.2 Examples of robust and non-robust TPNs 21
4.3 Undecidability results 23
4.4 A robust translation from TPN to TA 24
4.5 Robustly bounded TPNs 26
4.6 Untimed language robustness in TPNs 27
5 Conclusions and future work 28

2

1 Introduction

Robustness is a key issue for the implementation of systems.Very often, models of
distributed systems are idealized, and in particular, timeaspects are very often too per-
fect to be realistic. Indeed, time in specification models isoften considered asperfect,
and model often suppose that the implementation architecture can provide arbitrary
precision in time measurement without drift, execute tasksinstantaneously at precisely
defined dates, etc. Of course, such assumptions are usually not met by real implemen-
tations : clocks drift, tasks are launched at imprecise dates, and starting them may re-
quire a small delay after a decision, etc. In addition to imprecision, some architectural
constraints (distribution, available resources,...) mayaffect the expected behavior of an
idealized abstract model at implementation time.

This is particularly harmful for critical systems, where models are used to check
some safety properties. Systems which are not affected by imprecise time issues are
calledrobust. Once a system is implemented on a given architecture, one may discover
that it does not behave as expected: some specified behaviorsare never met or unspec-
ified behaviors appear. Hence, if a system is proved safe but is not robust, some safety
properties proved on the idealized model may not be met by an impelmentation of the
model.

Starting from a description of a system, one wants to ensure that the considered
system can run as expected on a given architecture with resource constraints (e.g., pro-
cessors, memory), scheduling schemes on machines implementing several components
of the system, imprecision in clocks, possible failures andso on. When the impemen-
tation architecture is not precisely known, another interesting issue is to detect wheter
there exists a way to make time measurement precise enough sothat the overall behav-
ior of the model (or its safety) is not affected.

This document considers Time Petri nets as model for distributed systems, and stud-
ies robustness issues for this specification formalism. We first define notations in section
2. We then consider how architectural constraints, specified as another Petri net influ-
ence the behavior of a system in Section 3. Last, we consider how imprecision in time,
modeled as guard enlargement, influences the behavior of theoriginal specification.

Note that this report describes published results [2, 1] andthat for the sake of con-
ciseness, we only mention the major results of these publications, without proofs. Com-
plete proofs can be found in the corresponding publications.

2 Definitions

This xsection defines the notations and models that will be used throughout the report.

2.1 Notations

Let Q+,R+ denote the set of non-negative rationals and reals respectively. Then,I
denotes the set of time intervals, i.e., intervals inR+ with end points inQ+ ∪ {+∞}.
An intervalI ∈ I can be open(I−, I+), closed[I−, I+], semi-open(I−, I+], [I−, I+)
or unbounded[I−,+∞), (I−,+∞), whereI− andI+ ∈ Q+.

3

Let Σ be a finite alphabet,Σ∗ is the set of finite words overΣ. We also useΣε =
Σ∪{ε} with ε (the empty word) not inΣ. The setsN,Q+

≥0 andR+
≥0 are respectively

the sets of natural, non-negative rational and non-negative real numbers.
A timed wordoverΣ is a finite sequencew = (a0, t0) (a1, t1) . . . (an, tn) s.t. for

every0 ≤ i ≤ n, ai ∈ Σ, ti ∈ R+
≥0 and ti+1 ≥ ti. In the following, we will

equivalently writew = (a, t) with a = (ai)0≤i≤n andt = (ti)0≤i≤n.
An intervalI of R+

≥0 is aQ+
≥0-interval iff its left endpoint belongs toQ+

≥0 and
its right endpoint belongs toQ+

≥0 ∪ {∞}. We setI↓ = {x | x ≤ y for somey ∈ I},
thedownward closureof I. We denote byI(Q+

≥0) the set ofQ+
≥0-intervals ofR+

≥0.

A valuationv over a finite setX is a mapping inR+X
≥0. We note0 the valuation

which assigns to every clockx ∈ X the value0. For any valued ∈ R+
≥0, the valuation

v + d is defined by(v + d)(x) = v(x) + d, ∀x ∈ X .

2.2 Timed Transition Systems and Timed Automata

Definition 1 (Timed Transition System (TTS)).A timed transition systemoverΣε is
a transition systemS = (Q, q0,→), whereQ is the set of states,q0 ∈ Q is the initial

state, and the transition relation→ consists of delay movesq
d
−→ q′ (with d ∈ R+

≥0),
and discrete movesq

a
−→ q′ (with a ∈ Σε). Moreover, we require standard properties of

time-determinism, additivity and continuity for the transition relation→.

TTSs describe systems combining discrete and continuous evolutions. They are
used to define and compare semantics of TPNs and TA. With theseproperties, arun

of S can be defined as a finite sequence of movesρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→

q2 . . .
an−−→ qn+1 where discrete actions and delays alternate, and which starts in the

initial configuration. To such a run corresponds a worda0 . . . an overΣε; we say that
this word is accepted byS. The language ofS is the set of words accepted byS.

Let us now definetimed automata. First defined in [3], the model of timed automata
associates a set of non-negative real-valued variables calledclockswith a finite automa-
ton. LetX be a finite set of clocks. We writeC(X) for the set ofconstraintsover
X , which consist of conjunctions of atomic formulae of the form x ⊲⊳ c for x ∈ X ,
c ∈ Q+

≥0 and⊲⊳∈ {<, ≤,≥, >}. We also define the proper subsetCub(X) of upper
boundsconstraints overX where⊲⊳∈ {<,≤}.

Definition 2 (Timed Automata (TA)). A timed automatonA overΣε is a tuple(L, ℓ0,
X,E, Inv) whereL is a finite set oflocations, ℓ0 ∈ L is the initial location, X is a
finite set ofclocks, Inv ∈ Cub(X)L assigns aninvariant to each location andE ⊆
L × C(X) × Σε × 2X × L is a finite set ofedges. An edgee = (ℓ, γ, a, R, ℓ′) ∈ E

represents a transition from locationℓ to locationℓ′ labeled bya with constraintγ and
resetR ⊆ X .

Semantics.ForR ⊆ X , the valuationv[R] is the valuationv′ such thatv′(x) = v(x)
whenx 6∈ R andv′(x) = 0 otherwise. Finally, constraints ofC(X) are interpreted
over valuations: we writev |= γ when the constraintγ is satisfied byv. The semantics
of a TA A = (L, ℓ0, X,E, Inv) is the TTSJAK = (Q, q0,→) whereQ = {(ℓ, v) ∈
L× (R+

≥0)
X | v |= Inv(ℓ)}, q0 = (ℓ0,0) and→ is defined by:

4

- delay moves:(ℓ, v) d
−→ (ℓ, v + d) if d ∈ R+

≥0 andv + d |= Inv(ℓ);
- discrete moves:(ℓ, v) a

−→ (ℓ′, v′) if there exists somee = (ℓ, γ, a, R, ℓ′) ∈ E s.t.
v |= γ andv′ = v[R].

The (untimed) language ofA is defined as that ofJAK and is denoted byL(A).

2.3 Time Petri Nets

Introduced in [23], Time Petri nets (TPNs) are Petri nets which transitions are equipped
with timing constraints. TPNs associate a time interval to each transition of a Petri net.
As soon as a transition is enabled, a clock attached to this transition is reset and starts
measuring time. A transition is then allowed to fire if it is enabled and if its clock’s
value lays within the time interval of the transition. When aTPN contains read arcs,
places that are read can enable/disable a transition, but tokens from read places are
not consumed at firing time. Transitions are represented as black rectangles, places as
circles, flows as thick lines joining transitions ans places. Transitions can be labeled
by an observable letter, or unobservable, and constraints are represented as intervals
labeling transitions.

Definition 3 (Time Petri Nets (TPN)).A time Petri netN overΣε is a tuple(P, T,W,m0, I)
whereP is a finite set ofplaces, T is a finite set oftransitionswith P ∩ T = ∅,
W : (P × T)∪ (T × P) 7→ N is the flow relation,m0 ∈ NP is theinitial marking, and
I : T 7→ I(Q+

≥0) associates with each transition afiring interval. We denote byα(t)
(resp.β(t)) the lower bound (resp. the upper bound) of intervalI(t).

We will frequently denote by•(.) ∈ (NP)T is thebackwardincidence mapping,
that is the restriction of the flow relation toP × T , and by(.)• ∈ (NP)T is theforward
incidence mapping, that is the restriction of the flow relation to(T × P).

Time Petri nets define sequences of transitions firings and time elapsing. Transitions
symbolize distinct events in a system. Now, one can add lableing to TPNs to increase
the expressive power of the model, and model unobservable actions in a system.

Definition 4 (labeled Time Petri Nets (TPN)).Let Σε be an alphabet containing a
special labelǫ. A labeled time Petri net (LTPN)N overΣε is a tuple(N, λ) whereN
is a TPN, andλ : T → Σε is a labeling function.

Semantics.A configurationof a TPN is a pair(m, ν), wherem is amarkingin the usual
sense,i.e.a mapping inNP , with m(p) the number of tokens in placep. A transitiont is
enabledin a markingm if m ≥ •t. We denote byEn(m) the set of enabled transitions in
m. The second component of the pair(m, ν) is a valuation overEn(m) which associates
to each enabled transition its age,i.e. the amount of time that has elapsed since this
transition was last enabled. we choose the classical semantics defined as usual (see for
instance [6]). An enabled transitiont can be fired ifν(t) belongs to the intervalI(t).
The result of this firing is as usual the new markingm′ = m− •t+ t•. Moreover, some
valuations are reset. We say that the a transitiont is newly enabledby firing of t from
markingm, and write↑enabled(t′,m, t) iff:

t′ ∈ En(m− •t+ t•) ∧ ((t′ 6∈ En(m− •t)) ∨ t = t′)

5

Reset valuations correspond to newly enabled clocks. Thus,firing a transition is not
an atomic step and the transition currently fired is always reset. The setADM(N) of
(admissible) configurationsconsists of the pairs(m, ν) such thatν(t) ∈ I(t)↓ for ev-
ery transitiont ∈ En(m). Thus time can progress in a marking only when it does
not leave the firing interval of any enabled transition. The semantics of a TPNN =
(P, T,W,m0, I) is a TTSJN K = (Q, q0,→) whereQ = ADM(N), q0 = (m0,0) and
→ is defined by:

- delay moves:(m, ν)
d
−→ (m, ν + d) iff ∀t ∈ En(m), ν(t) + d ∈ I(t)↓,

- discrete moves:(m, ν)
t
−→ (m − •t + t•, ν′) iff t ∈ En(m) is s.t.ν(t) ∈ I(t),

∀t′ ∈ En(m− •t+ t•), ν′(t′) = 0 if ↑enabled(t′,m, t) andν′(t′) = ν(t) otherwise

The semantics of LTPN is defined alike, usingλ(t) as label of a transition rather
thant. The (untimed) language ofN is defined as the untimed language ofJN K and is
denoted byL(N). The reachability set ofN , denotedReach(N), is the set of markings
m ∈ NP such that there exists a reachable configuration(m, ν). A bounded TPNis a
TPNN such thatReach(N) is finite.

A safe TPNis a TPNN where all configurations reachable inJN K contain at most
one token in every place. Very often, when a Petri net is safe,we will consider that the
flow relation is a function fromW : (P × T) ∪ (T × P) to {0, 1}.

TPNs can be represented by a bipartite graph. Places are symbolized by circles,
transitions as a dark horizontal line. The flow relation is represented as an edge from a
elementx to elementy if W (x, y) ≥ 1 labeled by valueW (x, y). WhenW (x, y) takes
values in{0, 1} we will simply draw an unlebeled edge fronx to y if W (x, y) = 1.

p1

•

p2p3

N
[2, 4] t [3, 5]t′

Fig. 1. An example of TPN

Figure 1 shows an example of safe TPN, with three placesp1, p2, p3, and two tran-
sitionst andt′. All flow relation are eitherW (x, y) = 0 or W (x, y) = 1. The time
interval attached to transitiont means thatt should fire at earliest 2 time units after
being enabled, and at latest 4 time units later. The time interval attached to transitiont′

means thatt should fire at earliest 3 time units after being enabled, and at latest 5 time
units later.

2.4 TPNs with read arcs

As for standard Petri nets, TPNs can be extended with read arcs, that is with a flow
relation that does not enforce consumtion of tokens. This feature is useful to capture
mechanisms such as guards, and in our context it will be used to specify how a given
architecture constraints an original model by enabling or disabling transitions.

6

TPNS with read arcs are TPN in which some places can be read by transitions
without consumption of the read tokens. Figure 2-a is an example of TPN with read
arcs. Transitions are represented as black rectangles, places as circles, flows as thick
lines joining transitions ans places, and dotted lines represent read arcs. Transitions can
be labeled by an observable letter, or unobservable, and constraints are represented as
intervals labeling transitions.

Definition 5 (place/transition net with read arcs). A time Petri net with read arcs
(TPNR for short) is a tupleN = (P, T,W,R,m0, I) where(P, T,W,m0, Λ, I) is a
TPN, andR : (P × T) → {0, 1} s.t.,W−1(1) ∩R−1(1) = ∅ is a newflow relation

As for TPNs, we can add a labeling functionλ to a TPNR. Every TPN (TPNR) can
be seen as a union of an untimed Petri NetN = (P, T,W,R) and of a timing function
I. The untimed netN (with out without read arcs) will be called theunderlying netof
N .

Semantics.A net with read arcs net defines a bipartite directed graph with two kinds of
edges: there exists a (consume) arc fromx to y (drawn as a solid line) iffW (x, y) ≥ 1
and there exists a (read) arc fromx to y (drawn as a dashed line) iffR(x, y) = 1. For
all x ∈ P ∪ T , we define the following sets:•x = {y ∈ P ∪ T | W (y, x) = 1}
andx• = {y ∈ P ∪ T | W (x, y) = 1}. For all x ∈ T , we define◦x = {y ∈
P | R(y, x) = 1}. These definitions extend naturally to subsets by considering union
of sets. A transitiont ∈ T is saidenabledby the markingm if m(p) > 0 for every
placep ∈ (•t ∪ ◦t). En(()N,m) denotes the set of transitions ofN enabled bym. As
for TPNs, the firing of an enabled transitiont produces a new markingm′ computed as
∀p ∈ P,m′(p) = m(p)−W (t, p)+W (p, t). We fix a markingm0 of N called itsinitial
marking. We say that a transitiont′ is in conflict with a transitiont iff (•t∪◦t)∩(•t′) 6= ∅
(firing t′ consumes tokens that enablet).

The semantics of a TPNR is also given as a timed transition system (TTS) [21].
This model contains two kinds of transitions: continuous transitions when time passes
and discrete transitions when a transition of the net fires. Atransitiontk is saidnewly
enabledby the firing of the firable transitionti from the markingm, and denoted
↑En(()tk,m, ti), if the transitiontk is enabled by the new marking(m\•ti)∪t•i but was
not bym\ (•ti). We will denote by↑En(()m, ti) the set of transitions newly enabled by
the firing ofti fromm. A valuation is a mapν : T → R+ such that∀t ∈ T, ν(t) is the
time elapsed sincet was last newly enabled. Forδ ∈ R+, ν + δ denotes the valuation
that associatesν(t) + δ to every transitiont ∈ T . Note thatν(t) is meaningful only ift
is an enabled transition.0 is the null valuation such that∀t,0(t) = 0.

The semantics of TPNN is defined as the TTS(Q, q0,→) where a state ofQ is
a couple(m, ν) of a marking and valuation ofN , q0 = (m0,0) and→∈ (Q × (T ∪
R+) ×Q) is the transition relation describing continuous and discrete transitions. The
continuous transition relation is defined∀δ ∈ R+ by:

(m, ν)
δ
−→ (m, ν′) iff ν′ = ν + δ

and∀tk ∈ En(()m),

{
ν′(tk) ≤ I+s (tk) andIs(tk)is of the form[a, b] or (a,b]

ν′(tk) < I+s (tk) andIs(tk)is of the form [a,b) or (a,b)

7

Intuitively, time can progress iff letting time elapse doesnot violate the upper constraint
I+s (t) of any transitiont. The discrete transition relation is defined∀ti ∈ T by:

(m, ν)
ti−→ (m′, ν′) iff





ti ∈ En(()m),m′ = (m \ •ti) ∪ t•i

ν(ti) ∈ Is(ti),

∀tk, ν′(tk) = 0 if ↑En(()tk,m, ti) andν(tk) otherwise.

Intuitively, transitionti can fire if it was enabled for a duration included in the time
constraintIs(t). Firing ti fromm resets the clocks of newly enabled transitions.

A run of a TTS is a sequence of the formp1
α1−→ p2

α2−→ . . .
αn−−→ pn wherep1 = q0,

and for alli ∈ {2..n}, (pi−1, αi, pi) ∈→ andαi = ti ∈ T or αi = δi ∈ R+. Each
finite run defines a sequence over(T ∪ R+)∗ from which we can obtain atimed word
overT of the formw = (t1, d1)(t2, d2) . . . (tn, dn) where eachti is a transition and
di ∈ R+ the time at which transitionti is fired. More precisely, if the sequence ofα′

is

read by the run are of the formδ0δ1 . . . δk1
t1δk1+1δk1+2 . . . δk2

t2 . . . tn, then the timed
word obtained is(t1, d1) . . . (tn, dn) wheredi =

∑
0≤j≤ki

δj . We define adated run

of a TPNN as the sequence of the formq1
(d1,t1)
−−−−→ q2 . . .

(dn,tn)
−−−−→ qn, wheredi’s are

the dates as defined above and eachqi is the state reached after firingti at datedi.
We denote byLtw(N) the timed words overT generated by the above semantics.

This will be called the timed (transition) language ofN . We denote byLw(N) the
untimed language of sequences of transitions obtained by projecting onto the first com-
ponent. Furthermore, given a timed wordw overT , if we consider a subset of transitions
X ⊆ T , we can projectw ontoX to obtain a timed word overX . We will denote this
projected language byLtw(N)|X . For simplicity, we did not consider final states in our
TTS, and hence define prefix-closed languages as is standard in Petri nets. Our results
will still continue to hold with an appropriate definition offinal states.

In the rest of this section, we will limit the study of robustness to TPNRs where
the underlying PN is1-safe, i.e., nets such that∀p ∈ P, m(p) ≤ 1, for all reachable
markingsm in the underlying PN. Hence, we will also consider flows that take values
in {0, 1}. The reason for using a property of the underlying net is thatdeciding if an un-
timed PN is 1-safe is PSPACE-complete, whereas checking if aTPN (and consequently
a TPNR) is bounded is undecidable [29]. Reachability of a marking m in a safe net is
also PSPACE-complete [11]. For safe Petri nets a place contains either0 or 1 token,
hence we identify a markingm with the set of placesp such thatm(p) = 1.

2.5 Timed (bi)simulation :

Different models are frequently compared according to their untimed languages, to their
timed languages. However, it is well known that language equivalence does not capture
all operational differences between models. A more discriminating comparison among
timed specification is through timed bisimulation.

Let S = (Q, q0,→) andS′ = (Q′, q′0,→
′) be two TTSs. A relationR ⊆ Q × Q′

is a timed simulationif and only if, (q0, q′0) ∈ R and for everyσ ∈ Σǫ ∪ R, q1 ∈ Q,
q′1 ∈ Q′ such that(q1, q′1) ∈ R, if q1

σ
−→ q2, then there existsq′2 such thatq′1

σ
−→ q′2 and

(q2, q
′
2) ∈ R. We will say thatS′ simulatesS and writeS � S′ when such a relationR

8

among states ofS andS′ exists. If in additionR−1 is a timed simulation relation from
S′ to S, then we say thatR is a timed bisimulation. We say thatS andS′ are timed
bisimilar when such a relationR among states ofS andS′ exists, and writeS ≈ S′.

3 Robustness of Time Petri Nets under architectural constraints

This section addresses robustness issues in Time Petri Nets(TPN) under constraints
imposed by an external architecture. Within this context, the main objective is to check
whether a timed specification, given as a TPN behaves as expected when subject to ad-
ditional architectural constraints (for example, the use of resources,time and scheduling
constraints,...). The constraints are specified by anotherTPN that constrains the speci-
fication via read arcs.

Hence, the composition of a TPN and of architectural constraints define a TPNR.
Surprisingly, imposing constraints on a system may allow new transitions to fire, new
markings to become reachable, etc. In this section, we want to check a robustness prop-
erty that verifies that the constrained net does not exhibit new timed or untimed be-
haviors. Thus, if the implementation features can only restrict (but not enlarge) the set
of original behaviors, we say the model is robust with respect to the implementation
constraints.

We show that this property is not always guaranteed but that checking for it is always
decidable in 1-safe TPNs. We further show that checking if the set of untimed behaviors
of the constrained and specification nets are the same is alsodecidable. Next we turn
to the more powerful case of labeled 1-safe TPNs with silent transitions. We show that
checking for the robustness property is undecidable even when restricted to 1-safe TPNs
with injective labeling, and exhibit a sub-class of safe TPNs (with silent transitions) for
which robustness is guaranteed by construction. We demonstrate the practical utility of
this sub-class with a case-study and prove that it already lies close to the frontiers of
intractability.

Note that a large part of the litterature devoted to robustness problems use timed
automata as model, and consider robustness properties suchas invariance of behaviors
under small time perturbations. We use the term “robustness” is a more general con-
text: we consider preservation of specified behaviors when new architectural constraints
(scheduling policies, resources, ...) are imposed.

We consider bipartite architectures: a specification of a distributed system is given
as a TPN, called theground netand the architectural constraints are specified by an-
other TPN, called thecontroller. The controller net can read places of the ground net,
but cannot consume tokens from the ground net, and vice versa. The net obtained by
considering the ground net in the presence of the controlleris called thecontrolled net.

Though this problem resembles supervisory control, there are some important dif-
ferences. Supervisory control is used to restrict the behaviors of a system in order to
meet some (safety) propertyP . The input of the problem is the propertyP , a descrip-
tion of the system, and the output a controller that restricts system: the behavior of a
system under control is a subset of the original specification satisfyingP . In our setting,
there is no property to ensure, but we want to preserve as muchas possible the spec-
ified behaviors. We will show in the example below that architectural contraints may

9

add behaviors to the specification. This situation can be particularly harmful, especially
when the architecture changes for a system that has been running properly on a former
architecture. New faults that were not expected may appear,even when the overall per-
formance of the architecture improves. Detecting such situations is a difficult task that
should be automated. The last difference with supervisory control is that we do not ask
for synthesis of a controller. In our setting, the controller represents the architectural
constraints, and is part of the input of the robustness problem. The question is then
whether the ground net preserves its behaviors when controlled.

More specifically, we consider the following questions. We first ask if the untimed
language of the controlled net is contained in the untimed language of the ground net.
This problem is calleduntimed robustness. Next, we ask if the untimed language is ex-
actly the same despite control, called theuntimed equivalence problem. The last prob-
lem considered istimed robustness, which asks if the timed language of the controlled
net is contained in the timed language of the ground net.

• •

• • •

C1

N1

C2

N2

[1, 2]
a

[3,∞)
a′

[1, 3]
b′

[1,∞)
b

[1, 2] [2, 3]

[2, 3] [1, 2]

[1, 1]c

[1, 1]

[1, 1]

[1, 2]

[1, 2]

Fig. 2. Illustrative examples (a) and (b) - (unlabeled transitionsdepict silent moves)

Let us consider the example of Figure 2-a. It contains a ground netN1, with four
transitionsa, a′, b, b′, and a controllerC1, that acts as a global scheduler allowing firing
of a or b. In N1, transitionsa, a′ andb, b′ are independant. The netN1 is not timed
robust w.r.t. the scheduling imposed byC1: in the controlled net,a can be fired at time3
which is impossible inN1 alone. However, if we consider the restriction ofN1 to b, b′,
the resulting subnet is timed robust w.r.tC1. Figure 2-b shows a ground netN2 with four
unobservable transitions, and one observable transitionc. This transition can be fired at
different dates, depending on wheter the first transition tofire is the left transition (with
constraint[1, 2]) or the right transition (with constraint[2, 3]) below the initially marked
place. The netC2 imposes that left and right transitions are not enabled at the same time,
and switches the enabled transition from time to time. With the constraints imposed by
C2, c is firable at date5 in the controlled net but not at date6 while it is firable at both
dates5 and6 in N2 alone. This example is timed robust w.r.tC2, as it allows a subset of
its original behaviors.

Our results are the following: The problem of checking untimed robustness for 1-
safe TPNs is decidable. The timed variant of this problem is decidable for 1-safe TPNs,

10

under the assumption that there are noǫ transitions and the labeling of the ground net is
injective. However, with arbitrary labeling and silent transitions this problem becomes
undecidable. Further, even with injective labeling, timedrobustness is undecidable as
soon as the ground net contains silent transitions. We then show a natural relaxation
on the way transitions are controlled and constrained, which ensures timed robustness
of nets. In the untimed setting we also consider the strongernotion of equivalence of
untimed languages and show that it is always decidable to check this property with or
without silent transitions. The rest of the section is organized as follows: Section 3.1
introduces the robustness under architectural constraints problems. Section 3.2 shows
decidability of this robustness problem in the untimed setting, or when nets are unla-
belled. Section 3.3 shows that this problem becomes undecidable in the timed setting as
soon as silent transitions are introduced. Section 3.4 shows conditions on ground nets
and control schemes ensuring timed robustness. Section 3.5provides a small case-study
to show the relevance of our robustness condition, before concluding with Section 3.6.

Several papers deal with control of Petri Nets where transitions are divided into un-
timed controllable and uncontrollable transitions. Amongthem, Holloway and Krogh [18]
first proposed an efficient method to solve a control problem for a subclass of Petri Nets
calledsafe marked graph. Concerning TPNs, [15] propose a method inspired by the
approach of Maler [22]. The controller is synthesized as a feedback function over the
state space. However, in all these papers, the controller isgiven as a feedback law,
and it is not possible to design a net model of the controlled system. To overcome this
problem, [17] propose a solution usingmonitorsto synthesise a Petri Net that models
the closed-loop system. The method is extended to real time Supervisory Control in
[28]. The supervisor uses enabling arcs (which are equivalent to read arcs) to enable
or block a controllable transition. In [30], robustness is addressed in a weaker setting
calledschedulability: given an TPNN , the question is whether the untimed language of
N , and the language of the underlying untimed net (i.e. without timing constraints) is
the same. This problem is addressed for acyclic nets, or withrestricted cyclic behaviors.

3.1 Formalization of robustness under architectural constraints

Let us consider two safe Time Petri nets (with read arcs)N = (PN , TN ,WN , RN , IN ,m0
N)

andC = (PC , TC,WC , RC , IN ,m0
C).

C models time constraints and resources of an architecture. One can expect these
constraints to restrict the behaviors of the original net (we will show however that this
is not always the case), that isC could be seen as a controller. Rather than synchronizing
the two nets (as is often done in supervisory control), we define a relationR ⊆ (PC ×
TN)∪(PN ×TC), connecting some places ofC to some transitions ofN and vice versa.
The resulting netN (C,R) is still a place/transition net defined byN (C,R) = (PN ∪
PC , TN ∪ TC,WN ∪WC , RN ∪ RC ∪ R, IN ∪ IC ,m

0
N ∪m0

C). We callN theground
net, C thecontroller netandN (C,R) thecontrolled net.

The reason for choosing this relation is two-fold. Firstly,the definition of control
above preserves the formalism as the resulting structure isa time Petri net as well. This
allows us to deal with a single formalism throughout the paper. Secondly, one can define
several types of controllers. By allowing read arcs from thecontroller to the ground net
only, we model blind controllers, whose states evolve independently of the ground net’s

11

state. The net in Figure 2(a) is an example of such a controlled net. Conversely, if
read arcs are allowed from the ground net to the controller, controller’s state changes
depending on the current state of the ground net. For the sakeof clarity, all examples in
the paper have blind controllers, but both types of control are possible.

Our goal is to compare the behaviors ofN with its behaviors when controlled
by C underR, i.e., N (C,R). Therefore, the language of (timed and untimed) transi-
tions, i.e.,Ltw(N),Ltw(C),Lw(N),Lw(C), are as usual but when talking about the
language of the controlled net, we will always mean the language projected onto transi-
tions ofN , i.e.,Ltw(N (C,R))|TN

or Lw(N (C,R))|TN
. Abusing notation, we will write

Ltw(N (C,R)) (similarlyLw(N (C,R))) to denote their projections ontoTN .
We will now formally define and motivate the problems that we consider in this

work.

Definition 6. Given 1-safe TPNsN andC, and a set of read arcsR ⊆ (PC × TN) ∪
(PN × TC), N is said to beuntimed robustunder(C, R) if Lw(N C,R) ⊆ Lw(N).

For time Petri nets, the first problem we consider is theuntimed robustnessproblem,
which asks whether a given TPNN is untimed robust under(C, R). This corresponds
to checking whether the controlled netN (C,R) only exhibits a subset of the (untimed)
behaviors of the ground TPNN . The second question addressed is theuntimed equiv-
alenceproblem, which asks if the untimed behaviors of the controlled netN (C,R) and
ground netN are the same, i.e., ifLw(N C,R) = Lw(N). In fact these questions can
already be asked for “untimed Petri nets”, i.e., for Petri nets without the timing function
Is and we also provide results for this setting.

Note however that untimed robustness only says that everyuntimedbehavior of
the controlled netN (C,R) is also exhibited by the ground netN . However sometimed
behaviors of the controlled netN (C,R) maynot be timed behaviors of the ground net
N . For obvious safety reasons, one may require that a controlled system does not allow
new behaviors, timed or untimed. Surprisingly, controlling a TPN with another net may
introduce additional behaviors on the ground net (this willbe shown on an example in
the next subsection). This contradicts the intuition that adding a controller restricts the
possible behaviors of the controlled system, but indeed, adding ressource constraints or
time sharing may allow firing of transitions that were not allowed, increase the set of
reachable markings of the ground net, This counterintuitive situation is particcularly
dangerous. Thus, we would like to check that even when considering timed behaviors,
the set of timed behaviors exhibited by the controlled netN (C,R) is a subset of the set
of timed behaviors exhibited by the ground netN . We call this thetimed robustness
property.

Definition 7. Given 1-safe TPNsN andC, and a set of read arcsR ⊆ (PC × TN) ∪
(PN × TC), N is said to betimed robustunder(C, R) if Ltw(N

C,R) ⊆ Ltw(N).

One can further ask if the timed behaviors are exactly the same, which means that
the controller is useless. Brought back to our setting, it means that the architectural
constraints do not affect the executions of the system, nor their timings. While untimed
equivalence of unconstrained and constrained systems seems a reasonable notion, timed
equivalence is rarely met, and hence seems a too restrictiverequirement. We will see in
Section 3.3 that introducing silent transitions gives a newmeaning to these notions.

12

3.2 Controlling (time) Petri nets

Let us first consider untimed 1-safe Petri nets. LetN be an untimed net, andC be an
untimed controller. We can observe thatC can only restrict the behaviors ofN , under
anychoice ofR. HenceN is always untimed robust under(C,R). Furthermore one can
effectively check if the controlled net has the same untimedlanguage as the ground net,
by building their marking graphs, and then checking inclusion. Thus, the robustness and
equivalence problems are decidable for untimed nets.

Proposition 1. LetN , C be twountimed1-safe Petri nets. Then,

1. For anyR ⊆ (PC × TN) ∪ (PN × TC), N is untimed robust under(C,R).
2. For a fixed set of read arcsR ⊆ (PC × TN) ∪ (PN × TC) checking ifLw(N) =

Lw(N
(C,R)) is PSPACE-complete.

Part 1) comes from the fact that a controller only restrics the set ofreachable
markings. Part2) comes after demonstration that it is sufficient to show inclusion
Lw(N) ⊆ Lw(N

(C,R)), which can be done by exploration of the marking graph of
the controlled net.

This property of untimed Petri nets has a counterpart for time Petri nets: let us
considerunconstrainednetsN andC, i.e., such thatIN (t) = [0,∞) for everyt ∈ TN ,
andIC(t) = [0,∞) for everyt ∈ TC . Let N andC be the underlying nets ofN and
C. One can easily show that for anyR, Lw(N C,R) ⊆ Lw(N). As any timed word
w = (a1, d1) . . . (an, dn) in Ltw(N C,R) (resp. inLtw(N)) is such thata1 . . . an ∈
Lw(N

C,R) (resp.Lw(N)) where eachd1, . . . dn can be arbitrary dates, we also have
Ltw(N C,R) ⊆ Ltw(N). Thus, unconstrained time Petri nets are also untimed robust.

1

•

1′

2

•

34

C

N
[2, 3] t [4, 5]t′

[0, 1]

[0, 1]

Fig. 3. An example of control of TPN through read-arcs leading to newbehaviors

The question for Time Petri Nets is whether the controlled TPN only restricts the
set of behaviors of the original TPN. Unlike in the untimed case, in the timed setting the
controlled TPN may exhibit more (in fact, different set of) behaviors than the ground
TPN, because of the urgency requirement of TPNs. Consider the example in Figure 3.
The ground netN always firest in the absence of the controllerC but in the presence
of C with R as in the picture, transitiont is never fired andt′ is always fired. Thus set
of (timed and untimed) behaviors ofN andN (C,R) are disjoint. Discrepancies between
untimed languages can be checked using the state class graphconstruction [6, 21]. This
gives the following theorem and its corollary:

13

Theorem 1. For 1-safe TPNs, the untimed robustness problem is PSPACE-complete.

Corollary 1. For 1-safe TPNs, the untimed equivalence problem is PSPACE-complete.

Next we consider timed robustness properties for TPNs. Then, we have

Theorem 2. For 1-safe TPNs, the timed robustness problem is decidable.

Proof (sketch).Let N andC be 1-safe TPNs, andR be a set of read arcs. We can
check ifLtw(N (C,R)) ⊆ Ltw(N) by using the state class timed automata construction
from [21]. It is shown that from the state class graph construction of a 1-safe TPN,N ,
we can build a deterministic timed automatonA over the alphabetTN , called the state
class timed automaton, such thatLtw(N) = Ltw(A). As a result,Ltw(N) can be com-
plemented and its complement is accepted by some timed automatonA′, which is com-
puted fromA (see [3] for details of complementation of deterministic timed automata).
On the other hand, the state class timed automatonB constructed fromN (C,R) is over
the languageTN ∪TC. By projecting this language ontoTN , we obtain the timed (tran-
sition) languageLtw(N (C,R)). We remark that the timed automaton corresponding to
the projection, denotedB′, can be easily obtained by replacing all transitions ofC in the
timed automatonB by ǫ-transitions [3, 5]. Now we just check ifLtw(B′)∩Ltw(A′) = ∅,
which is decidable in PSPACE [3] (in the sizes ofA′ andB′). ⊓⊔

3.3 Controlling TPNs with silent transitions

We now consider ground nets which may have silent orǫ-transitions. The (timed and
untimed) language of the ground net contains only sequencesof observable (i.e., not
ǫ) transitions and the robustness question asks if the controller introduces new timed
behaviors with respect to this language of observable transitions. From a modeling per-
spective, robustness means that sequence of important actions remain unchanged with
architectural constraints, and hence this property shouldhold. Silent transitions can be
used to model unimportant or unobservable transitions in the ground net. In this setting,
it is natural to require that control does not add to the language of important/observable
transitions, while it may allow new changes in other transitions.

An example of such a control is given in the introduction in Figure 2 (b). In that
example, the ground net has a unique critical (visible) actionc. All other transitions are
left unlabeled and so we do not care if the timed or untimed behaviors on those transi-
tions are different in the ground and controlled nets. Then the timed robustness problem
asks ifc can occur in the controlled net at a date when it was not allowed to occur in
the ground net. A more practical example will be studied in detail in Section 3.5.

With this as motivation, we introduce the class ofǫ-TPN, which are TPNs where
some transitions may be silent, i.e. labeled byǫ. The behavior of such nets is determin-
istic except on silent actions: from a configuration, if a discrete transition that is not
labeledǫ is fired, then the net reaches a unique successor marking.

Definition 8. LetΣ be a finite set of labels containing a special labelǫ.

14

1. An LTPN overΣ is a structure(N , λ) whereN is a TPN andλ : TN → Σ is the
labeling function.

2. Anǫ-TPN is an LTPN(N , λ) overΣ such that, for allt ∈ TN , if λ(t) 6= ǫ then
λ(t) 6= λ(t′) for anyt′ 6= t ∈ TN .

For anǫ-TPN or LTPNN , its timed(resp.untimed) languagedenotedLtw(N , λ)
(resp.Lw(N , λ)) is the set of timed (resp. untimed) words overΣ \ {ǫ} generated
by the timed (resp. untimed) transition system , by ignoringthe ǫ labels. A TPNN
from Definition 5 can be seen as the LTPN(N , λ) overΣ such that for allt ∈ TN ,
λ(t) = t, that is,λ is the identity map. Anǫ-TPN can be seen as an LTPN(N , λ) over
Σ = TN ∪ {ǫ} such thatλ(t) = t or λ(t) = ǫ for all t ∈ TN .

We are interested in the problem ofchecking timed robustness, i.e.,

Definition 9. Given twoǫ-TPNs(N , λ) and (C, λ′) overΣ and a set of read arcsR
from (PC × TN) ∪ (PN × TC),

– the controlledǫ-TPN (N , λ)(C,R) is defined as theǫ-TPN (N (C,R), λ′′) over Σ
whereλ′′(t) = λ(t) for t ∈ TN andλ′′(t) = ǫ for t ∈ TC .

– the timed robustness problem asks ifLtw((N , λ)C,R) ⊆ Ltw(N).

Note that the labels inC are ignored (i.e., replaced byǫ), since robustness only com-
pares labels of the ground nets. We remark that untimed robustness and even untimed
equivalence are decidable forǫ-TPNs and LTPNs, since Theorem 1 still holds in the
presence ofǫ or labels (indeed, the algorithm (see [1] for details) uses aconstruction
called a state class graph, which is an untimed automaton). However, the result does
not extend to timed robustness, and we can show that this problem is undecidable for
ǫ-TPNs and LTPNs.

Theorem 3. Checking timed robustness is undecidable forǫ-TPNs (and LTPNs).

The complete proof can be found in [1], but sketching its content highlights the
power of labels. The first step of the proof reuse results from[4] which shows that
LTPNs are as powerful, language-wise, as timed automata. These results mean that the
universality problem for timed automata reduces to the universality problem for LTPNs,
and hence universality for LTPNs is undecidable. Then, we can show that LTPNs can be
simulated byǫ-TPNs. Figure 4 beliow shows how to encode a labeled pair of transitions
with transitions in anǫ-TPN.

Thus,ǫ-TPNs are expressively as powerful as LTPNs. The last step ofthe proof
shows that checking universality of a labeled net (which is undecidable) can be reduced
to checking timed robustness of a related net.

Note that checking ifLtw(N
(C,R)) = Ltw(N), i.e., the timed language equivalence

is a weaker notion in the context ofǫ-TPNs than in TPN (it only requires preserving
timing for important observable actions), and hence could be relevant. For instance in
Figure 2(b), we may want to check ifc can occur in the controlled net at every date
at which it can occur in the ground net (even if the otherǫ-transitions are perturbed).
Unfortunately, this simpler problem is also undecidable (it is an immediate corollary of
the above theorem 6.

15

1
•

2
•

pt pa pt′

p′a

3

p̄a

•

1
•

2
•

3

[3, 4] ǫ
t1

ǫ [0, 0]

[0, 0] a
ta

[0, 0] ǫ
t2

ǫ [0, 0]

(U(N), λ′)

[3, 4] a
t

a[0, 0]
t′

(N , λ)

Fig. 4. Construction of aǫ-TPN equivalent to a LTPN.

3.4 Ensuring robustness in TPNs with silent transitions

The situation forǫ-TPNs is unsatisfactory since checking timed robustness isunde-
cidable. Hence, we are interested in restrictions that makethis problem decidable, or
ensuring that this property is met by construction. In this section, we will show that we
can restrict the controlling set of read-arcs to ensure thata net is always timed robust.
Indeed, it is natural to expect that a “good” controller never introduces new behaviors
and we would like to ensure this.

Here, we consider the restriction in which all transitions of the ground nets that have
controller places in their preset are not urgent, i.e., the time constraint on the transition
is [α,∞) or (α,∞) for someα ∈ Q+. We call such controlled netsR-restrictedǫ-
TPNs. In this case we will show thatR-restrictedǫ-TPNs are always timed robust (as
in the case of untimed PNs shown in Proposition 1). That is,

Theorem 4. Let N and C be twoǫ-TPNs, andR be a set of read arcs such that for
every(p, t) ∈ R ∩ (PC × TN), Is(t)+ = ∞, thenLtw(N (C,R)) ⊆ Ltw(N).

Note that while timed robustness is ensured for nets and control schemes that fulfill
conditions of theorem 4, timed equivalence remains undecidable for such nets.

The condition in Theorem 4 is quite restrictive but relaxingit rapidly leads to unde-
cidability:

Proposition 2. The timed robustness problem is undecidable forǫ-TPNs with at least
one read arc from a place of the controller to any transitiont of the ground net such
thatIs(t)+ 6= ∞.

Again, one can show that this problem can be used to encode a universality problem.

3.5 A small case study

We consider a heater-cooler system depicted in Figure 5. This system improves the
hardness of a particular material by first heating and then cooling it. The heater-cooler is
equipped with two sensors:Toohot is raised when the heater reaches its maximal tem-
perature. If it occurs, the heating stops automatically.Cold is raised when the tempera-
ture is cold enough in the cooling stage. If it occurs, the cooler stops automatically. The

16

heating

cooling

noheat

C1

C2

C3

[10,∞)

StartCooling

[20, 100]
Toohot

[30, 40] Cold

[20, 20] ε

[100, 100] ε

[15,∞)

StartCooling

•

•

Ground netN ControllerC

Fig. 5. Case Study

heater-cooler starts in theheating state and the operator can push theStartCooling

button if the constraints of the system allow it.
We assume architectural constraints imposing that theStartCooling action is not

allowed after20 t.u. in the heating stage, and also disallowed before the date 120 t.u.
if the toohot sensor has been raised. The constraints are encoded as a controller C, and
read arcs as shown in Figure 5.

We can show thatLw(N C,R) = Lw(N). Hence,N is untimed robust and even
untimed equivalent under(C, R). The netN is not anǫ-TPN, but it was shown that
any LTPN can be converted to anǫ-TPN. Furthemore, the transformation only uses
new transitions for the ground net, and no additional read arcs (as illustrated in Fig-
ure 4). Hence, the resulting net isR-restricted, so according to Theorem 4, we have
Ltw(N (C,R)) ⊆ Ltw(N) and thenN is timed robust under(C, R).

17

3.6 Conclusion and discussion

We have defined and studied notions of timed and untimed robustness as well as un-
timed equivalence for time Petri nets. We are interested in whether we can check or/and
guarantee these properties for timed and untimed behaviors. We summarize the results
obtained in the table below.

TPN R-restrictedǫ-TPN ǫ-TPN LTPN

Untimed robustness Pc (thm 1) G (thm 4) Pc Pc

Untimed equivalence Pc (cor 1) Pc Pc Pc

Timed robustness D (thm 2) G (thm 4) U (thm 3)U (thm 3)
U stands for undecidable,D for decidable,Pc for PSPACE-complete, andG for guaranteed.

Overall, with injective labels and noǫ, robustness is decidable. We think that timed
robustness of TPN is EXPSPACE-complete, but this need to be proved. However from
a modeling perspective it is important to allow silent transitions. With silent transitions,
untimed properties are still tractable, but timed properties become hard to check. To
overcome this problem, we proposed a sufficient condition toguarantee timed robust-
ness which we showed is already at the border of undecidability. To show its practical
relevance, we designed a small case-study. We also show thatuntimed equivalence is
easily decidable in all the cases. As for timed equivalence,this property is undecidable
in most cases. This is not really a surprise nor a limitation,as asking preservation of
timed behavior under architectural constraints is a ratherstrong requirement.

As further discussion, we remark that other criteria can be used for comparing the
controlled and ground nets such as (timed) bisimulation or weak bisimulation. While
this would be an interesting avenue to explore, a priori, they seem to be more restric-
tive and hence less viable from a modeling perspective. Possible extensions could be
to define tractable subclasses of nets, for instance by considering semantic properties
of the net rather that syntactic conditions ensuring decidability. It also seems possi-
ble to consider robustness of netsup to some small delay. Formally, we can fix a
delay as a small positive numberδ, and defineLδ

tw(N) = {(w1, t1) . . . (wn, tn) |
∃(w1, t

′
1) . . . (wn, t

′
n) ∈ Ltw(N), ∀i ∈ 1 . . . n, |t′i − ti| ≤ δ}. Then a possible ex-

tension of the definitions is to considerδ-robustness underC, R as the timed inclusion
Ltw(N

(C,R)) ⊆ Lδ
tw(N).

18

4 Robustness of Time Petri Nets under Guard Enlargement

Robustness of timed systems aims at studying whether infinitesimal perturbations in
clock values can result in new discrete behaviors. A model isrobust if the set of discrete
behaviors is preserved under arbitrarily small (but positive) perturbations. We tackle this
problem for Time Petri Nets (TPNs for short) by considering the model of parametric
guard enlargement which allows time-intervals constraining the firing of transitions in
TPNs to be enlarged by a (positive) parameter.

We show that TPNs are not robust in general and checking if they are robust with
respect to standard properties (such as boundedness, safety) is undecidable. We then
extend the marking class timed automaton construction for TPNs to a parametric set-
ting, and prove that it is compatible with guard enlargements. We apply this result to
the (undecidable) class of TPNs which are robustly bounded (i.e., whose finite set of
reachable markings remains finite under infinitesimal perturbations): we provide two
decidable robustly bounded subclasses, and show that one can effectively build a timed
automaton which is timed bisimilar even in presence of perturbations. This allows us
to apply existing results for timed automata to these TPNs and show further robustness
properties.

As already mentionned in Section 1, the semantics of timed models such as timed
automata [3] (TA), time Petri nets [23] is idealized. Indeed, in implementations of timed
systems, clock values are discretized, which may lead to approximations of real clock
values. Furthermore, in distributed systems, the clocks oftwo different processes may
evolve at slightly different rates. As a result, the extremeprecision of the models leads to
unexpected outcomes when there is even a slight imprecisionat the level of implemen-
tation. A solution to discover if imprecision may cause a problem is to verify properties
of models under perturbation, that is introduce perturbations in the models.

For timed automata, a model of guard enlargement has been extensively studied
in the last decade [24, 7, 8, 13, 9, 26]. In [14], it is proven that this model of perturba-
tion covers the both issues of discretization and drift of clocks, by reducing the imple-
mentability problem to the analysis of the enlarged semantics.

In this section, we tackle the problem of robustness under small perturbations in the
distributed and timed setting of time Petri nets. Our aim is to study the effect of small
enlargement of intervals that are attached to transitions of a TPN. We address mainly
two problems. The first is therobust boundednessproblem, which consists in deciding,
for a given bounded TPN, whether there exists a positive enlargement for which the set
of reachable markings is finite. The second problem considered in this section isrobust
untimed language preservation, which consists in deciding whether there exists a pos-
itive enlargement for which the untimed language remains unchanged. As mentioned,
robustness issues have been well studied for TA. Hence, a possible way to address the
robustness problem for TPNs is to translate TPNs to TA, and reuse existing techniques.
However, we show in this section that results on TA do not always extend to TPN. For
instance, robust safety, that is avoidance of some bad configuration under perturbation,
is decidable in TAs, but not for TPNs. The objectives of this paper are to consider ro-
bustness issues for TPNs, and to study to what extent resultsproven for TA can be
applied on TPN.

19

We first show that the phenomenon of accumulation of perturbations, which Puri
exhibited in TA in [24], also occurs in TPN, but in a slightly different way. In a TPN,
firing of transitions which are not causally related may occur systematically at distinct
dates in a non-perturbed model, and after accumulation of some delays, become con-
current in the perturbed model. This has two consequences: first, reachable markings of
a net may change under perturbation. Second, a bounded net may become unbounded
under perturbation. This makes a huge difference with the TAmodel which is defined
over a finite set of locations which does not change under perturbation. We show an ex-
ample of a TPN whose unbounded perturbed semantics cannot becaptured by a finite
timed automaton. We then use this example to prove that the two problems we consider
are undecidable.

There are several translations from TPN to TA [16, 10, 21, 12]. We study which of
these translations can be used to lift robustness results onTA to the model of TPN.
In particular, we prove that the marking class timed automaton construction of [12] is
compatible with guard enlargement, in the sense that the property of timed bisimulation
is preserved when guards are enlarged by the same parameter in the TA and in the TPN.
We use this result to exhibit subclasses of bounded TPNs for which robust boundedness
and language preservation are decidable.

This section is organized as follows: Section 4.1 introduces our time perturbation
model for TPNs, and the robust boundedness and language preservation problems. Sec-
tion 4.2 shown that in general, TPNs do not have robust languages, and are not robustly
bounded either. This section also exhibits a trivial class of TPNs, namely the class of
sequential TPNs, for which robustness problems are decidable.

Section 4.3 shows that many robustness issues are undecidable for TPNs. Section
4.4 presents a robust translation from TPNs to TA, i.e. compatible with guard enlarge-
ment. Sections 4.5 and 4.6 build on this result to exhibit decidable subclasses of TPNs,
before conclusion. Missing proofs can be found in a completeversion of this work
published in [2].

4.1 Perturbations in TPN and robustness problems

The perturbation definition proposed hereafter is inspiredfrom the perturbations in
timed automata [7, 8, 13], that we describe hereafter. We start by fixing a parameter
∆ ∈ R+

≥0. Given a constraintg ∈ C(X), we define its∆-enlargement as the con-
straint obtained by replacing any atomic formulae of the formulaex ⊲⊳ c for x ∈ X ,
c ∈ N and⊲⊳∈ {<,≤,≥, >}, by the formulaex ⊲⊳ c + ∆ if ⊲⊳∈ {<,≤}, and by
the formulaex ⊲⊳ c −∆ if ⊲⊳∈ {≥, >}. Note that this transformation is a purely syn-
tactic one. Now, given a timed automatonA, we denote byA∆ the TA obtained by
replacing every constraint by its∆-enlarged version (both in guards and invariants).
This model of perturbation verifies the following monotony property: for TAA and
any∆ ≤ ∆′ ∈ R+

≥0, we haveJA∆K � JA∆′K. In the sequel, we will denote by
Reach(A∆) the locations ofA reachable inJA∆K. We will also use the following im-
portant result:

Proposition 3 ([9]). LetA be a timed automaton andS be a subset of locations ofA.
One can decide whether there exists∆ ∈ Q+

>0 such thatReach(A∆) ∩ S = ∅.

20

We can now introduce a similar model of perturbation for TimePetri nets. Given
an intervalI ∈ I(Q+

≥0), we denote byI∆ the interval obtained by replacing its lower
boundα by the boundmax(0, α − ∆), and its upper boundβ by the boundβ + ∆.
Given a TPNN , we denote byN∆ the TPN obtained by replacing every intervalI by
the intervalI∆. We can then easily prove that the desired monotony propertyholds,
entailing that if the system verifies a safety property for some perturbation∆0, it will
also verify this property for any∆ ≤ ∆0:

Proposition 4. LetN be a TPN and∆ ≤ ∆′ ∈ R+
≥0. We haveJN∆K � JN∆′K.

These propositions are important as they intuitively statea “faster is better” prop-
erty. Indeed, decreasing the perturbation also decreases the set of possible additional
behaviors in the perturbed model of the system. This monotony property also entails
that if the system verifies a safety property for some perturbation∆0, it will also verify
this property for any∆ ≤ ∆0.

We now define robustness problems on TPNs in a way which is consistent with the
monotony property stated above.

Robust Boundedness:Given a bounded TPNN , does there exist∆ ∈ Q+
>0 such

thatN∆ is bounded?

Robust Untimed language preservation:Given a bounded TPNN , does there exist
∆ ∈ Q+

>0 such thatL(N∆) = L(N)?

We call a TPNN robustly boundedif there exists∆ ∈ Q+
>0 such thatN∆ is bounded.

This problem is strongly related to the problem of robust safety asking, given a bounded
TPNN with set of placesP , and a markingm ∈ NP , whether there exists∆ ∈ Q+

>0

s.t.,Reach(N∆) does not coverm. In fact, our undecidability and decidability results
for robust boundedness will easily extend to this problem. However, the situation differs
for robust untimed language preservation and so we treat this problem separately.

4.2 Examples of robust and non-robust TPNs

Consider the example in Figure 6(a). Due to the open intervaland urgency condition
(according to the semantics of TPNs,a′ has to fire at most 2 time units after enabling),
any enlargement of guards would result in reaching placep1 which is not reachable
in the non-enlarged semantics (from this simple example net, we can easily construct
examples that are not robustly bounded or robustly safe). Inthis example, the firing
domain of transitiona (the set of configurations{(p0, ν) | ν(a′) ∈ [1, 2]}) is aneighbor
of the reachable configuration(p0, ν(a′) = 2). By neighbor, we mean that any positive
enlargement makes transitiona fireable. This is the simplest form of non-robustness
which can be easily checked for in bounded TPNs as one can compute a symbolic
representation of the reachability set (using the state-class graph construction [6, 21]
for instance). Further by requiring that all intervals mustbe closed, one may avoid this
situation. Now assuming there are no transitions whose firing domain is a neighbor of
the reachability set, one can prove that under abounded time horizon(as defined for
timed automata in [27],i.e. within a bounded number of steps) any net is robust, i.e.,
one can pick a sufficiently small∆ > 0 to ensure that no new behavior occurs.

21

• p0

p1p2

(2, 3] a[1, 2] a′

(a) The TPNN0.

•

p1

•

p2

red

[2, 3] a[1, 2] a′

[0, 2]

t1

[0, 1] t2

[1, 2] b′[2, 3] b

[0, 2]

t3

[0, 1] t4[1,∞) t

(b) The TPNN1.
Fig. 6. Two TPNs exhibiting new discrete behaviors under infinitesimal perturbations.

However, closing intervals does not make bounded nets robust, as illustrated by the
following example. The remaining case concerns TPNs in which new behaviors are not
neighbors of the reachability set, considered for an unbounded time horizon. In this case
a new behavior cannot appear directly from a reachable configuration, and there must
be several discrete firings before this new behavior is witnessed. Further the number
of steps may depend on∆: the smaller∆ is, the larger will be the number of steps
required. Intuitively, the new behavior is due to an accumulation of clock perturbations,
rather than a single clock perturbation. Puri [24] gave an example of TA that exhibits
accumulations, encoded using time between consecutive resets. However, for TPNs,
this encoding does not work since the clocks are always resetwhen a transition is newly
enabled.

We exhibit a TPN where accumulation is due to concurrency in Figure 6(b). This
example can be simplified using singleton intervals, but we avoid this to show that
accumulation may arise even without singletons. With the usual semantics, the red state
in N1 is not reachable as transitiont is never fireable. Indeed, one can verify that any
run ofN1 which does not fire transitionst1, t2, t3 or t4 always fires transitiona (resp.
a′, b′, b) at time3k+2 (resp.3k+3, 3k+1, 3k+3), for some integerk. By observing the
time intervals of transitionst, a′ andb′, one can deduce that to be able to fire transition
t, one has to fire simultaneously the transitionsa andb, which is impossible.

Consider the net(N1)∆, for some positive∆. We can prove that in this case, it is
possible to fire simultaneously transitionsa andb. In (N1)∆, one can delay the firing
of transitiona by up to∆ time units. As a consequence, it is easy to verify that after
n iterations of the loopaa′, the timestamp of the firing of the last occurrence ofa can
be delayed by up ton · ∆ time units. Choosing anyn ≥ 1

∆
, we obtain the result. In

particular, the red place is reachable in(N1)∆, for any positive∆.
To see this, consider any reachable marking in any run which does not fire tran-

sitionst1, t2, t3 or t4. In any such run, there is a token in placep1 exactly during the
intervals[3k−1, 3k] for all k = 1, 2, Similarly, there is a token inp2 exactly during
the intervals[3ℓ, 3ℓ + 1] for all ℓ = 0, 1, As a result, there is a token inp1 andp2
enabling transitiont only at every time instant3k (for k = 1, 2, . . .). But to firet, we
require at least 1 time unit to elapse once the transition is enabled, which never happens
and hencet is never fireable. Thus, the red place is never reached.

However in theǫ-enlarged semantics, we have the following run reaching thered
place. As before, transitiona fires at time3k − 1 for k = 1, 2, Thus the token is in

22

placep1 during the interval[3k−1, 3k] for everyk = 1, 2, Lettingk = 2n+1, this
implies that there is a token atp1 in the interval[6n + 2, 6n + 3]. On the other hand,
each firing of transitionb is delayed by some1

n
≤ ǫ (indeed such an integern exists

given any fixedǫ > 0). All other transitions are not delayed and are fired exactlyas they
would have been under the exact semantics. Then, there is a token in placep2 during
the time intervals[3ℓ + ℓ

n
, 3ℓ + ℓ

n
+ 1] for ℓ = 0, 1, Letting ℓ = 2n, this implies

that there is a token inp2 in the time interval[6n+2, 6n+3]. As a result transitiont is
enabled in the time interval[6n+2, 6n+3] and so is fireable at the time instant6n+3,
thus reaching the red place.

The accumulation in the above example is due to concurrent loops in the TPN. When
we disallow such concurrency, we obtain a very simple class of sequential TPNswhich
is a strict subclass of timed automata. A TPNN is sequentialif it satisfies the following
property: for any reachable configuration(m, ν), and for any transitionst, t′ ∈ T that
are fireable from(m, ν) (i.e. such thatt, t′ ∈ En(m), ν(t) ≥ α(t) andν(t′) ≥ α(t′)),
t andt′ are in conflict, i.e. there exists a placep such thatm(p) < •t(p) + •t′(p).

The following theorem states robustness properties of sequential TPNs and their
relation to timed automata.

Theorem 5. We have the following properties:

(i) Checking whether a bounded TPNN is sequential is decidable.
(ii) If N is a sequential bounded TPN, then it can be translated into a timed automa-

ton which resets every clock on each transition.
(iii) If N is sequential, then there exists∆ ∈ Q>0 such thatReach(N∆) = Reach(N)

andL(N∆) = L(N).

Decidability follows from the construction of a state classgraph, that is an automa-
ton which states memorize markings and constraints on timedelapsed since a transition
was enabled. Such graph recognizes the same language as the original net, and obvi-
ously can be used to compute the set of reachable markings. Building this graph is
possible as soon as the TPN is bounded. Checking sequentiality of a net can be done in
time linear in the size of the state class graph. The second and third properties follow
from the observation that in a sequential TPN, each time a discrete transition is fired,
each transition that is enabled in the new/resulting marking is newly enabled, and no
memory is needed to remember the time since last enabling of atransition when moving
to a new state. Thus, if this enabling tile is memorized by a clock, all clocks are reset
at each transition, and this implies property (ii). Further, since clocks are reset, there
is intuitively no memory in clock values. This forbids accumulation mechanisms, and
considering as small enough enlargement (for instance∆ < 1

2) suffices to ensure that
exactly the same transitions are enabled inJN K and inJN∆K.

The class of sequential nets is quite restrictive, as it doesnot allo for concurrent
transitions in a net. For instance, the net example of Figure6(b) is not sequential.

4.3 Undecidability results

We use the TPNs of Figure 6 to prove undecidability of robustness and untimed lan-
guage preservation for bounded TPNs.

23

q0 qn f

N1

ts tf

NM

Fig. 7. TPNN2 obtained by combiningN1 andNM.

Theorem 6. The problems of robust boundedness and robust untimed language preser-
vation are undecidable for bounded TPN.

Undecidability comes very easily, using the standard encoding of Minsky machines
with TPNs (see for instance [25], or the appendixB in [2]). Given a Minsky machine
M, one can build a TPNNM such thatNM is bounded iffM is, andNM covers some
markingm iff M reaches its final stateqn. Moreover, the TPNNM is sequential (it
encodes the behavior ofM which is sequential).

The gadgets from Figure 6 and theorem 5 on sequential TPNs allow to extend all un-
decidability results attached to Minsky machines and theirTPN encoding to robustness
issues. We combine the TPNsN1 from Figure 6(b) andNM as depicted on Figure 7 to
obtain the TPNN2. First note thatN2 is a bounded TPN: without perturbation, transi-
tion t is never fired, and thus the set of reachable markings is finite. Second, we label
transitiontf by a and every other transition byε 6. As NM is sequential, by Theo-
rem 5(iii) it follows that (1)N2 is robustly bounded iffNM is bounded and (2)N2

robustly preserves its untimed language iffNM does not cover statem. We note that
for (2), NM may not be bounded (ifM is not bounded), however the statement still
holds since Theorem 5(iii) does not require the boundednessassumption.

Thanks to undecidability of halting and boundedness of Minsky machines, the prob-
lems we considered are undecidable Remark that the above results also show that robust
safety is undecidable, asN2 covers marking{f} iff NM covers markingm.

4.4 A robust translation from TPN to TA

Robustness issues were first studied for timed automata, andseveral translations of TPN
into TA exist in literature. It is hence natural to study which of these translations are
compatible with robustness. A way to reduce robustness problems for TPNs to robust-
ness problems for TA is to show that an existing timed bisimulation between TPN and
its TA translation is preserved under perturbation. We now present a translation which
verifies this property.

This construction is close to the marking class timed automaton construction of [12]
but differs in two aspects. First, for efficiency reasons [12] reduce the number of clocks
of the TA they build, and therefore use clock sharing techniques of [21], which may
increase the number of locations. For ease of presentation,we do not consider this opti-
mization, but our results also apply for this setting. Second, the construction of [12] was
only stated for TPN whose underlying Petri net (i.e., the Petri net obtained by ignoring

6 The reduction can be adapted to avoid the use ofε by labeling every other transition byb, and
adding a gadget which can perform abitrarily manyb’s. It can however not be adapted to the
setting of injective labeling, see Section 4.6.

24

the timing information in the given TPN) is bounded. We present the construction in a
more general framework: we consider a TPNN which is not necessarily bounded and
we consider as input a finite set of markingsM . The construction is then restricted to
the setM , and we can prove that it is correct for the set of behaviors ofN which al-
ways remain withinM . In the sequel, we will instantiateM depending on the context.
For TPNs whose underlying PN is bounded, the construction of[12] is recovered by
lettingM be the set of reachable markings of this PN. We begin with a definition and a
proposition that can be infered immediately:

Definition 10. LetN = (P, T,Σε,
•(.), (.)•,m0, Λ, I) be a TPN,M ⊆ NP be a set of

markings such thatm0 ∈ M , and letJN K = (Q, q0,→) be the semantics ofN . The
M -bounded semantics ofN , denotedJN K|M , is defined as the restriction of the TTS
JN K to the set of states{(m, ν) ∈ Q | m ∈ M}.

Proposition 5. LetM be a set of markings of a TPNN containing the initial marking.
If Reach(N) ⊆ M , thenJN K|M = JN K.

Now, let(N , λ) be a LTPN, andM ⊆ NP be a finite set of markings such thatm0 ∈
M . Themarking timed automaton ofN overM , denotedAM , is defined asAM =
(M,m0, X,Σε, E, Inv), whereX = {xt | t ∈ T }, for eachm ∈ M , Inv(m) =
∧

t∈En(m) xt ≤ β(t), and there is an edgem
g,a,R
−−−→ m′ ∈ E iff there existst ∈ T such

thatt ∈ En(m), m′ = m− •t + t•, g is defined as the constraintxt ∈ I(t), a = λ(t)
andR = {xt′ | t′ ∈↑enabled(t′,m, t) = true}. With this we have the following
theorem:

Theorem 7. Let N be a TPN,M be a finite set of markings containing the initial
marking ofN , andAM be the marking timed automaton ofN overM . Then for all
∆ ∈ Q+

≥0, we haveJN∆K|M ≈ J(AM)∆K.

Proof (Sketch).We can prove by induction that the following relationR is a timed
bisimulation. Let(m, ν) (resp.(ℓ, v)) denote a state of the TTSJN∆K|M , i.e.(m, ν) ∈
Adm(N∆) with m ∈ M (resp. denote a state ofJ(AM)∆K). We define(m, ν)R(ℓ, v)
if and only ifm = ℓ, and∀t ∈ En(m), ν(t) = v(xt). ⊓⊔

Other TA constructions.The construction proposed in [21] builds a state class timedau-
tomaton incrementally using a forward exploration of reachable markings of a bounded
TPN. Gardey et al [16] use a similar forward-reachability technique to build the reach-
able state space of TPN, where equivalence classes for clockvaluations are encoded
as zones. However, as in TPNN1 of Figure 6, new configurations in anenlarged se-
manticsmight be reached after accumulation of small delays. Hence,new reachable
markings are not necessarily obtained in one enlarged step from a configuration in the
non-enlarged semantics. Thus, forward techniques as in [21, 16] cannot be directly ex-
tended to obtain enlarged semantics and we need a more syntactic translation which
builds an over-approximation of the reachable markings (ofthe TPN) as in Theorem 7.

Cassez et al [10] propose a different syntactic translationfrom unbounded TPNs by
building a timed automaton for each transition, and then synchronizing them using a
supervisor. The resulting timed automaton is bisimilar to the original model, but states

25

contain variables, and hence the automaton may have an unbounded number of loca-
tions. It may be possible to extend this approach to address robustness problems, but as
we focus on bounded TPNs, we leave this for future work.

4.5 Robustly bounded TPNs

This section focuses on the class of robustly bounded TPNs. By Theorem 6, we know
that checking membership in this class is undecidable. We present two decidable sub-
classes, as well as a semi-decision procedure for the whole class. We first consider the
subclass of TPNs whoseunderlying Petri netis bounded:

Proposition 6. The set of TPN whose underlying net is bounded is a decidable subclass
of robustly bounded TPNs. Further, for each netN of this class, one can construct a
finite timed automatonA such thatJN∆K ≈ JA∆K for all ∆ ≥ 0.

The decidability follows from that of boundedness for (untimed) Petri nets [19], as
timing constraints can only restrict the set of untimed transitions. The second part of
the above proposition follows from Theorem 7.

We now exhibit another subclass of robustly bounded TPNs whose underlying Petri
nets can be unbounded. In fact, this class is incomparable with the above defined sub-
class. The following technical result is central in our approach:

Lemma 1. LetN be a TPN, andM be a finite set of markings. Determining whether
there exists∆ > 0 such thatReach(N∆) ⊆ M is decidable.

To prove this result, we definẽM = M ∪{m′ | ∃m ∈ M, t ∈ T,m′ = m−•t+ t•}
the (finite) set of markings reachable fromM in at most one-step in the underlying Petri
net. We then show that any run obtained after enlargement leading to a new marking
necessarily goes throug a set of markingsM̃ \M .

In other terms, we show that

Reach(N∆) ⊆ M ⇐⇒ Reach((A
M̃
)∆) ⊆ M

Then, determining whether there exists∆ > 0 such that the right hand side of the
equivalence holds is decidable thanks to Proposition 3.

We consider the following subclass of bounded TPNs:

Definition 11. A bounded TPNN is called Reach-Robust ifReach(N∆) = Reach(N)
for some∆ > 0. We denote byRR the class of Reach-Robust TPNs.

RR is the class of bounded TPNs whose set of reachable markings is invariant under
some guard enlargement. It is easy to see that these nets are robustly bounded. More
interestingly, checking membership in this class is decidable, i.e., given a bounded TPN
N we can decide if there is a positive guard enlargement under which the set of reach-
able markings remains unchanged. This follows from Lemma 1,by instantiating the
finite set of markingsM with Reach(N):

Theorem 8. RR is a decidable subclass of robustly bounded TPNs.

26

We can now address properties of the general class of robustly bounded TPN.

Lemma 2. The set of robustly bounded TPNs is recursively enumerable.Moreover,
given a robustly bounded TPNN , we can build effectively a timed automatonA such
that there exists∆0 > 0 for which,∀0 ≤ ∆ ≤ ∆0, JN∆K ≈ JA∆K.

Observe that a TPNN is robustly bounded iff there exists a finite set of markings
M and some∆ > 0 such thatReach(N∆) ⊆ M . Thus by naively enumerating the
setof finite sets of markings and applying the algorithm of Lemma1 at each step of
the enumeration, we obtain a semi-decision procedure (to check membership) for the
class of robustly bounded TPNs. For the second result, observe that ifN is known to be
robustly bounded, then this semi-decision procedure terminates and computes a finite
set of markingsM and there is a value∆0 such thatReach(N∆0

) ⊆ M . Therefore,
for any∆ ≤ ∆0, Reach(N∆) ⊆ M . By Proposition 5, this entailsJN∆K|M = JN∆K.
In addition, by Theorem 7, we haveJN∆K|M ≈ J(AM)∆K whereAM is the marking
timed automaton of the TPNN . Thus we have∀0 ≤ ∆ ≤ ∆0, JN∆K ≈ J(AM)∆K.
This result allows us to transfer existing robustness results for timed automata to TPNs.
We will illustrate the use of this property in the following section.

4.6 Untimed language robustness in TPNs

We now consider the robust untimed language preservation problem, which was shown
undecidable in general in Theorem 6. We show that for the subclass ofdistinctly la-
beled bounded TPNs(i.e., labels on transitions are all distinct, and different from ε) this
problem becomes decidable.

Definition 12. A bounded TPNN is called Language-Robust ifL(N∆) = L(N) for
some∆ > 0. We denote by LR the class of Language-Robust nets and by LR6= (resp.
RR6=) the subclass of LR (resp. RR) with distinct labeling.

We first compare the class RR (for which checking membership is decidable by
Theorem 8) with the class LR (where, as already noted, checking membership is unde-
cidable by Theorem 6). We can then observe that:

Proposition 7. The classes RR and LR are incomparable w.r.t. set inclusion.Further,
the class LR6= is strictly contained in the class RR6=.

Finally, we show that the problem of robust untimed languagepreservation becomes
decidable under this assumption:

Theorem 9. The class LR6= is decidable, i.e., checking if a distinctly labeled bounded
TPN is in LR is decidable.

The proof of this result comes from decidability of the RR, and consequently also of
the RR6= subclass of TPN, and from the inclusion of LR6= into RR6=. When a net is not
in RR6=, then it is not in LR6=. Otherwise,Reach(N) is bounded, and by Lemma 2, we
can build a timed automatonA which is timed bisimilar toN for small perturbations.
This entails that this TA preserves its untimed language under small perturbations iff
N does. Thus we have reduced the problem of checking ifN is in LR6= to checking if

27

bounded TPN

robustly bounded TPN

RR UBS

RR LR
S

UB

Without distinct labels

RR
LR

S

UB

With distinct labels

Fig. 8.RR stands for reach-robust, LR for language-robust, UB for bounded underlying PNs, S for
sequential bounded TPNs. Dotted lines represent undecidable and solid lines decidable classes.

the timed automatonA constructed fromN is language-robust, which is decidable for
timed automata.

The results of this section and relation between subclassesof TPNs are summarized
in the above diagram. We say that a class is decidable (resp. undecidable) when mem-
bership of a net in that class is a decidable problem (resp. undecidable). Note that the
larger part of the results obtained in this section come froma transfer of positive results
from the TA setting to TPNs. Unsurprisingly, several problems become undecidable in
TPNs due to unboundedness. This does not mean however that unboundedness neces-
sarily leads to undecidability of all robustness issues in general. As future work, we
would like to show positive results in an unbounded setting and we believe that this
would require a different approach and new techniques.

5 Conclusions and future work

The work performed during the first period of the IMPRO project shows that robustness
with respect to architectural constraints (modeled as a controller net) is decidable for
safe nets in the following cases :

– When the considered robustness property (untimed languageinclusion or equiva-
lence) does not address time issues.

– When the considered net and its controller do not contain epsilon transitions, or
equivalently are not labeled nets. This means that in the considered Petri net mod-
els, transitions model explicitly a single event in the execution flow of a system,
and not the occurrence of an action that may occur at several places in the control
flow.

Let us now discuss the adequacy of the model with needs of developpers. Con-
trollers can be used to model time sharing architectures. When several processes share
a processor or a ressource, this sharing can be modeled by assigning to each process a
place that is read by all transitions from the process, and moving a token among these
particular places according to a scheduling policy. However, this is not yet satisfactory,
as removing a token from a place means forgetting the time elapsed by a transition wait-
ing for some delay before firing. This is bothering when one tries to model the duration
of a task. A recent model have been proposed by members of IMPRO to memorize time
elapsed in a place by token, but at the cost of high udecidability [20].

28

For the timed robustness case w.r.t enlargement, boundedness of nets is again the
key issue. When a net is bounded, then one can compute an equivalent timed automa-
ton, and reuse all robustness results for TA to answer Petri nets robustness questions
(markings or language preservation, ...). The question of robustness for unbounded nets
is still open. While boundedness of a timed Petri net is in general undecidable, one can
expect to find decidable subclasses of unbounded nets for which robustness issues are
decidable. Of course, this should call for completely new techniques, as translation to
timed automata works only in a bounded context.

References

1. S. Akshay, Loı̈c Hélouët, Claude Jard, Didier Lime, andOlivier H. Roux. Robustness of
time petri nets under architectural constraints. InFORMATS, volume 7595 ofLecture Notes
in Computer Science, pages 11–26. Springer, 2012.

2. S. Akshay, Loı̈c Hélouët, Claude Jard, and Pierre-Alain Reynier. Robustness of time petri
nets under guard enlargement. InRP, volume 7550 ofLecture Notes in Computer Science,
pages 92–106. Springer, 2012.

3. Rajeev Alur and David L. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 1994.

4. Béatrice Bérard, Franck Cassez, Serge Haddad, Didier Lime, and Olivier H. Roux. Com-
parison of the expressiveness of timed automata and time Petri nets. In Paul Pettersson and
Wang Yi, editors,3rd International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS 2005), volume 3829 ofLecture Notes in Computer Science, pages 211–
225, Uppsala, Sweden, September 2005. Springer-Verlag.

5. Beatrice Berard, Antoine Petit, Volker Diekert, and PaulGastin. Characterization of the
expressive power of silent transitions in timed automata.Fundam. Inform., 36(2–3):145–
182, 1998.

6. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time Petri nets.IEEE transactions on software engineering, 17(3):259–273, March
1991.

7. Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust model-checking of
linear-time properties in timed automata. InProc. of LATIN’06, volume 3887 ofLNCS,
pages 238–249, 2006.

8. Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust analysis of timed au-
tomatavia channel machines. InProc. of FoSSaCS’08, volume 4962 ofLNCS, pages 157–
171. Springer, 2008.

9. Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustmodel-checking of timed au-
tomata via pumping in channel machines. InProc. of FORMATS’11, volume 6919 ofLNCS,
pages 97–112, 2011.

10. Franck Cassez and Olivier H. Roux. Structural translation from time petri nets to timed
automata.Journal of Systems and Software, 79(10):1456–1468, 2006.

11. A. Cheng, J. Esparza, and J. Palsberg. Complexity results for 1-safe nets.Theoretical Com-
puter Science, 147(1-2):117–136, 1995.

12. Davide D’Aprile, Susanna Donatelli, Arnaud Sangnier, and Jeremy Sproston. From time
Petri nets to timed automata:An untimed approach. InTACAS’07, volume 4424 ofLNCS,
pages 216–230, 2007.

13. Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Robust safety
of timed automata.Formal Methods in System Design, 33(1-3):45–84, 2008.

29

14. Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Systematic implementation of
real-time models. InFormal Methods (FM’05), volume 3582 ofLNCS, pages 139–156.
Springer, 2005.

15. Guillaume Gardey, Olivier (F.) Roux, and Olivier (H.) Roux. Safety control synthesis for
time Petri nets. In8th International Workshop on Discrete Event Systems (WODES’06),
pages 222–228, Ann Arbor, USA, July 2006. IEEE Computer Society Press.

16. Guillaume Gardey, Olivier H. Roux, and Olivier F. Roux. Azone-based method for com-
puting the state space of a time Petri net. InProc. of FORMATS’03, volume 2791 ofLNCS,
pages 246–259, 2003.

17. A. Giua, F. DiCesare, and M. Silva. Petri net supervisorsfor generalized mutual exclusion
constraints. InProc. 12th IFAC World Congress, pages 267–270, Sidney, Australia, jul 1993.

18. L. E. Holloway and B. H. Krogh. Synthesis of feedback control logic for a class of controlled
Petri nets.IEEE Trans. on Automatic Control, 35(5):514–523, may 1990.

19. R.M. Karp and R.E. Miller. Parallel program chemata.In JCSS, 3:147–195, 1969.
20. Didier Lime, Claude Martinez, and Olivier H. Roux. Shrinking of time Petri nets.Journal

of Discrete Event Dynamic Systems (jDEDS), 2013.
21. Didier Lime and Olivier (H.) Roux. Model checking of timePetri nets using the state class

timed automaton.Journal of Discrete Events Dynamic Systems - Theory and Applications
(DEDS), 16(2):179–205, 2006.

22. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems. In E.W. Mayr and C. Puech, editors,Proc. STACS ’95, number 900 in LNCS,
pages 229–242. Springer–Verlag, 1995.

23. Philip M. Merlin. A Study of the Recoverability of Computing Systems. PhD thesis, Univer-
sity of California, Irvine, CA, USA, 1974.

24. Anuj Puri. Dynamical properties of timed automata.In DEDS, 10(1-2):87–113, 2000.
25. Pierre-Alain Reynier and Arnaud Sangnier. Weak time petri nets strike back! InCONCUR,

volume 5710 ofLecture Notes in Computer Science, pages 557–571, 2009.
26. Ocan Sankur. Untimed language preservation in timed systems. InProc. of MFCS’11,

LNCS. Springer, 2011.
27. Mani Swaminathan, Martin Fränzle, and Joost-Pieter Katoen. The surprising robustness of

(closed) timed automata against clock-drift. InTCS 2008, pages 537–553. Springer, 2008.
28. M. Uzam, A.H. Jones, and I. Yucel. Using a Petri-net-based approach for the real-time super-

visory control of an experimental manufacturing system.Journal of Electrical Engineering
and Computer Sciences, 10(1):85–110, 2002.

29. V. Valero, D. Frutos-Escrig, and F. Cuartero. On non-decidability of reachability for timed-
arc Petri nets. InProc. 8th International Workshop on Petri Nets and Performance Models
(PNPM 99), 1999.

30. Dianxiang Xu, Xudong He He, and Yi Deng. Compositional schedulability analysis of real-
time systems using time Petri nets.IEEE Transactions on Software Engineering, 28(10):984
– 996, 2002.

30

