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Abstract—This paper describes an application of neural 

networks in the field of objective measurement method designed 

to automatically assess the perceived quality of digital videos. 

This challenging issue aims to emulate human judgment and to 

replace very complex and time consuming subjective quality 

assessment. Several metrics have been proposed in literature to 

tackle this issue. They are based on a general framework that 

combines different stages, each of them addressing complex 

problems. The ambition of this paper is not to present a global 

perfect quality metric but rather to focus on an original way to 

use neural networks in such a framework in the context of 

reduced reference quality metric. Especially, we point out the 

interest of such a tool for combining features and pooling them in 

order to compute quality scores. The proposed approach solves 

some problems inherent to objective metrics that should predict 

subjective quality score obtained using the single stimulus 

continuous quality evaluation (SSCQE) method. This latter has 

been adopted by VQEG (Video Quality Expert Group) in its 

recently finalized RRNR-TV (Reduced Referenced and No 

Reference) test plan. The originality of such approach compared 

to previous attempts to use neural networks for quality 

assessment, relies on the use of a convolutional neural network 

(CNN) that allows a continuous time scoring of the video. 

Objective features are extracted on a frame-by-frame basis on 

both the reference and the distorted sequences, they are derived 

from a perceptual-based representation and integrated along the 

temporal axis using a Time Delay Neural Network (TDNN). 

Experiments conducted on different MPEG-2 videos, with bit 

rates ranging from 2 to 6 Mbits/s, show the effectiveness of the 

proposed approach to get a plausible model of temporal pooling 

from the human vision system (HVS) point of view. More 

specifically, a linear correlation criteria, between objective and 

subjective scoring, up to 0.92 has been obtained on a set of typical 

TV videos. 

 
Index Terms— Convolutional neural network, MPEG 2, 

temporal pooling, video quality assessment. 
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I. INTRODUCTION 

IDEO systems, which television programs are an 

important specific case, are produced for the enjoyment 

or education of human viewers. Thus, their opinion about the 

visual quality of such videos is of prime importance. Speaking 

of quality does not relate here to artistic beauty or sensitive 

content but just relies on perception of picture distortions from 

the original scenes as they have been recorded by the scanning 

camera. Modern video systems are composed of many 

different stages throughout the production and distribution 

chain, each of them could be responsible for introducing 

various kinds of distortions within the video. As a matter of 

fact, it is often required to convert the video signal into a 

variety of signal types including non-linear compressed forms. 

The television signal has to be compressed for storage, 

efficient transmission, or intra-facility interconnection in 

digital form. Typically, MPEG compression standard is used 

resulting in an MPEG transport stream (MTS) which is then 

multiplexed with other MPEG transport streams for 

transmission or interconnection in order to optimize the 

transmission bandwidth. At the receive end of a transmission 

system, the desired program is demultiplexed from the MTS 

and the program data is decompressed. With classical coding 

schemes, it is possible to provide different video picture 

quality levels based on bit rates. Distribution quality to the 

home may be adequate using MPEG2 with bit rates from 2 to 

5 Mbits/sec for standard definition television (SDTV) and 15 

to 19 Mbits/sec for high-definition television (HDTV). 

However, it is not possible to directly link the perceived 

quality to the bit rate. Effectively, two different video contents 

compressed at the same bit rate, will not produce the same 

perceived quality after decoding. In addition to distortions due 

to lossy compression algorithms that occur at the distribution 

network head, trans rating nodes inside the network produce 

some distortions. In this paper, we restrict the distortions to the 

coding artifacts produced by a MPEG-2 coding scheme. 

Quality assessment is achieved using two types of methods: 

objective or subjective. The really important point is the 

opinion of the viewer about the quality of the video, this is 

why formal subjective tests have been developed for many 

years [1]. With the advent of digital video compression, the 

number of different test methods in BT.500 have increased 

every year. In the past decades, many objective quality metrics 

for measuring video impairments have been investigated. 
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There is general agreement that there are three methodologies 

for objective picture quality measurement that provide three 

levels of measurement accuracy [2]. They are identified as 

follows and illustrated on Fig. 1.: 

• Full-reference (FR) metrics do a comparison between a 

reference video and the tested video; they require the entire 

reference video to be available, usually in uncompressed 

form, which is quite an important restriction on the 

usability of such metrics. Nevertheless, FR metrics should 

be the most accurate ones since they handle the whole 

reference sequence. Ideally, FR metrics should be robust 

regarding the different kinds of distortions in order to 

benchmark image processing systems. 

• Reduced-reference (RR) metrics usually extract a number 

of features from the reference video (e.g. amount of 

motion, spatial detail), and the comparison with the tested 

video is then only based on those features. First intensively 

studied [3] by Institute for Telecommunication Sciences 

(ITS), RR metrics are very useful to monitor quality on 

transmission network, in such context the reduced 

reference is transmitted with the coded sequence assuming 

that the reduced reference corresponds to a reasonable 

overhead. At the receptor side, the coded sequence is 

decoded in order to compute its reduced representation. 

The quality is obtained by comparing the reduced 

representation of both distorted and reference sequences.  

• No-reference (NR) metrics exploit only the video under 

test and have no need of reference information. This allows 

to measure the quality of any video, anywhere in an 

existing compression and transmission system. 

 

 
Fig. 1. Three types of objective method test 

The results presented in this paper concern the field of RR 

metrics. Classical objective RR metrics of the literature are 

based on a common framework. We propose here an original 

method using neural network to tackle some issues in this 

general framework, especially concerning the last stage. For 

the needs of the study, we have to define a complete metric but 

we have voluntarily designed a quite simple front stage 

(features extraction) to outline the efficiency of the proposed 

technique for the considered stage. So, the overall proposed 

quality metric is not optimal. Other quality metrics proposed in 

the literature based on the same framework but probably more 

sophisticated in their front stage (features extraction) could 

take benefit of this technique. 

VQEG (Video Quality Expert Group) is the well known 

main contributor to the normalization of video quality metrics. 

It has recently finalized a RRNR-TV test plan. This test plan 

organizes the condition of the competition between objective 

Reduced Referenced and No Reference quality metrics for TV 

sequence. To compare metric performances, subjective quality 

scores are required, this is why an experimental methodology 

is necessary. The single stimulus continuous quality evaluation 

(SSCQE) method has been elected that can lead to some 

problems for objective metrics. Most of literature metrics are 

designed to output a single quality estimation for a given video 

sequence, therefore, they are not supposed to replicate the 

process of continuous quality estimation as it is performed by 

human observers. The proposed neural network tool brings 

some answers to these problems and so can be useful for the 

future normalization in that field. 

The remainder of this article is organized as follows. In 

section II, we present the joint problematic associated with 

subjective protocols and objective metrics and we review 

several works related to objective quality systems. Then, we 

provide an overview of the proposed system (section III) and 

explain our reduced video representation in section IV, 

whereas details about the neural network architecture are given 

in section V. We describe the databases used to train and test 

the system in section VI. The quality assessment performance 

of the proposed system is evaluated on a large dataset in 

section VII. Section VIII concludes the paper with an outlook 

on future work. 

II. VIDEO QUALITY ASSESSMENT 

A. Subjective methodology and consequences for objective 
metrics 

Advantages of subjective testing are: a test may be designed 

to accurately represent a specific application; valid results are 

produced for both conventional and compressed television 

systems; a scalar mean opinion score (MOS) is obtained; and a 

wide range of still and motion picture applications are 

accommodated. In the experiments related later in this paper, 

we will use the DMOS (Difference Mean Opinion Score), 

which is the difference of MOS obtained on the reference 

sequence and on the distorted sequence respectively. A low 

DMOS means little degradation whereas an important value 

corresponds to severe distortions in the sequence. 

Weaknesses of subjective testing are: a wide variety of 

possible methods and test element parameters must be 

considered; meticulous set-up and control are required; many 

observers must be selected and screened, and complexity 

makes it very time consuming. The results of subjective tests 

are only applicable for development purposes; they do not lend 

themselves to operational monitoring, production line testing, 

trouble shooting, or repeatable measurements required for 

equipment specifications. 

The need for an objective testing method of picture quality 

is clear, subjective testing is too complex and the results 

provide too much variability. However, since it is the 

observer’s opinion of picture quality that is important, any 

objective measurement system must be in good 

correspondence with subjective results for the same video 

system and test sequences. It means that the goal of an 
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objective metric is to mimic observers behavior confronted 

with an experimental protocol. In other words, an objective 

metric is highly dependent with protocols of subjective quality 

assessment to prove its efficiency. In the previous VQEG test 

plan for full reference TV, the Double Stimulus Continuous 

Quality Scale (DSCQS) method was used for subjective 

testing. In the DSCQS method, the observer is asked to 

evaluate the picture quality of sequences using a continuous 

grading scale and to give one score for each sequence. This is 

maybe the reason why most of objective metrics in literature 

are designed to output a single quality score for a given video 

sequence (typically 8 seconds long). Though they can generate 

frame by frame scores, they are not suited to replicate the 

process of continuous quality estimation as it is performed by 

human observer with the SSCQE method. In this latter case, a 

digital video sequence (usually several minutes long) is 

presented once to the subjective assessment viewer (the video 

sequences may or may not contain impairments). Observers 

evaluate the picture quality in real time using a slider device 

(typical sampling rate of 2 per second) with a continuous 

grading scale composed of the adjectives Excellent, Good, 

Fair, Poor and Bad. This methodology has been chosen by 

VQEG for RR-NR TV test plan essentially because it is 

consistent with real-time video broadcasting where a reference 

sample with no degradation is not explicitly available to the 

viewer. Nevertheless, it induces some observer’s behaviors 

that can be very challenging to mimic for objective metric. 

Two main effects are identified: 

• Response time delay: human observers make decision and 

displace the slider to reflect their opinion. The 

consequence is a delay between the moment the displayed 

frames and the corresponding right position of the slider. 

Ideally, the objective and the subjective results should be 

synchronized. Unfortunately, the delay is not constant, it 

depends on many factors. We suspect that delay’s variation 

is mainly due to the content and the temporal variation of 

the distortions. 

• Asymmetric tracking: in general humans experience greater 

feelings intensity from disliked situations compared to 

favorable ones. In other words, observers criticize quickly 

and forgive slowly. This leads to an asymmetric tracking of 

subjective score with the SSCQE metric : MOS takes les 

time to fall when distortions appear than to raise when 

distortions disappear. 

B. Objective quality metrics 

Usually, FR or RR metrics are composed of two main 

stages. In the first one, the errors between original and 

distorted images are computed. In the FR metrics case, it leads 

to distortion maps whereas, in the of RR metrics case, it deals 

with the difference between features that constitute the reduced 

representations. The second main function allows to pool the 

errors or the differences, and thus, to provide the global 

quality assessment. This second function is highly dependent 

on the subjective protocols. As a matter of fact, a good metric 

should be well balanced between error visibility stage and 

error pooling. We have previously demonstrated [4] that these 

two stages are complementary. 

Two categories of image quality metrics can be found in 

literature. Metrics from the first category try to exploit the 

properties of known artifacts, such as blocking artifacts, using 

feature extraction and model parameterization [5]. This class 

of metric focuses on the particular type of artifacts [6]-[8], so 

it is not universal. In someway, these specialized metrics can 

tackle some problems inherent to distortion weighting, but they 

do not bring a complete answer for error pooling regarding 

subjective protocols. For NR metric, the task is even harder 

therefore few works are present in literature. In [9] for 

example, authors propose a NR metric for compressed picture 

(DCT and block based scheme) to reach PSNR performances. 

Metrics from the second category, such as proposed in [10], 

[11] and [12], use a human visual system (HVS) model for low 

level perception, such as sub-band decomposition and masking 

effect, in order to compute distortion maps. Most of these 

approaches use psycho-visual models stemming from 

psychophysics experiments. Recently, we have explored such 

approaches for RR metric providing a way to produce reduced 

representation according to low level perception mechanisms 

[13]. The main limitation of a HVS based metric is due to the 

lack of knowledge to model the error pooling process. 

Effectively, since it is difficult to address high level perception 

mechanisms through experiments and as the pooling stage is 

connected to these mechanisms, these metrics suffer from the 

lack of data to be coherent all along their processing steps. 

For FR metric, some interesting ideas, even if they are not 

linked to psychophysics experiments, have been proposed as 

an alternative to the conventional but not realistic Minkowski 

summation. In [14] a structural approach is used in order to 

predict DSCQS subjective score. In [15], an original cognitive 

emulator, based on rational analysis, provides a simulation of 

high level processing of visual information in the context of 

SSCQE method. The method has been evaluated using three 

sequences coded at three rates (MPEG2 MP@ML) leading to 

a total of 9 minutes. Face to the problem of the variable 

response time, authors claim that they cannot use reliable 

metric to compare their metric output with SSCQE results, 

therefore they simply present graphs. They argue that theirs 

results are better than PSNR. In [16], a temporal summation 

stage based on a recursive formulation is used to combine 

distortion across frame in a way that effectively models 

recordings from human observers with SSCQE method. It is a 

low pass FIR filter and it takes into account the fact that 

viewers do not respond equally to increasing and decreasing 

changes in the perceived distortion. In order to evaluate the 

metric, eight reference sequences, 30 seconds long each, have 

been coded at two different bit rates using three coders in 

order to generate sequences to be assessed by observers. 

Subjective materials have been split in order to provide several 

training sets of video frame to tune some metric parameters. 

Comparisons between the metric’s output time series and the 

SSCQE recordings are done with a specific fitted Mean Square 



> TNN04-P303  < 
 

4

Error (MSE). Authors claim that distance measures such as 

usual MSE are too much affected by offset between the two 

score series, and that measures such as correlation can be 

affected by small variations over time, in spite of the overall 

similarity of the two time series. The proposed metric 

generally performs roughly as well, or even better, as a MSE 

based metric. 

For RR metric, a neural network approach [17] has been 

proposed in order to mimic human pooling in the context of 

DSCQS subjective protocol. This system process a 20-input 

feature vector that is forwarded to a radial basis function 

neural network (RBFNN) for classification. A NR metric is 

based on a CBP neural networks to pool feature in [18] for 

SSCQE protocol. The idea is very promising even if the 

performance of the metric has not been assessed with usual 

measure. To the best of our knowledge, an original pooling 

method corresponding to SSCQE protocol for a RR metric has 

not been yet proposed. 

III. OVERVIEW OF THE PROPOSED SYSTEM  

Most of our previous metrics were HVS-based [19][20][21], 

but we focus in this study on the pooling process adapted to 

SSCQE for a RR metric. The only HVS property considered 

here comes from feature extraction, which is carried out on a 

perceptual color representation of the video sequence. Color 

can be very useful in quality assessment. In order to limit 

redundancy between components, it can be interesting to 

choose carefully the color space as it introduces negligible 

computing complexity. Krauskopf’s color space [22] has been 

selected since we have previously validated it through 

psychophysics experiments conducted in our lab [23]. 

Therefore, YUV original images are transformed into three 

perceptual components: A (Achromatic), Cr1 (red-green axis) 

and Cr2 (yellow-blue axis). 

The design of a RR quality assessment system needs to 

define two main sub-systems: i) construction of the 

information that has to be extracted both from the reference 

video and the decoded video, ii) comparison of the two feature 

sets and pooling. 

Perceived quality of video sequences is affected by 

distortions that are present in the spatial domain, and also by 

the temporal duration and evolution of these distortions. 

Although these two contributions are highly interdependent, 

we will assume a model that first extracts a description vector 

on a frame by frame basis. That means that the extracted 

features are spatially integrated, and then, we will consider the 

pooling of the different features of the vector along the 

temporal dimension. One can imagine many different features. 

In the general framework of objective metrics, features choice 

is as crucial as pooling definition. Since it is not the main goal 

of this work, we have selected a set of 4 features from the 

literature. They are well suited in order to sum up the content 

of a frame. These features are described in more details in 

section IV, three of them are totally content dependent 

(regarding frequency and temporal content). The last feature is 

more focused on distortion a priori related to blocking effect. 

Each of these 4 features is computed independently on the 

three perceptual components. Consequently, the global size of 

the feature vector describing every  frame is 3 × 4 = 12 
features. 

 
Fig. 2. General scheme for the RR objective video quality assessment 

The last stage of the system presented in Fig. 2, is the main 

contribution of this study. It corresponds to the feature 

combination and the temporal pooling of the feature vector 

sequence. As we have mentioned before, the design of this 

stage is not straightforward. To overcome these difficulties, we 

propose to base this function on a learning algorithm that will 

be able to generalize the observed behavior from a collection 

of subjective tests. We introduced a neural net (NN) approach 

using a constrained architecture that is well suited to mimic not 

only the temporal integration of distortions but also to 

construct new measures of distortions from initial features. 

This explains why we have selected content based features 

rather than distortions based features. As explained later, the 

distortions will be constructed by the first layers of the TDNN, 

combining content features from the distorted and the 

reference sequences. 

The TDNN architecture is more precisely detailed in section 

V. It corresponds to a time delay neural network (TDNN), 

which performs convolution functions on the video sequence. 

It allows to model the following behaviors: 1) systematic local 

analysis to construct meta distortions 2) assessor’s reaction 

times are subject to delays; 3) time-consecutive frames tend to 

interfere with one another, and 4) the most recent frames of a 

sequence have a greater effect on the overall quality rating. 

Two main temporal parameters have to be defined when 

scanning the video sequence, see Fig. 3. The first one, ∆, is 
related to the refreshing rate of the quality assessment. For this 

study, the rate is two subjective scores per second to be 

consistent with VQEG RR-NR TV test plan. The second 

parameter, T, takes into account the number of previous frames 
that will affect the perceived quality at time t, resulting in a 
grading Gt. This is an important point of the proposed method. 
Not only the present frame will participate to the computation 

of the objective grading Gt, but a memory function has to be 
integrated to mimic the behavior of the human visual system 

that is sensitive to the sequential nature of the video sequence 

[24]. 
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Fig. 3. Video grade updating 

IV. FEATURES EXTRACTED FROM THE FRAMES 

We propose to select the features directly from existing 

objective metrics mainly proposed for the FR-TV VQEG 

phase I. Even though these metrics exhibit poor correlation 

with human judgment when standard pooling stages are used, 

we would like to use the same kind of features and experiment 

what the proposed NN approach can do in this context. As 

explained in the previous section, we are not interested by the 

capability of these features to be used as explicit distortion 

features. Distortion measure will be achieved in the early 

layers of the TDNN through comparison of content based 

features between original and distorted sequence. Therefore, 

some adaptations are performed from literature features in 

order to get rid of the explicit comparison process. Based on 

this principle, the four features are described in the following 

sub-sections. 

A. Frequency content measures: GHV and GHVP 

The two first features, termed as GHV and GHVP, are 
derived from the work presented in [25]. They have been 

elaborated to detect the blurring artifacts but are also sensitive 

to tiling distortions. These two features are computed from the 

two-dimensional histogram SIH(r, θ) where r is the magnitude 
of the gradient vector, and θ is the orientation of the gradient 
vector with respect to the horizontal axis and SIH(r,θ) is the 
number of pixels in the gradient image whose gradient radius 

and angle is r and θ, respectively. 
The feature GHV whose value increases as the number or 

sharpness of horizontal and vertical edges increase is given as: 

( )
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where r and θ are as defined above and ca and cb are 
clipping limits, and p is the number of pixels in the image. 
In order to separate blurring from tiling, the GHVP feature 

that characterizes the edge content of the image without the 
inclusion of horizontal and vertical edges is also computed: 
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B. Temporal content measure: Power of frame difference 

The next extracted feature, P, is based on temporal changes 

in sequence. First introduced in [26], such type of information 

is very useful in video quality assessment. It has also been 

exploited in [27]. In this latter purpose, authors consider the 

following distortions: flicker, jadder, moving blurred images, 

random noise and edge jitter, and define linear combinations 

of some distortion factors using properties of visual 

perception. These combinations, which are explicitly defined 

in their work, are based on the power of the frame difference 

images computed respectively on the original and on the 

distorted video sequences. In our work, we will just keep the 

computation of the power of the frame difference and use it as 

an input feature for the NN. It will be the responsibility of the 

NN to model the distortions. The following computations are 

proceeded: 

Frame difference: 

( ) ( ) ( ), , , , 1, ,d t m n I t m n I t m n= − −  (3) 

Power of frame difference: 

( )[ ]2
,

, ,

all

m n

P d t m n=∑  (4) 

C. Blocking measure: B 

This last measurement is mainly dedicated to exhibit 

blocking effects [28]. It is based on the method described in 

Fig. 4 and proposed in [29]. 

 
Fig. 4. Computation of B feature 

They apply 1-D FFTs to horizontal and vertical difference 

signals or rows and columns in the image to estimate the 

average horizontal and vertical power spectra. Peaks in these 

spectra due to 8×8 block structures are identified by their 
locations in the spectra. The power spectra of the underlying 

non-blocky images are approximated by median-filtering these 

curves. The overall blockiness measure, feature B, is then 

computed as the difference between these power spectra at the 

locations of the peaks. Integration of masking effects is 

possible with this scheme while it has not been used in our 

implementation. 

Accordingly, for every new frame we compute the four 

features (GHV, GHVP, P, B) previously described on each of 
the three perceptual components A, Cr1 and Cr2. Hence the 

input vector for the NN has a size of (4 × 3 × T) × 2 for a RR 
system, where T is the number of frames taking into account in 

the computation of a scoring, as displayed in Fig. 2. 

V. NEURAL NETWORK ARCHITECTURE  

The ability of multi-layer networks with gradient descent to 
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learn complex, high-dimensional, non-linear mappings from 

collections of examples makes them obvious candidates for 

many tasks related to machine vision systems. A recent survey 

[30] denotes more than 200 applications of NN to image 

processing. They can address most of the various steps which 

are involved in the processing chain: from the 

preprocessing/filtering to the image understanding level. 

Multi Layer Perceptron (MLP) are the most common neural 

network architecture encountered. They consist of several 

layers of fully-connected hidden units. However, when the 

number of input variables is quite large, which is the case with 

image application, this architecture leads to several tens of 

thousands of weights. Such a large number of parameters 

increases the capacity of the system but at the same time 

requires a larger training set. In addition, the memory 

requirement to store so many weights may rule out certain low 

capacity system such as mobile device. To overcome the 

dilemma between small NN with low capacity and large NN 

that appear overparameterized with respect to the size of the 

training database, one can design specific architectures that 

aim to detect and combine local features. The idea is to 

perform the same kind of computation at every place in the 

video stream based on a local receptive field. This is typically 

the principles involved with convolutional NN (CNN). 

Introduced by LeCun et al [31] and successfully used in 

different domains [32], they are powerful bioinspired 

hierarchical multilayered neural networks that combine three 

architectural ideas: local receptive field, shared weights, and 

spatial or time subsampling. 

In our case, the convolution kernels will be defined along 

the temporal axis, leading to the so-called Time Delay Neural 

Network (TDNN). TDNNs, which were previously applied to 

speech recognition [33] and handwriting character recognition 

[34], are well suited to sequential signal processing. They 

allow to preserve the sequential nature of data, in contrast with 

standard MLP where the topology of the input is entirely 

ignored. On the contrary, video sequences have a strong local 

structure: frames that are temporally nearby are highly 

correlated. Local correlations are the reasons for the well-

known advantages of extracting and combining local features 

before processing temporal objects. With CNN, a given 

neuron detects a particular local feature of the video stream. It 

performs a weighted sum of its inputs followed by a non-linear 

squashing function (sigmoid). Its receptive field is restricted to 

a limited time window. The same neuron is reused along the 

time axis to detect the presence or absence of the same feature 

at different position of the video stream. A complete 

convolutional layer is composed of several feature maps, so 

that multiple features can be extracted at each temporal 

position. This weight sharing technique greatly reduces the 

number of free parameters and hence trained networks run 

much faster and require much less memory than fully 

connected NN. 

The idea of connecting units to local receptive fields on the 

input was largely inspired by Hubel and Wiesel’s discovery 

[35] of locally-sensitive, orientation selective neurons in the 

cat visual system and local connections have been used many 

times in neural models of visual learning, [36], [37]. With 

local receptive fields, neurons can extract elementary visual 

distortions in videos. These distortions are then combined by 

the subsequent layers in order to detect high-order features. 

In addition to the TDNN layers, the upper layers are 

standard fully connected layers. With this application, the last 

layer consists of a single neuron fully connected to the 

previous layer; the output of this neuron will be trained to 

estimate the DMOS value as it has been provided by human 

observers. A detailed view of the TDNN architecture is 

presented in Fig. 5. 

From this general architecture, many parameters have to be 

defined to customize a specific learning machine. The most 

important ones are : 

• Local feature extraction sub-system (TDNN  type):  

- nb_layer_tdnn: number of layers of the extraction sub-

system, 

- T: size of one layer with respect to the time axis, 

- nb_feat : size of one layer with respect to the feature 

axis,  

- field: size of the convolution field with respect to the 

time axis,  

- delay: temporal delay between two convolution fields,  

• Global estimator sub-system (MLP type):  

- nb_layer_mlp: number of layers of the fully connected 

sub-system,  

- nb_neurons: numbers of neurons of the hidden layer.  

Different values for these parameters have been 

experimented and are presented in the result section. However, 

some of these parameters have been set once for all. For 

example, the number of layers has been set globally to 4, 

including 2 layers for the local feature extraction sub-system, 

and 3 for the fully connected NN at the upper level, which 

correspond to one input layer – actually, the output layer of the 

TDNN sub-system, one hidden layer and an output layer with a 

single neuron. The value of T, which refers to the number of 

frames involved in the computation of a score, has also been 

kept to the same value (except in Table VI); we supposed that 

at last the 5 last seconds influence the perceived quality at a 

given time, consequently, we set T to 5s × 25 f/s = 125 frames. 
One important practical issue with these trainable systems is 

the requirement of a large database. Up to now, only small sets 

of images with subjective quality marks were available, they 

did not allow to learn the large number of parameters involved 

in a NN-based system. Data presented in section VI, appears to 

fill in the gap and make neural network approaches, and more 

specifically TDNN, attractive to propose a solution to video 

quality assessment. 
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Fig. 5. Generic TDNN architecture 

VI. MATERIAL AVAILABLE FOR TRAINING AND TESTING 

The database used to train and test the system described in 

this paper was constructed from materials delivered by 

Télédiffusion De France (TDF), Research Center Metz. A first 

set of 4 video sequences (Cooking, Football, Horses, and 
Road) will be considered as 4 reference sequences, each one 
being composed of 4,500 images (720 x 576 pixels) that 

represent a 3 minutes video at a frame rate of 25 images per 

second. Cooking video presents a famous French woman Chief 
at work, it is an indoor video sequence. The three others are 

outdoor videos with quite different contents. They represent 

almost uniform content only from a very high semantic point 

of view. During the 3 minutes, sequences are not homogeneous 

in terms of spatial and temporal content comparing with 8 

seconds sequences usually used in the DSCQS protocols. They 

have been produced by a MPEG-2 codec at a bit rate of 8 

Mbits/s which ensures a very high quality, very close to the 

original videos. 
TABLE I 

DISTORTED VIDEO SEQUENCES 

Sequence Bit rate (Mbits/s) 
Number of videos / Subjective rating 

values 

Cooking 2 / 3 / 3.5 / 5 4 / 4 × 180 × 2 = 1 440 
Football 2 / 3 / 3.5 / 4 / 5 / 6 6 /64 × 180 × 2 = 2 160 

Horses 2 / 2t / 3 / 3t 4 / 4 × 180 × 2 = 1 440 
Road 2 / 3 / 6 3 / 3 × 180 × 2 = 1 080 
Total  17 / 17 ×××× 180 ×××× 2 = 6 120 

A second set of 17 distorted video sequences has been 

produced. They correspond to different bit rates, ranging from 

2 Mbits to 6 Mbits per second (Table I). When the same video 

is available twice at the same video rate (e.g. Horses at 2 

Mbits/s), one of these videos is directly obtained by the coding 

scheme while the other one (2t) has been derived with a 

transcoding scheme from the reference 8 Mbits video. 

For all of these video sequences, TDF have provided the 

corresponding subjective assessment results obtained with 

human observers. Subjective tests were running with more 

than 20 observers using a SSCQE protocol with hidden 

reference removal in normalized conditions and environment 

according to recommendations ITU-R BT.500-10. Subjective 

scores (MOS) consist of a quality rating sampled twice a 

second. It is easy to derive DMOS (difference of MOS 
between two conditions) with an associated Interval of 

Confidence (IC) obtained according to subjective 

measurement procedures. 

This distorted video database has been split into two 

subsets: one for training and the other one for testing the 

generalization performance of the trained system. Furthermore, 

we have used a leave-one-out (Loo) protocol in order to take 
advantage of all the material available. In such a way, the 

training set was composed of the videos from 3 out the 4 

groups of videos, for example: Cooking, Football, and Horses, 
(14 videos for a total of 5,040 subjective quality grades as 

displayed in Table I). The test set was composed of the 

remaining group of videos, in this case: Road (3 videos for a 
total of 1,080 objective video grades to compute and compare 

with the corresponding subjective grades). Then, we shift to 

another subset of 3 groups for training, and once again after, in 

order that every group of video has been used for testing. With 

this procedure, we made sure that the sets of images of the 

training set and test set come from disjoint video sequences 

with quite different video contents. 

VII. QUALITY ASSESSMENT RESULTS 

A. Baseline results with the complete metric 

The TDNN training uses a standard stochastic gradient 

backpropragation algorithm adapted to respect the constraints 

of weight sharing [38]. The main change here is the 

computation of the local gradient of the backpropagated error 

signal with respect to the shared weights. Considering that 

every feature contains in fact a single neuron with multiple 

instances, the local gradient for this neuron is simply the 

summation of the local gradients over all instances of it [31]. 

The network cost function is expressed as 

( )2

t ttJ DMOS G= −  (5) 

where DMOSt is the actual subjective score derived 
experimentally from the panel observers and Gt is the output of 

the TDNN. 

As a measure of performance of the proposed objective 

scoring method, three main indicators will be presented. One 

will be the root mean squared error on the test set, defined as 
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where N is the number of scores computed on the test video 

sequences. 

The second one being the Linear Correlation Criteria (LCC), 
which expresses the monotony between DMOS and objective 
scoring, it is expressed as 

1 1 1

2 2

1 1 1 1

N N N
t t

t t

t t t

N N N Nt t

t t

t t t t

DMOS G
DMOS G

N N
LCC

DMOS G
DMOS G

N N

= = =

= = = =

  
− −  

  
  =

− −

∑ ∑ ∑

   
∑ ∑ ∑ ∑   
   

(7) 

 

The last measurement will be the percentage of outlier (OR), 
which represents the ratio of objective marks that are outside 

an interval representing twice the Interval of Confidence (IC) 
from the subjective marks. 

The typical behavior of the system on the four different test 
sets of the LOO database, once trained with the 

complementary training sets of the database as presented in 

Table I, is displayed in Table II. 
TABLE II 

RESULTS ON THE LOO DATABASE 

Test 

video 

content 

Number of 

video scoring 

Root mean 

squared error: 

Jrmse 

Linear 

Correlation: 

LCC 

Outlier 

Ratio 

OR (%) 
Cooking 1 440 0.086 0.93 3.3 

Football 2 160 0.092 0.95 9.3 

Horses 1 440 0.081 0.94 5.6 

Road 1 080 0.067 0.93 1.3 

Total 6 120 0.084 0.92 5.6 

The global set represents a 51-minute video length, which is 

a very significant amount of time to evaluate the performances 

of the quality assessment system. Globally, the mean error is 

less than 10% (8.4%) and the correlation between subjective 

and objective marks is quite high, it reaches 0.92 on the whole 

set, and ranges from 0.93 to 0.95 on the individual test sets. 

The outlier ratio, according to the test video used, varies from 

about 1% to 10%, with an average value around 5%. 
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b) Road (3 Mbits/s) Jrmse = 0.0558, OR = 0.9% 
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c) Road (2 Mbits/s) Jrmse = 0.0975, OR = 3.0% 

Fig. 6. DMOS (Subjective scoring) and TDNN-based RR System (Objective 

scoring) on Road test set 

Detailed results concerning Road videos (before next to last 
row of Table II) are presented in Fig. 6 and Fig. 7. In Fig. 6, 

the DMOS values are plotted with a continuous line, while the 
predicted quality, which is the output of the TDNN, is 

represented with a dashed-dotted line. Two additional curves 

are present, they define the incertitude measurement related to 

the DMOS values. They have been set on this chart with a 
margin equal to the Interval of Confidence (IC), which has 
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been computed from the standard deviation of the DMOS 
values taking into account the number of human observers. For 

every sequence, the value of the root mean squared error 

between DMOS and the output of the TDNN is given (Jrmse) 
with the percentage of the marks given by the TDNN 

corresponding to outliers ratio (OR). Even with the most 
distorted sequence, Road (2 Mbits/s), see Fig. 6-c, the 
predicted quality given by the TDDN-based RR system 

appears quite satisfying, since still 97% of the time the 
predicted output remains inside the margins. This is quite 

relevant since the subjective score is very variable along this 

sequence, ranging from 20% to 70% of the full scale of 
distortion, with a very peaky aspect. On this Road test set, the 
global mean quadratic error Jrmse is equal to 0.067 and the 
correlation criteria LCC reaches 0.929. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Subjective score:TDNN output

D
M

O
S

 
a) LCC = 0.929 
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b) LCC = 0.742 

Fig. 7. Scatter gram plots: DMOS versus TDNN output and PSNR on the 

Road test set (sub-sampled). 

Fig. 7-a displays the corresponding dispersion of the points: 

Subjective versus TDNN marks. For the sake of comparison, 

we present on Fig. 7-b, the dispersion of the points: Subjective 

marks versus Scaled PSNR). 
While Peak-Signal-to-Noise-Ratio (PSNR) is a very poor 

indicator to assess the quality of reconstructed images, it has 

the advantage of being an easy and well known measurement 

to evaluate the performance of a compression technique. It is 

directly derived from the mean square error (MSE) computed 
between a reference image I(m, n) and a distorted image 
Î(m,n): 

( ) ( )[ ]2
1 1

1
ˆ, ,

.

M N

m n

MSE I m n I m n
M N = =

= −∑∑  (8) 

1
2

10

12
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p
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 −=  
 

 (9) 

for an image I and a reconstructed image Î, with pixel 
indices 1 ≤ m ≤ M and 1 ≤ n ≤ N, image size N×M pixels, and 
p bits per pixel. 
Charts presented in Fig. 7 display, for a sub-set of the Road 

test set, on the x-axis the output of the TDNN on the left chart 
and the scaled PSNR on the right chart, and on the y-axis the 
corresponding subjective scores (DMOS). In order not to be 
biased by multiple instances of about the same event, as the 

sampling rate is quite high (2 samples per second), we have 

sub-sampled the subjective sequence in order to obtain a 

quasi-uniform distribution of the marks over the range of 

DMOS. 
Points of the left chart have a linear correlation of 0.929 

while the right chart has a linear correlation of 0.742. This 
value of 0.742 is far below most of the results reported in 
Tables II to IV, hence, the proposed Reduced Reference 
objective video quality assessment method clearly outperforms 

the Full reference PSNR metric. 
The TDNN used in this experiment corresponds to the 

configuration described in the last line of Tables V and VI. 

More specific configurations are studied in section B. 

B. Sensitivity analysis of the reduced reference system 

1) Sensitivity to the feature set 
In section IV, we have introduced a set of 4 features from 

the literature, termed as GHV, GVHP, P and B. To evaluate 

the strength and the complementarities of these features, we 

have conducted experiments where we used individually only 

one of these features, which is computed on each of the three 

perceptual components, and for reference and distorted videos. 

In such a case, the input layer of the TDNN, at a given time, 

encompasses only 6 inputs instead of 24, corresponding to one 

feature computed on each of the three perceptual channels for 

the original and the distorted frames. 

From Table III, it can be observed that each of the features 

does not perform equally. Feature B in the context of this 

dataset leads to poor generalization results, it is the worst 

feature whatever the test video used. Conversely, feature P, 

related to power of frame difference, clearly outperforms the 

others on the global set, it allows to achieve the smallest 

predicted error (0.096) and the highest correlation criteria 

(0.89) with the subjective scores. However, when considering 

individually the video content, it is not always the most 

efficient feature, since on the Football video, a slightly better 
result is obtained using GHV feature. 

TABLE III 

SENSITIVITY TO THE FEATURES, RESULTS ON THE LOO TEST SET 

Test set Features Jrmse LCC OR % 
GHV 0.097 0.88 4.2 

GHVP 0.107 0.81 9.5 

Cooking 

P 0.073 0.95 1.3 
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 B 0.118 0.77 13.3 

GHV 0.126 0.87 16.0 

GHVP 0.126 0.86 17.7 

P 0.128 0.82 21.2 
Football 

B 0.137 0.80 19.6 

GHV 0.116 0.83 10.3 

GHVP 0.094 0.89 5.6 

P 0.066 0.95 4.9 
Horses 

B 0.151 0.73 25.3 

GHV 0.136 0.79 27.7 

GHVP 0.110 0.79 13.0 

P 0.080 0.90 3.2 
Road 

B 0.147 0.54 46.5 

GHV 0.119  0.82 28.4 

GHVP 0.112 0.84 21.5 

P 0.096 0.89 18.6 
Global 

B 0.139 0.74 34.4 

 

When comparing Table II and Table III, we can notice that 

the combination of the set of four features boosts the 

performances obtained with the best single feature; the mean 

error drops down to 0.084 (instead of 0.096) and the 

correlation criteria reaches 0.92 (instead of 0.89). 

2) Sensitivity to the perceptual components 
In this case, we aim to study the impact of the three 

perceptual components that model the human visual system 

with respect to their contribution in the perceived quality when 

using the proposed metric. To achieve these experiments, we 

keep only one subset of features coming from one perceptual 

component, as described in Table IV. In such a case, the input 

layer of the TDNN, at a given time, encompasses only 8 inputs 

instead of 24, corresponding to four features computed on the 

corresponding perceptual component of the original and of the 

distorted frames. 
TABLE IV 

SENSITIVITY TO THE PERCEPTUAL COMPONENTS, RESULTS ON THE LOO TEST 
SET 

Test set 
Perceptual 

components 
Jrmse LCC OR % 

A 0.058 0.95 3.4 

Cr1 0.061 0.95 5.0 Cooking 
Cr2 0.062 0.95 4.2 

A 0.104 0.95 28.8 

Cr1 0.115 0.92 28.8 Football 
Cr2 0.116 0.94 29.4 

A 0.103 0.88 22.9 

Cr1 0.078 0.93 12.7 Horses 
Cr2 0.088 0.96 17.9 

A 0.082 0.90 12.3 

Cr1 0.094 0.92 20.3 Road 
Cr2 0.077 0.92 13.4 

A 0.091 0.90 18.5 

Cr1 0.092 0.90 17.9 Global 

Cr2 0.092 0.89 17.9 

 

We can note that the three perceptual components plays a 

comparable role in their ability to sum up the visual quality of 

videos. Few difference is present on the global results, and 

from one video content to another one, not always the same 

component achieves the best performance, even though the 

perceptual achromatic component (A) appears the most 

relevant one on two out of the four sets. 

Once again, when comparing Table II and Table , the 

combination of the three components allows to increase 

significantly the performances obtained with the best single 

component. These results are well in accordance with more 

general works on human perception [39] pointing out the 

relative complementation of luminance and chrominance for 

video quality perception. 

3) Sensitivity to the NN topology 
As mentioned in section V, the NN architecture is defined 

with some meta-parameters that are related to its topology and 

hence influence the performances and at the same time the size 

of this learning machine. However, we have found quite easily 

many different configurations, which are reported in Table V. 

They allow to vary the number of free parameters in a wide 

range and for which the behavior of the system is quite similar. 
TABLE V 

SENSITIVITY WITH RESPECT TO THE NN TOPOLOGY, RESULTS ON THE LOO 
GLOBAL TEST SET 

Size of 

receptive 

field: 

 
field 

Temp. 

delay: 

 
delay 

Number 

of 

neurons 

for one 

receptive 

field: 

nb_feat 

Number 

of 

neurons 

in the 

MLP 

hidden 

layer: 

nb_neu
r 

Number 

of free 

param. 

Mean 

quad. 

error:  

 

Jrmse 

Linear 

Corr.: 

 

 LCC 

Outlier 

Ratio 

 
OR % 

25 10 5 50 5 856 0.092 0.89 18.8 

12 8 12 50 12 569 0.089 0.90 17.5 

20 5 20 50 31 721 0.091 0.90 17.2 

20 5 20 100 53 821 0.084 0.92 15.5 

 

The general tendency is the decreasing of the Jrmse cost 
function on the test set, it is the stochastic gradient of this 

objective function that is used to train the NN, while the 

capacity of the machine increases, meaning that over fitting 

has been avoided. Results presented in Table II, Table III, and 

Table  were obtained with the architecture corresponding to 

the last row of Table V. 

In all the previous experiments, the value of parameter T, 
which defines the size of the temporal observation sequence, 

see Fig. 3 and Fig. 5, has been set to a constant value 

corresponding to 5 seconds. In Table VI and Fig. 8, we report 

on experiments showing the influence of the length of this 

temporal parameter. From Table VI, it can be observed that 

the two smallest values (T = 2s, T = 3s) deteriorate the 
performances of the video quality assessment (higher error, 

lower correlation), while the two highest values (T = 4s, T = 
5s) give comparable results, with however a slightly better 
behavior for T = 5s, which has been used in the previous 
experiments. A more detailed analysis shows that, according to 

the video content, it is either T = 4s for Cooking or T = 5s for 
the three others that produced the best results. 

Hence, we assume that T = 5 s is a reasonable upper bound, 
and that beyond this limit no more influence on the perceived 

visual quality could reasonably be awaited. Furthermore, the 

longer is the observation sequence, the bigger is the resulting 

NN architecture, consequently, it is wise not to choose a too 

high limit. Conversely, a lower bound will have the desirable 
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effect of downsizing the NN architecture but at the risk of a 

coarse modeling of the temporal human reaction (response 

time and recency effect) with respect to disturbances. 
TABLE VI 

SENSITIVITY W.R.T. THE LENGTH OF THE OBSERVATION SEQUENCE, RESULTS 

ON THE LOO GLOBAL TEST SET 

Length of the 

observation 

sequence 

T s / # frames 

Number of 

free 

parameters 

Mean 

quadratic 

error: Jrmse 

Linear 

Correlation: 

LCC 

Outlier 

Ratio 

OR % 

2 s / 50 23 821 0.098 0.90 17.0 

3 s/ 75 33 821 0.098 0.88 20.9 

4 s / 100 43 821 0.087 0.91 17.1 

5 s /125 53 821 0.084 0.92 15.5 
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Fig. 8. Jrmse and LCC w.r.t. the length of observation sequence T on the Loo 
test set. 

VIII. CONCLUSION 

In this paper, we have demonstrated that TDNN can be 

useful to assess the perceived quality of video sequences by 

realizing a non-linear mapping between non subjective 

features extracted from the video frames and subjective scores 

obtained with SSCQE protocol. The proposed architecture 

relies on the set of convolutional neurons, which slide along 

the time axis sharing the same set of weights. It allows to 

perform not only the time integration function but also to 

mimic a systematic local analysis and comparison of content 

based features. 

We have validated our approach using quite a large 

database that is composed of different video contents and 

different bit rates. Nevertheless, the main contribution 

compared to metrics of the literature, takes place in a way to 

tackle the variation of the response time of observers. This 

allows to the metric to perform well using usual performance 

measures comparing with equivalent literature metrics. On the 

test set, which was independent of the learning set, a global 

linear correlation criteria of 0.92 (from 0.93 to 0.95 on the 

individual test sets) has been obtained between the output of 

the RR system and the subjective score provided by human 

observers. The outlier ratio at twice the interval of confidence 

on DMOS varies from about 10% to 20%, with an average 

value around 15%. 

We have in mind to extend this system along two directions. 

One would be to take into account more general degradations 

than those due to lossy compression algorithms. Specifically, a 

complementary set of features sensitive to transmission errors 

has to be defined, and of course, for the training purpose, a 

new database including such kind of errors should be 

available. The second extension consists in replacing the 

spatial integration that is carried out during the feature 

extraction process by a learning stage that will be incorporated 

in the neural architecture. The same kind of approach, with 

convolutional neurons could be used. It leads to Space 

Displacement Neural Network (SDNN), which has already 

been used with success and combined with TDNN, for 

example for combining offline and online representations of 

handwriting [40]. Finally, we are also currently considering the 

evolution of this system to a full NR system. 

The fields of NR and RR video quality assessment are very 

young, and there are many possibilities for the development of 

innovative metrics. We hope that the proposed combination of 

a TDNN, providing a statistical time-dependent model of 

distortions, will be useful for searchers who work in that field, 

specifically for those defining new features, to provide them a 

quite simple tool to carry on with the pooling stage.. 
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