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Abstract. Time in specification models is often consideredhasfect that is a
considered model is supposed implemented on an archiggtiaircan provide ar-
bitrary precision in time measurement without drift, exedasks instantaneously
at precisely defined dates, etc. Of course, such assumptienssually not met
by real implementations : clocks drift, tasks are launchachprecise dates, and
starting them may require a small delay after a decision)rtddition to impre-
cision, some architectural constraints (distributiorgikable resources,...) may
affect the expected behavior of an idealized abstract matdehplementation
time.

For these reasons, it is of paramount importance to verdy tie behavior of
a model can be preserved even under some imprecision of tieasurement,
or when the implementation architecture imposes additico@astraints, such as
time sharing mechanisms among processes, etc. Anothécaton of paramount
importance is to check wheter there exists at all some cloekigion allowing
for preservation of important behaviors of a system.

This document considers Time Petri nets as model for diggibsystems, and
studies robustness issues for this specification formaWmfirst consider how
architectural constraints, specified as another Petrinfleteince the behavior of
a system. We then consider how imprecision in time, modedegliard enlarge-
ment, influences the behavior of the original specification.
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1 Introduction

Robustness is a key issue for the implementation of syst¥ery. often, models of
distributed systems are idealized, and in particular, tisgects are very often too per-
fect to be realistic. Indeed, time in specification modelsfien considered gzerfect
and model often suppose that the implementation archiecan provide arbitrary
precision in time measurement without drift, execute tasksntaneously at precisely
defined dates, etc. Of course, such assumptions are usoéaligeat by real implemen-
tations : clocks drift, tasks are launched at imprecisesjabed starting them may re-
quire a small delay after a decision, etc. In addition to iagmion, some architectural
constraints (distribution, available resources,...) @mffgct the expected behavior of an
idealized abstract model at implementation time.

This is particularly harmful for critical systems, where dets are used to check
some safety properties. Systems which are not affected pyeicise time issues are
calledrobust Once a system is implemented on a given architecture, ogeliseover
that it does not behave as expected: some specified behavéongver met or unspec-
ified behaviors appear. Hence, if a system is proved safesmgtirobust, some safety
properties proved on the idealized model may not be met byngelmentation of the
model.

Starting from a description of a system, one wants to en$aethe considered
system can run as expected on a given architecture with mescanstraints (e.g., pro-
cessors, memory), scheduling schemes on machines imptieigeaveral components
of the system, imprecision in clocks, possible failures am@n. When the impemen-
tation architecture is not precisely known, another irdeéing issue is to detect wheter
there exists a way to make time measurement precise enoufatsbe overall behav-
ior of the model (or its safety) is not affected.

This document considers Time Petri nets as model for dig&tbsystems, and stud-
ies robustness issues for this specification formalism. edefine notations in section
2. We then consider how architectural constraints, spécifganother Petri net influ-
ence the behavior of a system in Section 3. Last, we cons@eirnprecision in time,
modeled as guard enlargement, influences the behavior ofitiieal specification.

Note that this report describes published results [2, 1]thatfor the sake of con-
ciseness, we only mention the major results of these pulditg without proofs. Com-
plete proofs can be found in the corresponding publications

2 Definitions

This xsection defines the notations and models that will leel tisroughout the report.

2.1 Notations

Let QT,R* denote the set of non-negative rationals and reals respBctThen,Z
denotes the set of time intervals, i.e., interval®ih with end points inQ* U {+occ}.
Anintervall € Z canbe opefi/—,I"), closed !, I"], semi-operI—,I"|,[I~,IT")
or unboundedl —, +oc), (I, +00), wherel ~ andI* € Q*.



Let X be a finite alphabety.* is the set of finite words oveF. We also useX,. =
Y U{e} with ¢ (the empty word) notir’. The setdN, Q*-, andR " > are respectively
the sets of natural, non-negative rational and non-negegiai numbers.

A timed wordover X' is a finite sequence = (ao, to) (a1,t1) ... (an,t,) s.t. for
every0 < i < n,a; € X, t; € Rt5gandt;11 > ¢;. In the following, we will
equivalently writew = (a, t) with a = (a;)o<i<n @ndt = (;)o<i<n.

Anintervall of R* > is aQ™ - y-intervaliff its left endpoint belongs t@* -, and
its right endpoint belongs t@* ., U {co}. We setlt = {z | = < y for somey € I},
thedownward closuref 1. We denote by (Q* ) the set of) " - o-intervals ofR .

A valuationv over a finite setX is a mapping iriR*i(O. We note0 the valuation
which assigns to every clocke X the value). For any valuel € R -, the valuation
v+ d is defined by(v + d)(z) = v(z) + d, Yz € X.

2.2 Timed Transition Systems and Timed Automata

Definition 1 (Timed Transition System (TTS)).A timed transition systeraver Y. is
a transition systen$ = (Q, qo, —), WhereQ is the set of stateg, € Q@ is the initial

state, and the transition relation; consists of delay movqsi> ¢ (withd € Rt ),

and discrete moveg% ¢’ (with a € X.). Moreover, we require standard properties of
time-determinism, additivity and continuity for the tréim relation —.

TTSs describe systems combining discrete and continuonisiteans. They are
used to define and compare semantics of TPNs and TA. With thregerties, aun

al

of S can be defined as a finite sequence of mgves gy do, I A, 4 —
g ... % ¢.41 Where discrete actions and delays alternate, and whicts stathe
initial configuration. To such a run corresponds a waegd. . a,, over X.; we say that
this word is accepted by. The language of is the set of words accepted ISy

Let us now defindimed automataFirst defined in [3], the model of timed automata
associates a set of non-negative real-valued variablesicéckswith a finite automa-
ton. Let X be a finite set of clocks. We writé(X) for the set ofconstraintsover
X, which consist of conjunctions of atomic formulae of thenfior < ¢ for x € X,
c € Qtsyandxe {<, <,>,>}. We also define the proper subsgt (X) of upper
boundsconstraints oveX wherexie {<, <}.

Definition 2 (Timed Automata (TA)). Atimed automato over X is a tuple(L, ¢y,
X, E, Inv) whereL is a finite set oflocations ¢y € L is theinitial location, X is a
finite set ofclocks Inv € C.,(X)" assigns arinvariantto each location andz C
L x C(X) x 2. x 2% x Lis a finite set ofedgesAn edgee = (¢,v,a,R,{') € E
represents a transition from locatiatto location/’ labeled by: with constrainty and
resetk C X.

Semantics.For R C X, the valuatiorv[R] is the valuation/ such that'(z) = v(x)
whenz ¢ R andv/(z) = 0 otherwise. Finally, constraints @f(X) are interpreted
over valuations: we write = ~ when the constraint is satisfied by. The semantics
ofaTA A = (L, 6y, X, E, Inv) is the TTS[A] = (Q, g0, =) where@Q = {({,v) €
L x (R*50)X | v | Inv(f)}, g0 = (£, 0) and— is defined by:



- delay moves:(¢, v) 4 (l,v+d)if d € RT>pandv + d = Inv(l);
- discrete moves:(¢,v) % (¢',v") if there exists some = (¢,v,a, R,¢') € E s.t.
v E v andv’ = v[R).

The (untimed) language of is defined as that dfA] and is denoted b (A).

2.3 Time Petri Nets

Introduced in [23], Time Petri nets (TPNs) are Petri netsolvhiiansitions are equipped
with timing constraints. TPNs associate a time intervalaohetransition of a Petri net.
As soon as a transition is enabled, a clock attached to #msition is reset and starts
measuring time. A transition is then allowed to fire if it isadated and if its clock’s
value lays within the time interval of the transition. WhefRN contains read arcs,
places that are read can enable/disable a transition, kehsofrom read places are
not consumed at firing time. Transitions are representedsa& bectangles, places as
circles, flows as thick lines joining transitions ans placesinsitions can be labeled
by an observable letter, or unobservable, and constraiatsepresented as intervals
labeling transitions.

Definition 3 (Time Petri Nets (TPN)).A time Petri net\ overX. is atuple(P, T, W, my, I)
where P is a finite set ofplaces T is a finite set oftransitionswith P N T = 0,

W : (P xT)U(T x P) — Nis the flow relationyng € N¥ is theinitial marking, and
I:T~ Z(Q*-,) associates with each transitionfiing interval We denote by (t)
(resp.A(t)) the lower bound (resp. the upper bound) of interél).

We will frequently denote by(.) € (N”)T is the backwardincidence mapping,
that is the restriction of the flow relation # x 7', and by(.)* € (N*)7'is theforward
incidence mapping, that is the restriction of the flow relatio (7" x P).

Time Petri nets define sequences of transitions firings amel¢iapsing. Transitions
symbolize distinct events in a system. Now, one can addilapte TPNs to increase
the expressive power of the model, and model unobservatibmadn a system.

Definition 4 (labeled Time Petri Nets (TPN)).Let 2. be an alphabet containing a
special labek. A labeled time Petri net (LTPNY over Y. is a tuple(N, \) where N
isaTPN, and\ : T — X is alabeling function

Semantics A configuratiomof a TPN is a pai{m, v), wherem is amarkingin the usual
sensei.e.a mapping ifN”, with m(p) the number of tokens in plage A transitiont is
enabledn a markingn if m > *t. We denote b¥n(m) the set of enabled transitions in
m. The second component of the pgait, v/) is a valuation oveEn(m) which associates
to each enabled transition its ag®. the amount of time that has elapsed since this
transition was last enabled. we choose the classical sernalgfined as usual (see for
instance [6]). An enabled transitiancan be fired ifv(¢) belongs to the interval(t).
The result of this firing is as usual the new marking= m — *t + ¢*. Moreover, some
valuations are reset. We say that the a transitimnewly enabledy firing of ¢ from
markingm, and writetenabledt’, m, t) iff:

teEnm—2t+t)A({t € En(m—2t))Vi=1t)



Reset valuations correspond to newly enabled clocks. Tirugg a transition is not
an atomic step and the transition currently fired is alwageteThe seADM(N) of
(admissible) configurationsonsists of the pairém, v) such that/(t) € I(t)* for ev-

ery transitiont € En(m). Thus time can progress in a marking only when it does
not leave the firing interval of any enabled transition. Temantics of a TPNV =

(P, T,W,mqg, I)isa TTS[N] = (Q, q0, —) whereQ = ADM(N), ¢o = (my, 0) and

— is defined by:

- delay moves:(m,v) % (m,v + d) iff Vt € En(m), v(t) + d € I(t)*,
- discrete moves:(m,v) - (m — * + t*,') iff t € En(m) is s.t.v(t) € I(t),
Vi’ € En(m —*t+t°*), /(') = 0if tenabledt’,m,t) andv/'(¢') = v(t) otherwise

The semantics of LTPN is defined alike, usikff) as label of a transition rather
thant. The (untimed) language df is defined as the untimed languag€]4f] and is
denoted byC (). The reachability set o¥/, denotedReach(N), is the set of markings
m € NF such that there exists a reachable configuration). A bounded TPNs a
TPN A such thaReach(N) is finite.

A safe TPNis a TPNA where all configurations reachable[itv] contain at most
one token in every place. Very often, when a Petri net is sedeyill consider that the
flow relation is a function fromWW : (P x T) U (T x P) to{0,1}.

TPNs can be represented by a bipartite graph. Places areoigathby circles,
transitions as a dark horizontal line. The flow relation jgresented as an edge from a
elementz to elementy if W (z,y) > 1 labeled by valudV (z,y). WhenW (z, y) takes
values in{0, 1} we will simply draw an unlebeled edge frarto y if W (x,y) = 1.

P1

(2,4] t (3, 5]
b3 D2

Fig. 1. An example of TPN

Figure 1 shows an example of safe TPN, with three plages;, p3, and two tran-
sitionst and¢’. All flow relation are eithedV (z,y) = 0 or W(x,y) = 1. The time
interval attached to transitiohmeans that should fire at earliest 2 time units after
being enabled, and at latest 4 time units later. The timevatattached to transitioti
means that should fire at earliest 3 time units after being enabled, atatest 5 time
units later.

2.4 TPNs with read arcs

As for standard Petri nets, TPNs can be extended with read dmat is with a flow

relation that does not enforce consumtion of tokens. Thatufe is useful to capture
mechanisms such as guards, and in our context it will be wsegdcify how a given

architecture constraints an original model by enablingisaliling transitions.



TPNS with read arcs are TPN in which some places can be reathbgitions
without consumption of the read tokens. Figure 2-a is an @amf TPN with read
arcs. Transitions are represented as black rectanglessptes circles, flows as thick
lines joining transitions ans places, and dotted linesasgmt read arcs. Transitions can
be labeled by an observable letter, or unobservable, argtredmts are represented as
intervals labeling transitions.

Definition 5 (place/transition net with read arcs). A time Petri net with read arcs
(TPNR for short) is a tuplév" = (P, T, W, R, mg, I) where(P,T,W, mg, A, 1) is a
TPN,andR: (P x T) — {0,1} s.t., W=1(1) n R71(1) = 0 is a newflow relation

As for TPNs, we can add a labeling functiario a TPNR. Every TPN (TPNR) can
be seen as a union of an untimed Petri Net (P, T, W, R) and of a timing function
1. The untimed nefV (with out without read arcs) will be called thenderlying neof

N.

Semantics A net with read arcs net defines a bipartite directed grapi twit kinds of
edges: there exists a (consume) arc froto y (drawn as a solid line) ifit (z,y) > 1
and there exists a (read) arc frafto y (drawn as a dashed line) iR(x,y) = 1. For
all z € PUT, we define the following set$x = {y € PUT | W(y,z) = 1}
andz®* = {y € PUT | W(z,y) = 1}. Forallz € T, we define’z = {y €
P | R(y,x) = 1}. These definitions extend naturally to subsets by consigemion
of sets. A transitiort € T is saidenabledby the markingm if m(p) > 0 for every
placep € (*t U °t). En(()N,m) denotes the set of transitions &f enabled bymn. As
for TPNs, the firing of an enabled transitioproduces a new marking’ computed as
Vp € P,m/(p) = m(p)—W (t,p)+W (p,t). We fix a markingn® of N called itsinitial
marking We say that a transitiariis in conflict with a transitiont iff (*tU°t)N (%) # 0
(firing ¢’ consumes tokens that enabje

The semantics of a TPNR is also given as a timed transitioresy$TTS) [21].
This model contains two kinds of transitions: continuoassitions when time passes
and discrete transitions when a transition of the net firegaAsitiont;, is saidnewly
enabledby the firing of the firable transitiom; from the markingm, and denoted
TEN((ti, m, t;), if the transitiory, is enabled by the new markirig: \ *¢;) Ut but was
not bym \ (*¢;). We will denote byEn(()m, ¢;) the set of transitions newly enabled by
the firing of¢; fromm. A valuation is a map : T'— R* such thatvt € T, v(t) is the
time elapsed sincewas last newly enabled. Fére R™, v + § denotes the valuation
that associates(t) + J to every transitiort € T'. Note thatv(¢) is meaningful only ift
is an enabled transitio®.is the null valuation such that, 0(t) = 0.

The semantics of TP/ is defined as the TT&R, ¢o, —) where a state of) is
a couple(m, v) of a marking and valuation oV, gy = (mo,0) and—€ (Q x (T'U
RT) x Q) is the transition relation describing continuous and dictransitions. The
continuous transition relation is defingd ¢ R* by:

(m,v) LN (m,V) iff vV =v+6 V' (t) < IF(tr) and(ty)is of the form[a, b] or (a,b]
andvi, € En(()m), | v/ (tx) < IF(tx) andI,(ty)is of the form [a,b) or (a,b)



Intuitively, time can progressiiff letting time elapse doesviolate the upper constraint
IF(t) of any transitiort. The discrete transition relation is definet € T by:

ti € En(()m),m' = (m\ *;) Ut?
(m,v) 25 (m!, ) iff v(t;) € I(t;),
Vi, V' (tr) = 01f TEN(()tx, m, ;) andv(ty) otherwise.

Intuitively, transitiont; can fire if it was enabled for a duration included in the time
constraint/,(t). Firing t; from m resets the clocks of newly enabled transitions.

A runofa TTS is a sequence of the fopmn =% py =25 ... 2% p,, wherep; = qo,
and for alli € {2..n}, (pi—1, i, p;) €~ anda; = t; € T ora; = §; € R*. Each
finite run defines a sequence oy&rU R™)* from which we can obtain amed word
overT of the formw = (t1,d1)(t2,d2) ... (tn, dn) Where each; is a transition and
d; € R* the time at which transition; is fired. More precisely, if the sequencecdfs
read by the run are of the fordd; . .. 0k, t10k, +10k, +2 - - - Okyta . . . tp, then the timed
word obtained ist1,d1) . .. (tn, dn) Whered; = Zo<j<ki d;. We define adated run

of a TPNN as the sequence of the form (dr,t1) g .. (dn b ¢n, Whered;’s are

the dates as defined above and egdh the state reached after firimgat dated;.

We denote by;,, (N) the timed words ovel’ generated by the above semantics.
This will be called the timed (transition) language. &t We denote byZ,,(N) the
untimed language of sequences of transitions obtaineddjggiing onto the first com-
ponent. Furthermore, given atimed wasaverT, if we consider a subset of transitions
X C T, we can projectv onto X to obtain a timed word ovek. We will denote this
projected language b#;,, (N)|x . For simplicity, we did not consider final states in our
TTS, and hence define prefix-closed languages as is standBedtri nets. Our results
will still continue to hold with an appropriate definition fifial states.

In the rest of this section, we will limit the study of robusss to TPNRs where
the underlying PN id-safe i.e., nets such thatp € P, m(p) < 1, for all reachable
markingsm in the underlying PN. Hence, we will also consider flows tla&etvalues
in {0, 1}. The reason for using a property of the underlying net isdleatding if an un-
timed PN is 1-safe is PSPACE-complete, whereas checking¥ (and consequently
a TPNR) is bounded is undecidable [29]. Reachability of akingrm in a safe net is
also PSPACE-complete [11]. For safe Petri nets a place icrsnédther( or 1 token,
hence we identify a marking: with the set of places such thatn(p) = 1.

2.5 Timed (bi)simulation :

Different models are frequently compared according ta tingimed languages, to their
timed languages. However, it is well known that languagevedgnce does not capture
all operational differences between models. A more disc@iting comparison among
timed specification is through timed bisimulation.

LetS = (@, g0, —) andS’ = (@', ¢}, —') be two TTSs. A relatiorR C @ x @’
is atimed simulatiorif and only if, (g0, ¢)) € R and foreveryy € Y. UR, ¢ € Q,
¢, € Q" suchthai(q,q)) € R, if g1 = g0, then there existg, such thaty; = ¢, and
(g2, ¢%) € R. We will say thatS” simulatesS and writeS < S’ when such a relatioR



among states of and.S’ exists. If in additioriR ~! is a timed simulation relation from
S’ to S, then we say thaR is a timed bisimulation. We say thatand .S’ aretimed
bisimilar when such a relatio®R among states of andS’ exists, and write5' ~ S".

3 Robustness of Time Petri Nets under architectural constrimts

This section addresses robustness issues in Time Petri(Nel) under constraints

imposed by an external architecture. Within this contdsd,mhain objective is to check

whether a timed specification, given as a TPN behaves as texp@ben subject to ad-

ditional architectural constraints (for example, the usesources,time and scheduling
constraints,...). The constraints are specified by andtRél that constrains the speci-
fication via read arcs.

Hence, the composition of a TPN and of architectural comgralefine a TPNR.
Surprisingly, imposing constraints on a system may allow transitions to fire, new
markings to become reachable, etc. In this section, we wasttack a robustness prop-
erty that verifies that the constrained net does not exhiit timed or untimed be-
haviors. Thus, if the implementation features can onlyrigtgtout not enlarge) the set
of original behaviors, we say the model is robust with resp@¢he implementation
constraints.

We show that this property is not always guaranteed but treatldng for it is always
decidable in 1-safe TPNs. We further show that checkingeist of untimed behaviors
of the constrained and specification nets are the same iglatsdable. Next we turn
to the more powerful case of labeled 1-safe TPNs with sil@mtsitions. We show that
checking for the robustness property is undecidable evemwéstricted to 1-safe TPNs
with injective labeling, and exhibit a sub-class of safe BRWith silent transitions) for
which robustness is guaranteed by construction. We demat@she practical utility of
this sub-class with a case-study and prove that it alre&dydiose to the frontiers of
intractability.

Note that a large part of the litterature devoted to robusstriroblems use timed
automata as model, and consider robustness propertiesisuctariance of behaviors
under small time perturbations. We use the term “robustriess more general con-
text: we consider preservation of specified behaviors wie@narchitectural constraints
(scheduling policies, resources, ...) are imposed.

We consider bipartite architectures: a specification ofs&rithuted system is given
as a TPN, called thground netand the architectural constraints are specified by an-
other TPN, called theontroller. The controller net can read places of the ground net,
but cannot consume tokens from the ground net, and vice .vEmganet obtained by
considering the ground net in the presence of the contrigliealled thecontrolled net

Though this problem resembles supervisory control, thexesame important dif-
ferences. Supervisory control is used to restrict the behswof a system in order to
meet some (safety) properfy. The input of the problem is the proper; a descrip-
tion of the system, and the output a controller that restisgistem: the behavior of a
system under control is a subset of the original specifinataisfyingP. In our setting,
there is no property to ensure, but we want to preserve as Bmiplossible the spec-
ified behaviors. We will show in the example below that amttiiral contraints may



add behaviors to the specification. This situation can beqogarly harmful, especially
when the architecture changes for a system that has beeimgymoperly on a former
architecture. New faults that were not expected may appean when the overall per-
formance of the architecture improves. Detecting suclasdus is a difficult task that
should be automated. The last difference with supervisomrol is that we do not ask
for synthesis of a controller. In our setting, the controtepresents the architectural
constraints, and is part of the input of the robustness problThe question is then
whether the ground net preserves its behaviors when ctadrol

More specifically, we consider the following questions. Westfask if the untimed
language of the controlled net is contained in the untimaduage of the ground net.
This problem is calledintimed robustnesslext, we ask if the untimed language is ex-
actly the same despite control, called th@imed equivalence problerfihe last prob-
lem considered iimed robustnesavhich asks if the timed language of the controlled
net is contained in the timed language of the ground net.

[1,1] [1,2]

Fig. 2. lllustrative examples (a) and (b) - (unlabeled transitidepict silent moves)

Let us consider the example of Figure 2-a. It contains a gtowet N7, with four
transitionsa, a’, b, b, and a controlle€, that acts as a global scheduler allowing firing
of a or b. In NV, transitionsa, o’ andb, v’ are independant. The naf; is not timed
robust w.r.t. the scheduling imposed®jy in the controlled netz can be fired at timé
which is impossible in\V; alone. However, if we consider the restrictiondf to b, v/,
the resulting subnet is timed robust wdt Figure 2-b shows a ground nkt, with four
unobservable transitions, and one observable transitidhis transition can be fired at
different dates, depending on wheter the first transitidiréas the left transition (with
constrain{1, 2]) or the right transition (with constraift, 3]) below the initially marked
place. The net; imposes that left and right transitions are not enabledeegsdime time,
and switches the enabled transition from time to time. With¢onstraints imposed by
(-, cis firable at daté in the controlled net but not at dafewhile it is firable at both
datess and6 in N5 alone. This example is timed robust w:t as it allows a subset of
its original behaviors.

Our results are the following: The problem of checking umtitmobustness for 1-
safe TPNs is decidable. The timed variant of this problene@dhble for 1-safe TPNs,

10



under the assumption that there aresti@nsitions and the labeling of the ground net is
injective. However, with arbitrary labeling and silentrisitions this problem becomes
undecidable. Further, even with injective labeling, timetustness is undecidable as
soon as the ground net contains silent transitions. We thew & natural relaxation
on the way transitions are controlled and constrained, hvbitsures timed robustness
of nets. In the untimed setting we also consider the strongdon of equivalence of
untimed languages and show that it is always decidable tokctids property with or
without silent transitions. The rest of the section is oiged as follows: Section 3.1
introduces the robustness under architectural consirphoblems. Section 3.2 shows
decidability of this robustness problem in the untimedisg{tor when nets are unla-
belled. Section 3.3 shows that this problem becomes unaleleich the timed setting as
soon as silent transitions are introduced. Section 3.4 slvonditions on ground nets
and control schemes ensuring timed robustness. Sectigm@:kles a small case-study
to show the relevance of our robustness condition, befanelading with Section 3.6.
Several papers deal with control of Petri Nets where tranmsitare divided into un-
timed controllable and uncontrollable transitions. Amémgm, Holloway and Krogh [18]
first proposed an efficient method to solve a control problenafsubclass of Petri Nets
called safe marked graphConcerning TPNs, [15] propose a method inspired by the
approach of Maler [22]. The controller is synthesized asedllf@ck function over the
state space. However, in all these papers, the controllgiven as a feedback law,
and it is not possible to design a net model of the controljestiesn. To overcome this
problem, [17] propose a solution usingpnitorsto synthesise a Petri Net that models
the closed-loop system. The method is extended to real tuper8isory Control in
[28]. The supervisor uses enabling arcs (which are equivateread arcs) to enable
or block a controllable transition. In [30], robustnessdsli@ssed in a weaker setting
calledschedulabilitygiven an TPNV, the question is whether the untimed language of
N, and the language of the underlying untimed net (i.e. withiming constraints) is
the same. This problem is addressed for acyclic nets, omesthicted cyclic behaviors.

3.1 Formalization of robustness under architectural congtaints

Let us consider two safe Time Petri nets (with read akés} (Py, T, War, Ry, I, m$y)
andC = (Pc, Te,We, Re, Iy, mg)

C models time constraints and resources of an architecture.dan expect these
constraints to restrict the behaviors of the original net (wil show however that this
is not always the case), thatisould be seen as a controller. Rather than synchronizing
the two nets (as is often done in supervisory control), wenéedirelationR C (P¢ x
Tn)U(Py x T¢), connecting some places@to some transitions of/ and vice versa.
The resulting netV(¢-%) s still a place/transition net defined by (%) = (Py U
Pe,Tn UTe, War UWe, Ry U Re U R, Iy U Ie, m{, UmQ). We call A the ground
net C thecontroller netand \VV(¢:%) the controlled net

The reason for choosing this relation is two-fold. Firstlye definition of control
above preserves the formalism as the resulting structaréinse Petri net as well. This
allows us to deal with a single formalism throughout the papecondly, one can define
several types of controllers. By allowing read arcs fromdbetroller to the ground net
only, we model blind controllers, whose states evolve irtheently of the ground net’s
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state. The net in Figure 2(a) is an example of such a controlét. Conversely, if
read arcs are allowed from the ground net to the controltertroller’s state changes
depending on the current state of the ground net. For thecfaKarity, all examples in
the paper have blind controllers, but both types of contr@lmssible.

Our goal is to compare the behaviors &f with its behaviors when controlled
by C underR, i.e., N(¢F)_ Therefore, the language of (timed and untimed) transi-
tions, i.e.,L(N), L1,(C), Liu(N), L, (C), are as usual but when talking about the
language of the controlled net, we will always mean the lagguprojected onto transi-
tions of V, i.e., L1,y (N C) |1, or L, (N€5))| 1. Abusing notation, we will write
L (NCR) (similarly £,,(N(©R))) to denote their projections onfdy .

We will now formally define and motivate the problems that vemsider in this
work.

Definition 6. Given 1-safe TPN4/ and(, and a set of read arc® C (Pe x Tiy) U
(Pyv x T¢), N is said to beuntimed robustinder(C, R) if £,,(NC®) C L, (N).

For time Petri nets, the first problem we consider isithémed robustnegsoblem,
which asks whether a given TPN is untimed robust und€, R). This corresponds
to checking whether the controlled n&t % only exhibits a subset of the (untimed)
behaviors of the ground TPN . The second question addressed istthémed equiv-
alenceproblem, which asks if the untimed behaviors of the corgbtet\/ (%) and
ground net\ are the same, i.e., if,,(N¢f) = £, (N). In fact these questions can
already be asked for “untimed Petri nets”, i.e., for Pettsmathout the timing function
I, and we also provide results for this setting.

Note however that untimed robustness only says that ewetiynedbehavior of
the controlled netv(¢:%) is also exhibited by the ground naf. However somdimed
behaviors of the controlled nét %) may not be timed behaviors of the ground net
N. For obvious safety reasons, one may require that a cosdrsjistem does not allow
new behaviors, timed or untimed. Surprisingly, contr@/la@TPN with another net may
introduce additional behaviors on the ground net (this lglishown on an example in
the next subsection). This contradicts the intuition tititiag a controller restricts the
possible behaviors of the controlled system, but indeedingdessource constraints or
time sharing may allow firing of transitions that were nobeléd, increase the set of
reachable markings of the ground net, .... This countdtimisituation is particcularly
dangerous. Thus, we would like to check that even when ceriagitimed behaviors,
the set of timed behaviors exhibited by the controlled X" is a subset of the set
of timed behaviors exhibited by the ground nét We call this thetimed robustness

property.

Definition 7. Given 1-safe TPN4/ and(, and a set of read arc® C (P¢ x Tiy) U
(Pyv x T¢), N is said to betimed robustunder(C, R) if Ly, (V) C L(N).

One can further ask if the timed behaviors are exactly theesarhich means that
the controller is useless. Brought back to our setting, iamsethat the architectural
constraints do not affect the executions of the system,h@r timings. While untimed
equivalence of unconstrained and constrained systemssesrasonable notion, timed
equivalence is rarely met, and hence seems a too restnietiggrement. We will see in
Section 3.3 that introducing silent transitions gives a nesaning to these notions.
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3.2 Controlling (time) Petri nets

Let us first consider untimed 1-safe Petri nets. Nebe an untimed net, and be an
untimed controller. We can observe tliaican only restrict the behaviors &f, under
anychoice ofR. HenceN is always untimed robust und&f’, R). Furthermore one can
effectively check if the controlled net has the same untilfaeduage as the ground net,
by building their marking graphs, and then checking in@uasirhus, the robustness and
equivalence problems are decidable for untimed nets.

Proposition 1. Let N, C' be twountimed1-safe Petri nets. Then,

1. ForanyR C (Po x Tn) U (Py X T¢), N is untimed robust und€iC, R).
2. For afixed set of read arcB C (Pc x Ty) U (Pn x T¢) checking ifZ,,(N) =
L., (N(©)is PSPACE-complete.

Part1) comes from the fact that a controller only restrics the seteafchable
markings. Par2) comes after demonstration that it is sufficient to show isiclo
L,(N) C L,(N©R), which can be done by exploration of the marking graph of
the controlled net.

This property of untimed Petri nets has a counterpart foetlPetri nets: let us
considemunconstrainedchets\ andC, i.e., such thafs(t) = [0, co) for everyt € Ty,
andi¢(t) = [0,00) for everyt € T¢. Let N andC' be the underlying nets of/ and
C. One can easily show that for ay, £,,(N¢ %) C L, (N). As any timed word
w = (a1,d1) ... (an,dn) IN Liyy(NCE) (resp. inLy,(N)) is such thata; ... a, €
L., (NYE) (resp.L,,(N)) where eachiy, ... d, can be arbitrary dates, we also have
L (NCB) C L4,,(N). Thus, unconstrained time Petri nets are also untimed tobus

[0,1]

! 4 3
Fig. 3. An example of control of TPN through read-arcs leading to beWwaviors

The question for Time Petri Nets is whether the controlledNTdly restricts the
set of behaviors of the original TPN. Unlike in the untimededn the timed setting the
controlled TPN may exhibit more (in fact, different set oféHaviors than the ground
TPN, because of the urgency requirement of TPNs. Consiéezxtample in Figure 3.
The ground netV" always firest in the absence of the controllérbut in the presence
of C with R as in the picture, transitiohis never fired and’ is always fired. Thus set
of (timed and untimed) behaviors af and\/ (%) are disjoint. Discrepancies between
untimed languages can be checked using the state classamagthuction [6, 21]. This
gives the following theorem and its corollary:
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Theorem 1. For 1-safe TPNs, the untimed robustness problem is PSPAGHete.

Corollary 1. For 1-safe TPNs, the untimed equivalence problem is PSPADERlete.
Next we consider timed robustness properties for TPNs. ;Tiverhave

Theorem 2. For 1-safe TPNs, the timed robustness problem is decidable.

Proof (sketch)Let AV andC be 1-safe TPNs, an& be a set of read arcs. We can
check if £, (N¢F)) C L,,,(N) by using the state class timed automata construction
from [21]. It is shown that from the state class graph comsion of a 1-safe TPNV,

we can build a deterministic timed automatdrover the alphabef),, called the state
class timed automaton, such that, (V) = L, (A). As aresultLy,, (A) can be com-
plemented and its complement is accepted by some timed atdard’, which is com-
puted fromA (see [3] for details of complementation of deterministiodid automata).
On the other hand, the state class timed automA&toanstructed frora\/(¢:%) is over

the languagé& s U T¢. By projecting this language onfig\,, we obtain the timed (tran-
sition) languageC;,, (N ¢-#)). We remark that the timed automaton corresponding to
the projection, denotel’, can be easily obtained by replacing all transition€ af the
timed automatoi by e-transitions [3, 5]. Now we just check4f;,, (B")N L., (A') = 0,
which is decidable in PSPACE [3] (in the sizes4fandB’). O

3.3 Controlling TPNs with silent transitions

We now consider ground nets which may have sileng-transitions. The (timed and
untimed) language of the ground net contains only sequesfcesservable (i.e., not
€) transitions and the robustness question asks if the dtertintroduces new timed
behaviors with respect to this language of observableitrans. From a modeling per-
spective, robustness means that sequence of importaohscémain unchanged with
architectural constraints, and hence this property shioold. Silent transitions can be
used to model unimportant or unobservable transitionsdmtbund net. In this setting,
it is natural to require that control does not add to the lagguof important/observable
transitions, while it may allow new changes in other trdoss.

An example of such a control is given in the introduction igue 2 (b). In that
example, the ground net has a unique critical (visible)oaeti All other transitions are
left unlabeled and so we do not care if the timed or untimedbiehns on those transi-
tions are different in the ground and controlled nets. Thertimed robustness problem
asks ifc can occur in the controlled net at a date when it was not alickweoccur in
the ground net. A more practical example will be studied itaien Section 3.5.

With this as motivation, we introduce the classeoT PN, which are TPNs where
some transitions may be silent, i.e. labeledtbyhe behavior of such nets is determin-
istic except on silent actions: from a configuration, if acdéte transition that is not
labelede is fired, then the net reaches a unique successor marking.

Definition 8. Let X be a finite set of labels containing a special label
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1. An LTPN overX is a structure(A, \) whereN is a TPN and\ : Ty — X' is the
labeling function.

2. Ane-TPN is an LTPNW, \) over X such that, for allt € Ty, if A(¢) # € then
A(t) £ A(t') foranyt’ £t € Ty

For ane-TPN or LTPNW, its timed (resp.untimed languagedenotedZ,,, (N, A)
(resp. L, (N, X)) is the set of timed (resp. untimed) words over\ {¢} generated
by the timed (resp. untimed) transition system , by ignotimge labels. A TPNA
from Definition 5 can be seen as the LTRN, \) over ¥ such that for alt € T),
A(t) = t, thatis,\ is the identity map. Ar-TPN can be seen as an LTRN/, \) over
Y =Ty U{e} suchthat(t) =tor\(t) = eforallt € Ty.

We are interested in the problemalfecking timed robustnesse.,

Definition 9. Given twoe-TPNs (A, \) and (C, \) over X' and a set of read arc®
from (Pz x Th) U (Py x Tt),

— the controllede-TPN (A, X)) is defined as the-TPN (N(©:R) \") over
where)’(t) = A(t) fort € Thr and X’ (t) = efort € T¢.
— the timed robustness problem askgf, (N, M) 1) C Ly, (V).

Note that the labels i@ are ignored (i.e., replaced kY, since robustness only com-
pares labels of the ground nets. We remark that untimed toess and even untimed
equivalence are decidable feiTPNs and LTPNs, since Theorem 1 still holds in the
presence ot or labels (indeed, the algorithm (see [1] for details) usesrastruction
called a state class graph, which is an untimed automatawekfer, the result does
not extend to timed robustness, and we can show that thidgmols undecidable for
e-TPNs and LTPNs.

Theorem 3. Checking timed robustness is undecidablefdiPNs (and LTPNSs).

The complete proof can be found in [1], but sketching its eathighlights the
power of labels. The first step of the proof reuse results fféhwhich shows that
LTPNs are as powerful, language-wise, as timed automatseltesults mean that the
universality problem for timed automata reduces to theensizlity problem for LTPNSs,
and hence universality for LTPNs is undecidable. Then, wesb@w that LTPNs can be
simulated by-TPNs. Figure 4 beliow shows how to encode a labeled paieofitions
with transitions in are-TPN.

Thus,e-TPNs are expressively as powerful as LTPNs. The last steheoproof
shows that checking universality of a labeled net (whichidacidable) can be reduced
to checking timed robustness of a related net.

Note that checking iL;,, (N (€ )) = L,,,(N), i.e., the timed language equivalence
is a weaker notion in the context efTPNs than in TPN (it only requires preserving
timing for important observable actions), and hence coelddbevant. For instance in
Figure 2(b), we may want to checkdfcan occur in the controlled net at every date
at which it can occur in the ground net (even if the othransitions are perturbed).
Unfortunately, this simpler problem is also undecidakiés(an immediate corollary of
the above theorem 6.
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Fig. 4. Construction of &-TPN equivalent to a LTPN.

3.4 Ensuring robustness in TPNs with silent transitions

The situation fore-TPNs is unsatisfactory since checking timed robustnessite-
cidable. Hence, we are interested in restrictions that ntiaikeproblem decidable, or
ensuring that this property is met by construction. In teist®n, we will show that we
can restrict the controlling set of read-arcs to ensureahsdt is always timed robust.
Indeed, it is natural to expect that a “good” controller meweroduces new behaviors
and we would like to ensure this.

Here, we consider the restriction in which all transitiohthe ground nets that have
controller places in their preset are not urgent, i.e., ithe tonstraint on the transition
is [, 00) or (o, o) for somea € QT. We call such controlled netB-restrictede-
TPNs. In this case we will show th@t-restrictede-TPNs are always timed robust (as
in the case of untimed PNs shown in Proposition 1). That is,

Theorem 4. Let N/ andC be twoe-TPNs, andR be a set of read arcs such that for
every(p,t) € RN (Pe x Ti), I(t)T = oo, thenLy, (N C) C L, (N).

Note that while timed robustness is ensured for nets andaathemes that fulfill
conditions of theorem 4, timed equivalence remains unadédidfor such nets.

The condition in Theorem 4 is quite restrictive but relaxitgpidly leads to unde-
cidability:

Proposition 2. The timed robustness problem is undecidablesfdPNs with at least
one read arc from a place of the controller to any transitioaf the ground net such
that 7, (t)* # .

Again, one can show that this problem can be used to encodeexseiity problem.

3.5 A small case study

We consider a heater-cooler system depicted in Figure % 3ystem improves the
hardness of a particular material by first heating and thetirmit. The heater-cooler is
equipped with two sensorgloohot is raised when the heater reaches its maximal tem-
perature. If it occurs, the heating stops automaticélbld is raised when the tempera-
ture is cold enough in the cooling stage. If it occurs, thel@ostops automatically. The
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Fig. 5. Case Study

heater-cooler starts in thecating state and the operator can push ftertCooling
button if the constraints of the system allow it.

We assume architectural constraints imposing thatsfaetCooling action is not
allowed after20 t.u. in the heating stage, and also disallowed before theldatt.u.
if the toohot sensor has been raised. The constraints are encoded asalep@t and
read arcs as shown in Figure 5.

We can show that,, (N¢®) = £, (N). Hence,\ is untimed robust and even
untimed equivalent und€cC, R). The net\ is not ane-TPN, but it was shown that
any LTPN can be converted to aATPN. Furthemore, the transformation only uses
new transitions for the ground net, and no additional read @as illustrated in Fig-
ure 4). Hence, the resulting net i&restricted, so according to Theorem 4, we have
L (N C L4, (N) and thenV is timed robust unde(C, R).
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3.6 Conclusion and discussion

We have defined and studied notions of timed and untimed tobss as well as un-
timed equivalence for time Petri nets. We are interestechietier we can check or/and
guarantee these properties for timed and untimed behaW&rsummarize the results
obtained in the table below.

| | TPN  [R-restrictede-TPN| e-TPN | LTPN |

Untimed robustness Pc (thm 1) G (thm 4) Pc Pc

Untimed equivalengg Pc (cor 1) Pc Pc Pc
Timed robustness| D (thm 2) G (thm 4) U (thm 3)U (thm 3

U stands for undecidabld) for decidable Pc for PSPACE-complete, and for guaranteed.

Overall, with injective labels and ng robustness is decidable. We think that timed
robustness of TPN is EXPSPACE-complete, but this need taded. However from
a modeling perspective it is important to allow silent tiinas. With silent transitions,
untimed properties are still tractable, but timed prosrttecome hard to check. To
overcome this problem, we proposed a sufficient conditiogu@arantee timed robust-
ness which we showed is already at the border of undecitaljit show its practical
relevance, we designed a small case-study. We also showritiated equivalence is
easily decidable in all the cases. As for timed equivaletinig property is undecidable
in most cases. This is not really a surprise nor a limitatamasking preservation of
timed behavior under architectural constraints is a rattreng requirement.

As further discussion, we remark that other criteria candedifor comparing the
controlled and ground nets such as (timed) bisimulation @akibisimulation. While
this would be an interesting avenue to explore, a prioriy eem to be more restric-
tive and hence less viable from a modeling perspective.ilflessxtensions could be
to define tractable subclasses of nets, for instance by demsg semantic properties
of the net rather that syntactic conditions ensuring désiitha It also seems possi-
ble to consider robustness of netp to some small delayFormally, we can fix a
delay as a small positive numbéy and definec?, (N) = {(wi,t1) ... (wn,tn) |
(w, 1)) .. (wn,t)) € Liw(N),Vi € 1...n,[t; —t;| < 6}. Then a possible ex-
tension of the definitions is to consid&robustness undet, R as the timed inclusion
Low(NER) C £3,(N).
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4 Robustness of Time Petri Nets under Guard Enlargement

Robustness of timed systems aims at studying whether iginial perturbations in
clock values can result in new discrete behaviors. A modehast if the set of discrete
behaviorsis preserved under arbitrarily small (but pesjtperturbations. We tackle this
problem for Time Petri Nets (TPNs for short) by considering model of parametric
guard enlargement which allows time-intervals constrajrihe firing of transitions in
TPNs to be enlarged by a (positive) parameter.

We show that TPNs are not robust in general and checking yf dhe robust with
respect to standard properties (such as boundednesy)safahdecidable. We then
extend the marking class timed automaton construction RiMgto a parametric set-
ting, and prove that it is compatible with guard enlargerseWe apply this result to
the (undecidable) class of TPNs which are robustly bounded (hose finite set of
reachable markings remains finite under infinitesimal pbetions): we provide two
decidable robustly bounded subclasses, and show that areffeatively build a timed
automaton which is timed bisimilar even in presence of pbetions. This allows us
to apply existing results for timed automata to these TPNiss&wow further robustness
properties.

As already mentionned in Section 1, the semantics of timedetsasuch as timed
automata [3] (TA), time Petri nets [23] is idealized. Indgedmplementations of timed
systems, clock values are discretized, which may lead tooxppations of real clock
values. Furthermore, in distributed systems, the clockwofdifferent processes may
evolve at slightly different rates. As a result, the extrgmezision of the models leads to
unexpected outcomes when there is even a slight impreasitr level of implemen-
tation. A solution to discover if imprecision may cause algpem is to verify properties
of models under perturbation, that is introduce pertudretin the models.

For timed automata, a model of guard enlargement has beensaxly studied
in the last decade [24,7,8,13,9, 26]. In [14], it is proveatttihis model of perturba-
tion covers the both issues of discretization and drift otkk, by reducing the imple-
mentability problem to the analysis of the enlarged seranti

In this section, we tackle the problem of robustness undeflgrarturbations in the
distributed and timed setting of time Petri nets. Our ainoisttdy the effect of small
enlargement of intervals that are attached to transitidrass TPN. We address mainly
two problems. The first is th@bust boundednegsoblem, which consists in deciding,
for a given bounded TPN, whether there exists a positivergataent for which the set
of reachable markings is finite. The second problem consitierthis section isobust
untimed language preservatipwhich consists in deciding whether there exists a pos-
itive enlargement for which the untimed language remairchanged. As mentioned,
robustness issues have been well studied for TA. Hence,sihp@svay to address the
robustness problem for TPNs is to translate TPNs to TA, anskrexisting techniques.
However, we show in this section that results on TA do not géwextend to TPN. For
instance, robust safety, that is avoidance of some bad emafign under perturbation,
is decidable in TAs, but not for TPNs. The objectives of thaper are to consider ro-
bustness issues for TPNs, and to study to what extent rgauat®n for TA can be
applied on TPN.
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We first show that the phenomenon of accumulation of pertimhs, which Puri
exhibited in TA in [24], also occurs in TPN, but in a slightljffdrent way. In a TPN,
firing of transitions which are not causally related may o@ystematically at distinct
dates in a non-perturbed model, and after accumulationragsielays, become con-
currentin the perturbed model. This has two consequencgsréachable markings of
a net may change under perturbation. Second, a bounded pdiename unbounded
under perturbation. This makes a huge difference with thenbdel which is defined
over a finite set of locations which does not change undeugstion. We show an ex-
ample of a TPN whose unbounded perturbed semantics canmaipléred by a finite
timed automaton. We then use this example to prove that th@tablems we consider
are undecidable.

There are several translations from TPN to TA [16, 10, 21, ¥4 study which of
these translations can be used to lift robustness resul®adie the model of TPN.
In particular, we prove that the marking class timed autemabnstruction of [12] is
compatible with guard enlargement, in the sense that thegptyof timed bisimulation
is preserved when guards are enlarged by the same paramgtefTiA and in the TPN.
We use this result to exhibit subclasses of bounded TPNsHahwobust boundedness
and language preservation are decidable.

This section is organized as follows: Section 4.1 introdumer time perturbation
model for TPNs, and the robust boundedness and languageryaten problems. Sec-
tion 4.2 shown that in general, TPNs do not have robust lagegiand are not robustly
bounded either. This section also exhibits a trivial clas§RNs, namely the class of
sequential TPNdor which robustness problems are decidable.

Section 4.3 shows that many robustness issues are undecida@PNs. Section
4.4 presents a robust translation from TPNs to TA, i.e. cdiblgawith guard enlarge-
ment. Sections 4.5 and 4.6 build on this result to exhibitdtede subclasses of TPNs,
before conclusion. Missing proofs can be found in a completsion of this work
published in [2].

4.1 Perturbations in TPN and robustness problems

The perturbation definition proposed hereafter is inspfreth the perturbations in
timed automata [7, 8, 13], that we describe hereafter. We Istafixing a parameter
A € Rtsq. Given a constraing € C(X), we define itsA-enlargement as the con-
straint obtained by replacing any atomic formulae of therfolaex < ¢ for z € X,

¢ € Nande {<,<,>, >}, by the formulaer < ¢ + A if e {<,<}, and by
the formulaer < ¢ — A if e {>, >}. Note that this transformation is a purely syn-
tactic one. Now, given a timed automatgh we denote by4 , the TA obtained by
replacing every constraint by itd-enlarged version (both in guards and invariants).
This model of perturbation verifies the following monotonmpperty: for TA A and
anyA < A’ € Rtsg, we have[Aa] = [Aa‘]. In the sequel, we will denote by
Reach(A.) the locations ofA reachable irf.A4]. We will also use the following im-
portant result:

Proposition 3 ([9]). Let.A be a timed automaton angi be a subset of locations of.
One can decide whether there exigtse Q7. such thaReach(AA) N S = 0.
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We can now introduce a similar model of perturbation for TiRedri nets. Given
anintervall € Z(Q" ), we denote by , the interval obtained by replacing its lower
bounda by the boundnax(0,« — A), and its upper bound by the bound3 + A.
Given a TPNA/, we denote byV 4 the TPN obtained by replacing every intervaby
the intervallo. We can then easily prove that the desired monotony propeits,
entailing that if the system verifies a safety property fanegerturbatiom,, it will
also verify this property for anpA < Ay:

Proposition 4. LetA/ bea TPN andA < A’ € Rt >o. We havgNa] < [Na].

These propositions are important as they intuitively stattaster is better” prop-
erty. Indeed, decreasing the perturbation also decrehseset of possible additional
behaviors in the perturbed model of the system. This morygpooperty also entails
that if the system verifies a safety property for some peatimh A, it will also verify
this property for anyd < A,.

We now define robustness problems on TPNs in a way which isstenswith the
monotony property stated above.

Robust Boundedness: Given a bounded TPV, does there exist\ € QT such
thatN\ 4 is bounded?

Robust Untimed language preservation: Given a bounded TPW/, does there exist
AeQt.gsuchthatl(Na) = L(N)?

We call a TPNV robustly bounded there existsA € QT+, such thatV 4 is bounded.
This problem is strongly related to the problem of robustsadisking, given a bounded
TPN A with set of places”, and a markingn € N, whether there existd € Q* -,
s.t.,Reach(N,) does not covem. In fact, our undecidability and decidability results
for robust boundedness will easily extend to this probleoweler, the situation differs
for robust untimed language preservation and so we treaptbblem separately.

4.2 Examples of robust and non-robust TPNs

Consider the example in Figure 6(a). Due to the open intemdlurgency condition
(according to the semantics of TPN$ has to fire at most 2 time units after enabling),
any enlargement of guards would result in reaching pfacenhich is not reachable
in the non-enlarged semantics (from this simple examplevnetcan easily construct
examples that are not robustly bounded or robustly safefhitnexample, the firing
domain of transitiom (the set of configurationgpo, v) | v(a') € [1,2]}) is aneighbor
of the reachable configuratidpo, v(a’) = 2). By neighbor, we mean that any positive
enlargement makes transitianfireable. This is the simplest form of non-robustness
which can be easily checked for in bounded TPNs as one canutenapsymbolic
representation of the reachability set (using the staescyraph construction [6, 21]
for instance). Further by requiring that all intervals mbstclosed, one may avoid this
situation. Now assuming there are no transitions whosefatomain is a neighbor of
the reachability set, one can prove that undéoanded time horizofas defined for
timed automata in [27],i.e. within a bounded number of stepy net is robust, i.e.,
one can pick a sufficiently smalk > 0 to ensure that no new behavior occurs.
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(a) The TPNAG. (b) The TPNM;.
Fig. 6. Two TPNs exhibiting new discrete behaviors under infinitediperturbations.

However, closing intervals does not make bounded nets tadmilustrated by the
following example. The remaining case concerns TPNs in kvhawv behaviors are not
neighbors of the reachability set, considered for an undedtime horizon. In this case
a new behavior cannot appear directly from a reachable amafign, and there must
be several discrete firings before this new behavior is wi&ad. Further the number
of steps may depend ad: the smallerA is, the larger will be the number of steps
required. Intuitively, the new behavior is due to an accuatioh of clock perturbations,
rather than a single clock perturbation. Puri [24] gave aamgxe of TA that exhibits
accumulations, encoded using time between consecutiet¢srddowever, for TPNs,
this encoding does not work since the clocks are always veset a transition is newly
enabled.

We exhibit a TPN where accumulation is due to concurrencyiguiié 6(b). This
example can be simplified using singleton intervals, but wadathis to show that
accumulation may arise even without singletons. With thealsemantics, the red state
in A1 is not reachable as transitignis never fireable. Indeed, one can verify that any
run of ; which does not fire transitions, t-, 3 or t4 always fires transition (resp.
a’, b, b)attime3k+2 (resp.3k+3, 3k+1, 3k+3), for some integek. By observing the
time intervals of transitiong o’ andd’, one can deduce that to be able to fire transition
t, one has to fire simultaneously the transitierendb, which is impossible.

Consider the nef\1) 4, for some positiveA. We can prove that in this case, it is
possible to fire simultaneously transitiomgndb. In (A7), one can delay the firing
of transitiona by up to A time units. As a consequence, it is easy to verify that after
n iterations of the looma’, the timestamp of the firing of the last occurrence.@an
be delayed by up ta - A time units. Choosing any > %, we obtain the result. In
particular, the red place is reachablg.xi; ) 5, for any positiveA.

To see this, consider any reachable marking in any run whaes dhot fire tran-
sitionsty, to, t3 or t4. In any such run, there is a token in plageexactly during the
intervals[3k — 1, 3k] forall k = 1,2, . ... Similarly, there is a token ip, exactly during
the intervalg3¢,3¢ + 1] forall ¢ = 0,1,.... As a result, there is a token jn andp-
enabling transitiort only at every time instartk (for £ = 1,2,...). But to firet, we
require at least 1 time unit to elapse once the transitionadked, which never happens
and hence is never fireable. Thus, the red place is never reached.

However in thec-enlarged semantics, we have the following run reachingete
place. As before, transitiomfires at time3k — 1 for k = 1,2, .. .. Thus the token is in
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placep; during the interval3k — 1, 3k] for everyk = 1,2, . ... Lettingk = 2n+ 1, this
implies that there is a token af in the interval[6n + 2,6n + 3]. On the other hand,
each firing of transitiorb is delayed by som% < € (indeed such an integer exists
given any fixed > 0). All other transitions are not delayed and are fired exaxlthey
would have been under the exact semantics. Then, there i®a o placeps during
the time intervalg3/ + £,3¢ + £ + 1] for £ = 0,1,.. .. Letting ¢ = 2n, this implies
that there is a token ip, in the time interval6n + 2, 6n + 3]. As a result transition is
enabled in the time intervéén + 2, 6n + 3] and so is fireable at the time instaint + 3,
thus reaching the red place.

The accumulation in the above example is due to concurrepslm the TPN. When
we disallow such concurrency, we obtain a very simple clasequential TPNs/hich
is a strict subclass of timed automata. A TRNs sequentialf it satisfies the following
property: for any reachable configuratiom, v), and for any transitions ¢’ € T that
are fireable fron{m, v) (i.e. such that, ¢ € En(m), v(t) > «(t) andv(t') > a(t’)),

t andt’ are in conflict, i.e. there exists a plagsuch thatn(p) < *t(p) + *t'(p).

The following theorem states robustness properties ofesgtal TPNs and their

relation to timed automata.

Theorem 5. We have the following properties:

(i) Checking whether a bounded TRis sequential is decidable.
(i7) If Mis a sequential bounded TPN, then it can be translated intmad automa-
ton which resets every clock on each transition.
(144) If Nis sequential, then there exisfse Q- such thaReach(N4) = Reach(N)
andL(Na) = L(N).

Decidability follows from the construction of a state clasaph, that is an automa-
ton which states memorize markings and constraints on tetegabed since a transition
was enabled. Such graph recognizes the same language agthalmet, and obvi-
ously can be used to compute the set of reachable markingislirButhis graph is
possible as soon as the TPN is bounded. Checking sequigntizdi net can be done in
time linear in the size of the state class graph. The secoddham properties follow
from the observation that in a sequential TPN, each time aetis transition is fired,
each transition that is enabled in the new/resulting marismewly enabled, and no
memory is needed to remember the time since last enablingasition when moving
to a new state. Thus, if this enabling tile is memorized byaglc| all clocks are reset
at each transition, and this implies property (ii). Furtleénce clocks are reset, there
is intuitively no memory in clock values. This forbids acaulation mechanisms, and
considering as small enough enlargement (for instatice %) suffices to ensure that
exactly the same transitions are enablefi\f] and in[A4].

The class of sequential nets is quite restrictive, as it dmgsallo for concurrent
transitions in a net. For instance, the net example of Fi§(sis not sequential.

4.3 Undecidability results

We use the TPNs of Figure 6 to prove undecidability of robessnand untimed lan-
guage preservation for bounded TPNs.

23



M

® | -Ov OH-O

ts | @ |ty f

Fig. 7. TPN > obtained by combiningvi and N .

Theorem 6. The problems of robust boundedness and robust untimed éayegureser-
vation are undecidable for bounded TPN.

Undecidability comes very easily, using the standard eimgpaf Minsky machines
with TPNs (see for instance [25], or the appen8ixn [2]). Given a Minsky machine
M, one can build a TPMW y such that\ 4 is bounded ifiM is, and\Vy, covers some
markingm iff M reaches its final staig,. Moreover, the TPNVy, is sequential (it
encodes the behavior g# which is sequential).

The gadgets from Figure 6 and theorem 5 on sequential TPds tdlextend all un-
decidability results attached to Minsky machines and thEi encoding to robustness
issues. We combine the TPN§ from Figure 6(b) andVy, as depicted on Figure 7 to
obtain the TPN\5. First note thai\s is a bounded TPN: without perturbation, transi-
tion ¢ is never fired, and thus the set of reachable markings is .fid&eond, we label
transitiont; by a and every other transition by 6. As A, is sequential, by Theo-
rem 5(iii) it follows that (1) N> is robustly bounded iff\Vy( is bounded and (2)V;
robustly preserves its untimed languageAff, does not cover stater. We note that
for (2), Ny may not be bounded (iM is not bounded), however the statement still
holds since Theorem 5(iii) does not require the boundedessnption.

Thanks to undecidability of halting and boundedness of kimsachines, the prob-
lems we considered are undecidable Remark that the abautsralso show that robust
safety is undecidable, &€, covers marking f} iff Ay, covers markingn.

4.4 A robust translation from TPN to TA

Robustness issues were first studied for timed automataemedal translations of TPN
into TA exist in literature. It is hence natural to study whiof these translations are
compatible with robustness. A way to reduce robustnesdgmabfor TPNs to robust-
ness problems for TA is to show that an existing timed bisatioh between TPN and
its TA translation is preserved under perturbation. We nosgent a translation which
verifies this property.

This construction is close to the marking class timed automeonstruction of [12]
but differs in two aspects. First, for efficiency reasond fe2luce the number of clocks
of the TA they build, and therefore use clock sharing techesqof [21], which may
increase the number of locations. For ease of presentat&®dp not consider this opti-
mization, but our results also apply for this setting. Sekdme construction of [12] was
only stated for TPN whose underlying Petri net (i.e., thaiPett obtained by ignoring

® The reduction can be adapted to avoid the uselnf labeling every other transition by and
adding a gadget which can perform abitrarily mafs It can however not be adapted to the
setting of injective labeling, see Section 4.6.
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the timing information in the given TPN) is bounded. We preghe construction in a
more general framework: we consider a TRNwhich is not necessarily bounded and
we consider as input a finite set of markingys The construction is then restricted to
the set)M, and we can prove that it is correct for the set of behaviot§ afthich al-
ways remain withinV/. In the sequel, we will instantiat®/ depending on the context.
For TPNs whose underlying PN is bounded, the constructidi 2jfis recovered by
letting M be the set of reachable markings of this PN. We begin with aitiefi and a
proposition that can be infered immediately:

Definition 10. LetN = (P, T, X., *(.), (.)®,mo, A,I) be a TPN,M C N” be a set of
markings such thaty € M, and let[N] = (Q, g0, —) be the semantics of". The
M-bounded semantics ¥, denoted ']y, is defined as the restriction of the TTS
[NV] to the set of state§(m,v) € Q | m € M}.

Proposition 5. Let M be a set of markings of a TPN containing the initial marking.
If Reach(N) € M, then[N]y = [NV].

Now, let(AV, \) be a LTPN, and/ C N” be a finite set of markings such tha €
M. Themarking timed automaton of” over M, denotedA,,, is defined asd,; =

(M,mg, X, Y., E,Inv), whereX = {z; | t € T}, for eachm € M, Inv(m) =

Ntepnm) Tt < B(t), and there is an edge 908, 0! € B iff there existst € T such

thatt € En(m), m’ = m — * + t°*, g is defined as the constraint € I(t), a = A(t)
andR = {zy | t' etenabledt’,m,t) = true}. With this we have the following
theorem:

Theorem 7. Let AV be a TPN,M be a finite set of markings containing the initial
marking of A/, and A,, be the marking timed automaton &f over M. Then for all
A e Qtsy, we havgNa]a = [(Anr)al.

Proof (Sketch)We can prove by induction that the following relatidhis a timed
bisimulation. Let(mn, ) (resp.({,v)) denote a state of the TT[ ]|/, i.€. (m,v) €
Adm(N,) with m € M (resp. denote a state pfAnr) a]). We defing(m, v)R(¢,v)
if and only if m = ¢, andvt € En(m), v(t) = v(zy). O

Other TA constructiong he construction proposed in [21] builds a state class tiawed
tomaton incrementally using a forward exploration of redatlh markings of a bounded
TPN. Gardey et al [16] use a similar forward-reachabilighteique to build the reach-
able state space of TPN, where equivalence classes for ehidaktions are encoded
as zones. However, as in TPM; of Figure 6, new configurations in anlarged se-
manticsmight be reached after accumulation of small delays. Henew, reachable
markings are not necessarily obtained in one enlarged stepd configuration in the
non-enlarged semantics. Thus, forward techniques as i1fltannot be directly ex-
tended to obtain enlarged semantics and we need a more syrtanslation which
builds an over-approximation of the reachable markingshefTPN) as in Theorem 7.
Cassez et al [10] propose a different syntactic transldtam unbounded TPNs by
building a timed automaton for each transition, and thercByaonizing them using a
supervisor. The resulting timed automaton is bisimilahi® ¢riginal model, but states
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contain variables, and hence the automaton may have an ndédunumber of loca-
tions. It may be possible to extend this approach to addodssstness problems, but as
we focus on bounded TPNs, we leave this for future work.

4.5 Robustly bounded TPNs

This section focuses on the class of robustly bounded TPN3.H@orem 6, we know

that checking membership in this class is undecidable. \&sgmt two decidable sub-
classes, as well as a semi-decision procedure for the whass.d/Ve first consider the
subclass of TPNs whosmderlying Petri nets bounded:

Proposition 6. The set of TPN whose underlying net is bounded is a decidabtdass
of robustly bounded TPNs. Further, for each nétof this class, one can construct a
finite timed automatopnt such thaff V4] ~ [AA] forall A > 0.

The decidability follows from that of boundedness for (umgid) Petri nets [19], as
timing constraints can only restrict the set of untimed siaons. The second part of
the above proposition follows from Theorem 7.

We now exhibit another subclass of robustly bounded TPNsehioderlying Petri
nets can be unbounded. In fact, this class is incomparaltetire above defined sub-
class. The following technical result is central in our aygwh:

Lemma 1. Let N be a TPN, andV/ be a finite set of markings. Determining whether
there existsA > 0 such thaiReach(Na) C M is decidable.

To prove this result, we defing/ = MU{m'|Ime M,t€T,m' =m—"t+t*}
the (finite) set of markings reachable fravin at most one-step in the underlying Petri
net. We then show that any run obtained after enlargemedinigdo a new marking
necessarily goes throug a set of markidgs, M.

In other terms, we show that

Reach(Na) € M <= Reach((Az)a) C M

Then, determining whether there exigis> 0 such that the right hand side of the
equivalence holds is decidable thanks to Proposition 3.

We consider the following subclass of bounded TPNs:

Definition 11. A bounded TPM is called Reach-Robustieach(N4) = Reach(N)
for someA > 0. We denote biRR the class of Reach-Robust TPNs.

RR is the class of bounded TPNs whose set of reachable marlg@ngvariant under

some guard enlargement. It is easy to see that these netsbargtly bounded. More
interestingly, checking membership in this class is dddligla.e., given a bounded TPN
N we can decide if there is a positive guard enlargement untiahwhe set of reach-
able markings remains unchanged. This follows from Lemmiaylinstantiating the

finite set of markings\/ with Reach(\):

Theorem 8. RR is a decidable subclass of robustly bounded TPNs.
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We can now address properties of the general class of rgthmihded TPN.

Lemma 2. The set of robustly bounded TPNs is recursively enumeraideeover,
given a robustly bounded TPN', we can build effectively a timed automatdrsuch
that there existgl, > 0 for which,V0 < A < A, [Na] = [AAa].

Observe that a TPW is robustly bounded iff there exists a finite set of markings
M and someA > 0 such thatReach(Na) C M. Thus by naively enumerating the
setof finite sets of markings and applying the algorithm of Leminat each step of
the enumeration, we obtain a semi-decision procedure gokcmembership) for the
class of robustly bounded TPNs. For the second result, ebgeat if A" is known to be
robustly bounded, then this semi-decision procedure teataes and computes a finite
set of markingsV/ and there is a valug\y such thaReach(N,,) € M. Therefore,
forany A < Ag, Reach(Ma) € M. By Proposition 5, this entailgVa]as = [Na].
In addition, by Theorem 7, we haf&Va]|a, ~ [(Anr)a] whereAy, is the marking
timed automaton of the TPN/. Thus we hav&0 < A < Ay, [Na] ~ [(Anr)a]-
This result allows us to transfer existing robustness te$oit timed automata to TPNSs.
We will illustrate the use of this property in the followingation.

4.6 Untimed language robustness in TPNs

We now consider the robust untimed language preservatmvigm, which was shown
undecidable in general in Theorem 6. We show that for thelasbofdistinctly la-
beled bounded TPNse., labels on transitions are all distinct, and diffdéfeom ¢) this
problem becomes decidable.

Definition 12. A bounded TPNV is called Language-Robust(Na) = L(N) for
someA > 0. We denote by LR the class of Language-Robust nets and_byresp.
RR;) the subclass of LR (resp. RR) with distinct labeling.

We first compare the class RR (for which checking membershigecidable by
Theorem 8) with the class LR (where, as already noted, chgehiembership is unde-
cidable by Theorem 6). We can then observe that:

Proposition 7. The classes RR and LR are incomparable w.r.t. set inclusiorther,
the class LR is strictly contained in the class BR

Finally, we show that the problem of robust untimed langyaigservation becomes
decidable under this assumption:

Theorem 9. The class LR is decidable, i.e., checking if a distinctly labeled boushde
TPNisin LR is decidable.

The proof of this result comes from decidability of the RRd @annsequently also of
the RR; subclass of TPN, and from the inclusion of Lito RR.. When a net is not
in RRy, then itis not in LR.. OtherwiseReach(/) is bounded, and by Lemma 2, we
can build a timed automatad which is timed bisimilar to\/ for small perturbations.
This entails that this TA preserves its untimed languagestschall perturbations iff
N does. Thus we have reduced the problem of checking i in LR, to checking if
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Fig. 8.RR stands for reach-robust, LR for language-robust, UBdomdled underlying PNs, S for
sequential bounded TPNs. Dotted lines represent unddeidal solid lines decidable classes.

the timed automatom constructed fromdV is language-robust, which is decidable for
timed automata.

The results of this section and relation between subclagS&3Ns are summarized
in the above diagram. We say that a class is decidable (rasiecidable) when mem-
bership of a net in that class is a decidable problem (regpecidable). Note that the
larger part of the results obtained in this section come fadnansfer of positive results
from the TA setting to TPNs. Unsurprisingly, several probéebecome undecidable in
TPNSs due to unboundedness. This does not mean however thatnotedness neces-
sarily leads to undecidability of all robustness issuesanggal. As future work, we
would like to show positive results in an unbounded settind ae believe that this
would require a different approach and new techniques.

5 Conclusions and future work

The work performed during the first period of the IMPRO progwws that robustness
with respect to architectural constraints (modeled as & alber net) is decidable for
safe nets in the following cases :

— When the considered robustness property (untimed langnalysion or equiva-
lence) does not address time issues.

— When the considered net and its controller do not contaiflagpfansitions, or
equivalently are not labeled nets. This means that in theidered Petri net mod-
els, transitions model explicitly a single event in the exem flow of a system,
and not the occurrence of an action that may occur at sevia@@in the control
flow.

Let us now discuss the adequacy of the model with needs oflajmers. Con-
trollers can be used to model time sharing architectureengeveral processes share
a processor or a ressource, this sharing can be modeledigpiagso each process a
place that is read by all transitions from the process, andmga token among these
particular places according to a scheduling policy. Howgés is not yet satisfactory,
as removing a token from a place means forgetting the timpsethby a transition wait-
ing for some delay before firing. This is bothering when orestto model the duration
of atask. A recent model have been proposed by members of OtBRiemorize time
elapsed in a place by token, but at the cost of high udecitiafiD].
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For the timed robustness case w.r.t enlargement, boundedfi@ets is again the
key issue. When a net is bounded, then one can compute arakniitimed automa-
ton, and reuse all robustness results for TA to answer Petsi robustness questions
(markings or language preservation, ...). The questionlmistness for unbounded nets
is still open. While boundedness of a timed Petri net is inegalhundecidable, one can
expect to find decidable subclasses of unbounded nets fahwbbustness issues are
decidable. Of course, this should call for completely neshteques, as translation to
timed automata works only in a bounded context.
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