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Do video coding impairments disturb the visual
attention deployment?

O. Le Meur, A. Ninassi, P. Le Callet, D. Barba

Abstract

The visual attention deployment in a visual scene is contingent upon a number of factors. The relationship
between the observer’s attention and the visual quality of the scene is investigated in this paper: can a video artifact
disturb the observer’s attention? To answer this question, two experiments have been conducted. First, eye-movements
of human observers were recorded, while they watched ten video clips of natural scenes under a free-viewing task.
These clips were more or less impaired by a video encoding scheme (H.264/AVC). The second experiment relies on
the subjective rating of the quality of the video clips. A quality score was then assigned to each clip, indicating the
extent to which the impairments were visible. The standardized method DSIS (Double Stimulus Impairment Scale)
was used, meaning that each observer viewed the original clip followed by its impaired version. Both experimental
results have conjointly been analyzed. Our results suggest that video artifacts have no influence on the deployment
of visual attention, even though these artifacts have been judged by observers as at least annoying.

Index Terms

visual attention, visual quality, saliency, video coding, H.264/AVC
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Do video coding impairments disturb the visual
attention deployment?

I. INTRODUCTION

ONE of the fundamental issues in studying visual perception is to identify the factors having the capability
to significantly alter the visual deployment. In natural vision, the observer’s attention is influenced both by

sensory (also called bottom-up) and task related (called top-down) factors. The former rely on the low-level visual
features (e.g. salience) whereas the latter rest on the ability of the visual system to focus on a target related to
a given task (e.g., relevance to a task). Previous studies have provided valuable information about the impact of
a task on the visual attention. The most famous experience is the one proposed by A. Yarbus in 1967 [1]. He
showed that the pattern of eye movement was clearly dependent on the instructions given to the observers. In his
experience, seven tasks were given to subjects as they viewed a painting. Seven different patterns of eye movements
were obtained indicating that our visual attention is not purely bottom-up. In 1999, Land et al. [2] proposed to
record eye movements of several observers, while they performed a familiar task (making tea). They reported that
most of the visual fixations were relevant to the task (95%). In other specific domains such as reading [3], [4],
the same conclusion was made. Eye movements are closely tied to the task which is being carried out [5], [6].
Conversely to the top-down mechanism, the bottom-up attentional allocation is driven by low-level factors. Indeed,
overt visual attention is effortlessly drawn to salient parts present in our visual field. These fixated zones present
a local singularity or a local contrast, whether it is luminance, color, texture, motion or even semantic [7]. For
instance, Reinagel and Zador [8] showed that fixated areas are more contrasted in term of luminance than non
fixated areas. More recently, Parkhurst and Niebur [9] showed that texture contrast contributes to the guidance of
attention.
The relationship between bottom-up and top-down mechanisms still remains an open-issue. A part of the answer
has been recently given in [10]. Authors reported that the top-down mechanism can override almost immediately
the bottom-up one, as soon as a visual search task was given.
Eye movements are thus influenced by many factors. Nevertheless, one aspect has not been taken into consideration.
In a free-viewing context, does the visual quality of the scene alter the deployment of the visual attention? In a
previous study, L. Itti [11] proposed to use a saliency map in order to blur the non visually interesting salient
areas and to keep the original resolution on the salient areas. The filtered video sequence was then encoded. In this
approach, the goal was in one hand to reduce the encoding bit rate and in other hand to keep a good visual quality
over the regions of interest. As the amount of blur applied on non regions of interest is very high, this approach is
likely appropriate for very low bit rate encoding. Indeed, it is important in this context to allocate most of the bit
budget on the salient regions. In our study, the level of impairment is not at all the same. The targeted applications
are low to medium bit rates, typically those used in a TV broadcast system.
Our main contribution is to examine conjointly the pattern of eye movements and the quality of the viewed natural
scene. To explore whether the alteration of the video content has an influence on the deployment of visual attention,
two experiments have been conducted. First, eye movements of observers watching in free task either an unimpaired
or an impaired natural video sequences are recorded. Besides, subjective tests have been performed in order to assess
the subjective quality of the impaired video. Both experiments have been conducted under the same conditions (same
room, same average luminance...). This study attempts to determine the influence of video coding artifacts on the
visual attention.
In the following sections, the experimental protocols for both the eye tracking and the subjective analysis of the
video quality are described. Results are examined with different methods. They indicate that the video artifacts
do not have any influence on the deployment of visual attention. This finding has an important implication in the
domain of video processing. In particular, this study suggests that the positions of the most interesting parts of
a video are the same regardless of the coding impairments. It is however important to outline again the fact that
impairments which are under analysis are only H.264/AVC coding artifacts.
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TABLE I
NAME AND FEATURES OF THE STIMULI. EBU STANDS FOR EUROPEAN BROADCASTING UNION SVT FOR SWEDISH PUBLIC

BROADCASTER SVERIGES TELEVISION AND IRT FOR INSTITUT FUR RUNDFUNKTECHNIK .

Name Origin Description Spatial resolution Temporal resolution
Dancer EBU Colourful dancing during soccer-break 720× 480 50Hz

PrincessRun SVT Running person (camera pan, trees, grass) 720× 480 50Hz
Foot IRT Fast-action outdoor sports 720× 480 50Hz

Hockey IRT Fast-action indoor sports 720× 480 50Hz
Crowd Run SVT Running crowd (No camera movement, trees, grass) 720× 480 50Hz

Ducks SVT Take off of several ducks (water) 720× 480 50Hz
Trees SVT Outdoor scenes 720× 480 50Hz

Mobcal SVT Interiors, man-made environment (camera pan) 720× 480 50Hz
ParkRun SVT Tracking shot of running man (water, trees, spring) 720× 480 50Hz
ParkJoy SVT Tracking shot of running people (water, trees, winter) 720× 480 50Hz

II. EYE TRACKING EXPERIMENT

A. Participants

Thirty six paid subjects participated to the experiments. They were all from the University of Nantes. They were
all between 19 and 51 years old. Most of these participants were male (28 males and 9 female).
Prior to the test, subjects were screened for visual acuity by using a Monoyer optometric table and for normal color
vision by using Ishihara’s tables. All observers had normal or corrected to normal visual acuity and normal color
perception. All were inexperienced observers (not expert in image or video processing) and naive to the purpose
of this study.

B. Apparatus

Experiments had been performed with a dual-Purkinje eye tracker from Cambridge Research Corporation. The
eye tracker was mounted on a rigid EyeLock headrest that incorporates an infrared camera, an infrared mirror and
two infrared illumination sources. Before each trial, the subject’s head was correctly positioned on a headrest so
that their chin pressed on the chin-rest and their forehead lean against the head-strap. The heights of the chin-rest
and head-strap system were adjusted so that the subject sat comfortable and their eye level was aligned with the
center of the presentation display. The eye tracker is able to record the movement of one eye only. The eye tracker
is fixed according the subject’s guiding eye.
To obtain accurate data regarding the diameter of the subjects’ pupil, a calibration procedure is required. The
calibration aims at presenting to the subject a number of screen targets from a known distance. Once the calibration
procedure is complete and a stimulus has been loaded, the system is able to track the subject’s eye movement. To
maintain the data accuracy all along the test duration, the calibration procedure is repeated regularly during the
test. The camera records a close-up image of the eye. This video is processed in real-time in order to extract the
spatial locations of the position of the eye. Both Purkinje reflections are used to calculate the eye’s location. The
guaranteed sampling frequency is 50Hz and the accuracy is 0.5 degree of visual angle.
Stimuli were displayed at a viewing distance of four times the height of the picture (66 cm). The screen was a CRT,
Dell Trinition, Ultra scan p991. Video were positioned in a random fashion around the center of the screen. Again,
the rationale of this decision relies on the willingness to be less sensitive to the middle of the screen. Generally,
when observers watch videos on computer monitors, they tend to look more frequently at the center of the screen
than at its periphery. This central tendency has been noticed in different studies [12]–[14].
Tests were conducted in a standardized environment [15].

C. Stimuli

Twenty video sequences have been used. Ten video sequences of various natural contents are original video
sequences without any degradation. Figure 1 shows the first picture of each video clip and Table I gives a short
description.
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(a) Dance (b) PrincessRun (c) Foot (d) Hockey (e) CrowdRun

(f) Ducks (g) Trees (h) Mobcal (i) ParkRun (j) ParkJoy

Fig. 1. Key frames for each video sequence used in the test.

From these ten original sequences, ten sequences were built which were impaired versions of the original ones.
These impaired versions present a number of spatial and temporal artifacts. These impairments have been obtained
by using an H.264/AVC video encoder. Each clip lasts 8s.
The impairment caused by the encoding is not spatially or temporally uniform. Some areas are impaired, whereas the
quality of others remains unchanged. Figure 2 gives the distortion maps for the VQA (Video Quality Assessment)
and SSIM (Structural Similarity Index Measurement) metrics for three pictures extracted from the sequence Dancer.
Figure 4 shows two stripes extracted from the original and impaired video sequence Dancer. These illustrations
indicate that the impairments introduced by the coding are not spatially uniformly distributed within each single
frame.
Concerning the temporal variation of the quality, the quality variations estimated by the VQA (more details are
given in the next section), the SSIM and the PSNR metric is given on figure 3. For the SSIM and VQA metrics,
the quality scale is in the range of 0 (minimum quality) to 1 (maximum quality).

It indicates that the quality varies from frame to frame manner. These ruptures of quality, or these contrasts
of quality, are typically those that could influence the deployment of visual attention. Figure 3 shows that these
ruptures of quality occur periodically. This is due to the setting of the video encoder:

• GoP (Group of Picture) size = 23-4;
• Constant Bit Rate (one quantization level per frame without adaptive quantization). The bit rate was different

for each video sequence. The goal was to reach a level of distortion at least visible. The degradations caused
by the video encoder are subjectively considered as, at least, slightly annoying. For the sequence Foot, Hockey
and Ducks, observers were very annoyed by the poor quality of the video. These results are described in the
next section (see Table IV).

Table II gives three quality scores stemming from three objective quality metrics. The first objective score is
given by the well-know peak signal-to-noise ration, called PSNR. The second and the third quality indicators are
the metric defined in [16], [18], noted VQA, and the SSIM metric defined in [17]. Both metrics are in the range
0 (minimum quality) to 1 (maximum quality).
PSNR, VQA and SSIM are full-reference quality metrics, meaning that the original signal is available. The full-
reference metrics are the best way to achieve a good prediction of the quality perceived by observers, compared
to no-reference and reduced-reference quality metrics. Nevertheless, even with the original signal, it is not easy
to correlate well with what is perceived. For instance, PSNR has limited performances, simply because PSNR is
based on a pixel-based comparison. It is true that pixel-based metrics can successfully predict subjective ratings for
a given context (dedicated for a type of distortion). However, without prior knowledge of the targeted applications,
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(a) Original (b) Impaired (c) SSIM (d) VQA

Fig. 2. Examples of distortion maps for the sequence called Dancer. From the left to the right: (a) original picture, (b) impaired picture,
(c) SSIM distortion map and (d) VQA distortion map (Brighter areas correspond to higher distortions).

TABLE II
OBJECTIVE ASSESSMENT OF THE VIDEO QUALITY OF THE IMPAIRED SEQUENCES. PSNR=PEAK SIGNAL NOISE RATIO; VQA=VIDEO

QUALITY ASSESSMENT (SEE [16]), 1=BEST QUALITY); SSIM=STRUCTURAL SIMILARITY INDEX MEASUREMENT (SEE [17]), 1=BEST
QUALITY).

Clip PSNR(dB) VQA SSIM
Dance 27.53 0.49 0.78

PrincessRun 23.94 0.37 0.73
Foot 30.42 0.31 0.80

Hockey 32.24 0.35 0.88
CrowdRun 27.51 0.35 0.81

Ducks 24.72 0.75 0.74
Trees 32.02 0.73 0.78

Mobcal 32.89 0.36 0.90
ParkRun 25.92 0.36 0.79
ParkJoy 25.99 0.43 0.77

pixel-based metrics are not the most efficient one [19].
Most efficient quality metrics are those that rest on the properties of the human visual system. VQA as well as
SSIM belong to this category. For instance, VQA metric relies on the sensitivity of the visual system as well as
the interaction between different signals (commonly called visual masking) [16].

D. Stimuli presentation

Figure 5 (a) illustrates the manner stimuli were presented to observers. Each sequence was presented to subjects
in a free-viewing task. Subjects were asked to examine freely without any specific objectives the sequence. The
objective is to encourage a visual bottom-up behavior and to lessen the top-down effects. However, it is worth
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(a)

(b)

Fig. 3. Temporal evolution of the predicted quality for the sequence Ducks. Three objective quality metrics are used: PSNR (a), VQA and
SSIM (b).

(a) (b)

Fig. 4. Two stripes extracted from the original (a) and impaired (b) video Dancer (extracted from the impaired picture of the second row
of figure 2.
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reminding that it is impossible to fully rule out top-down influences.
Prior to the onset of each sequence, two flickered black discs sequentially appeared at two different positions. They
appeared for one second each. Then, a gray picture is displayed for two seconds. Note that there is no fixation
marker prior the onset of the clip. The goal is to avoid any influence on fixation behavior coming from a particular
area of the screen [14]. Each trial began with the calibration of the eye tracker.
The presentation list is given below. Note that the participant viewed two times each clip during the experiment.
However, the original sequence (respectively the impaired one) is never followed by the impaired (respectively the
original one). The goal is to reduce a possible memory effect that might be influenced the deployment of the visual
attention. In addition, the presentation order is random, meaning that the first sequence viewed is either the original
or the impaired one.

1) Trees-src
2) mobcal-src
3) CrowdRun-src
4) foot-src
5) Ducks-deg
6) ParkJoy-deg
7) parkrun-deg
8) mobcal-deg
9) ParkJoy-src

10) hockey-src

11) dance-deg
12) PrincessRun-deg
13) hockey-deg
14) PrincessRun-src
15) foot-deg
16) parkrun-src
17) Trees-deg
18) dance-src
19) Ducks-src
20) CrowdRun-deg

The whole experiment lasts in average 15 minutes.

E. Human priority maps

The visual inspection of the visual field is studied through the eye movements. Analysis of the eye movement
record was then carried out off-line after completion of the experiments. The raw eye data is segmented into
saccades and fixations. Saccades are very rapid eye movements allowing the viewer to explore his visual field.
Fixation is a residual movement of the eye when the eye is locked on a particular area of the visual field. The
fixation occurs between two saccade periods. Visual fixation allows the viewer to lock the central part of the retina,
the fovea, on a particular target. The fovea plays a critical role in sensing details since most of the visual sensory
resources are concentrated on this central part. The start and end time of the fixation were extracted as well as its
spatial coordinates. A visual fixation must last at least 100 ms with a maximum velocity of 25 degrees per second
[20].
From the spatial coordinates of visual fixation, a human priority map [21] is computed for each observer and for

(a) Stimuli presentation for the eye tracking experiment

(b) Stimuli presentation for the subjective quality experi-
ment

Fig. 5. Stimuli presentation for the eye tracking experiment (a) and for the subjective quality assessment (b).
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each video sequence. It encodes the degree of interest of each spatial location of the video sequence. To compute
this kind of map, the raw eye tracking data are first parsed in order to separate data into fixation and saccade
periods (see [22]). The algorithm used to separate fixation and saccade periods is composed of the following steps.
Each sample coming from the eye tracking apparatus is treated as described below:

1) Calculate point-to-point velocities for each sample;
2) Label each sample below a given velocity threshold (25 degree/second) as belonging to a potential visual

fixation, otherwise as saccade;
3) Collapse consecutive potential visual fixation samples into a fixation group, removing saccade samples. The

length of these groups, or in other words the fixation duration obtained must be longer than 100 ms. Below
this threshold, the samples featuring either a saccade or a short fixation, are discarded;

4) Compute the spatial coordinates of the visual fixation (gravity center of the coordinates of the samples in the
considered group) of the final visual fixation.

The parsing of the raw eye tracking data leads to the determination of a fixation sequence, called SMk (for an
observer k) given by:

SMk(s, t) =
M∑
i=1

δ (s− si, t− ti) (1)

where M is the number of visual fixations, s and t represents a spatial coordiantes and the time, respectively. (si, ti)
are the spatial coordinates where si = (xi, yi) and ti is the start-time of the visual fixation i. δ is the Kronecker
symbol, δ(t) = 1, when t = 0, 0 otherwise.
Sequences SMk are grouped together to form an average fixation sequence SM . SM could be interpreted as a
map indicating where an average observer would look at:

SM(s, t) =
1

N

N∑
k=1

SMk(s, t) (2)

where N is the number of observers.
This sequence is eventually smoothed with a 2D Gaussian filter (Parzen window method), leading to the human
priority map. The rational of the Gaussian filtering is two-fold: Observers do not gaze at a point of the visual
field but rather an area having a surface close to the size of the fovea. To simulate this, the standard deviation of
the Gaussian filter is set to 0.75 degree of visual angle. The Gaussian filtering is also used to reflect the limited
accuracy of the eye tracking apparatus.
Figure 6 gives two examples of saliency maps. Binary maps are also given. This kind of maps will be used to
evaluate the impact of the impairments on the region-of-interest. Two different thresholds are used: one equal to 10
and the other equal to 14 (these values are explained in section IV-B). A small threshold provides an over-detection
of the region-of-interest whereas a high level will promote only the most visually interesting areas.

F. Results

1) Fixation durations: Table III gives the average fixation durations per video sequence (original and impaired
sequences). The average fixation durations are equal to 434 and 447 ms for the original and impaired video sequences
respectively. These values are not statistically different (p < 0.31). The video coding impairments do not seem to
influence the fixation durations.

2) Distribution of fixation points: Figures 7 and 8 present the visual fixations for 6 clips. The blue dots indicate
the spatial position of the fixations. All visual fixations collected during the experiments and for a given video are
reported on the first frame. The idea is to subjectively compare the positions of visual fixations obtained when the
video sequence is either impaired or not.
Given that the degradations are judged as slightly annoying or even annoying, it was rather logical to presume that
the behavior of the visual attention system might be significantly altered by these impairments. It is interesting to
notice from figures 7 and 8 that the impairments do not significantly alter the deployment of visual attention, when
the observer is freely viewing scenes. The distribution of visual fixations obtained with the original sequence is
as focused as the impaired one. Therefore, from this first and global analysis, it appears that the behavior of the
visual attention is not modified by a rather coarse video coding.
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(a) (b) (c)

Fig. 6. Saliency map examples: (a) original pictures (Dance first row and Foot second row); (b) saliency maps; (c) threshold map
(threshold=10 for Dance, and threshold=14 for Foot).

TABLE III
FIXATION DURATION (AVERAGE±CI) AND AVERAGE NUMBER OF FIXATIONS PER SECOND. PAIRED T-TEST, 95% CONFIDENCE

INTERVALS (CI).

Original clips Impaired clips
Clip Average fixation duration (ms) Number of fixation per second Average fixation duration (ms) Number of fixation per second

Dance 425±170 1.84 444±175 1.87
PrincessRun 427±190 1.77 480±227 1.72

Foot 444±163 1.9 418±153 1.85
Hockey 363±109 2.23 455±180 1.9

CrowdRun 413±109 1.97 381±127 2.00
Ducks 473±180 1.8 508±195 1.79
Trees 393±120 2.07 369±106 2.08

Mobcal 330±87 2.4 349±121 2.15
ParkRun 616±397 1.5 600±300 1.52
ParkJoy 459±175 1.67 473±187 1.66
Average 434 447 (p < 0.31)

Figures 7 and 8 suggest that the congruency of fixation locations does not seem to be dependent on the video coding
artifacts. However, the congruency between observers differs strongly between the clips. Qualitatively speaking,
when clips consist of regions of interest that stand out from the background (the ducks see figure 7 (c), people see
figure 8 (b),(c)), the distribution of fixation points is more focused than when there is no region of interest that
pops out (see figure 7 (b) to lesser extend (a), figure 8 (b)).

Figures 7 and 8 also indicate that the visual attention is driven by the content.

III. SUBJECTIVE QUALITY ASSESSMENT

A. Participants

Thirty six paid participants, the same as for the eye tracking experiment, are asked to assign each sequence with
a quality score, indicating the extent to which the artifacts were visible.
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(a)

(b)

(c)

Fig. 7. First pictures extracted from clips on which fixation points (blue dots) are superimposed. For each clip, two pictures are given. On
the left, fixation points are those obtained on the original video sequence. The right picture for each pair, fixation points are those obtained
on the impaired video sequence. (a) Trees, (b) CrowdRun, (c) Ducks.
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(a)

(b)

(c)

Fig. 8. Same as figure 7 for three clips: (a) Mobcal, (b) Parkrun and (c) ParkJoy
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TABLE IV
MOS FOR THE SUBJECTIVE QUALITY ASSESSMENT. MOS STANDS FOR MEAN OPINION SCORE. A VALUE OF 5 INDICATES THE BEST

QUALITY. CI = 95 % CONFIDENCE INTERVALS.

Clip MOS±CI
Dance 2.24±0.26

PrincessRun 2.52±0.33
Foot 1.39±0.22

Hockey 1.30±0.16
CrowdRun 2.94±0.32

Ducks 1.55±0.19
Trees 1.75±0.28

Mobcal 2.84±0.27
ParkRun 2.18±0.29
ParkJoy 2.24±0.3

B. Method

The standardized method DSIS (Double Stimulus Impairment Scale) is used. In DSIS, each observer views an
unimpaired reference video sequence followed by its impaired version, each lasting 8s. The subject is told about the
presence of the reference as first stimulus in each pair and is asked to rate only the test sequence. Experiments were
conducted in standardized conditions (the same as previous [15]). The discrete scale used to score the distortion
level is composed of 5 distortion grades:

1) very annoying;
2) annoying;
3) slightly annoying;
4) not annoying;
5) imperceptible.

C. Stimuli

The same stimuli used for the eye-tracking experiment were used.

D. Stimuli presentation

Figure 5 (b) illustrates the manner stimuli were presented to observers. A transition video sequence lasting 2
seconds is used between the reference and the impaired video sequence. This video is composed of average grey
level pictures. After the impaired video sequence, the participant had to give a quality score for the whole video
sequence. The scale used is given in the section named Method.

E. Results

Mean Opinion Scores (MOS) are given in Table IV. MOS and CI have been computed following the VQEG
(Video Quality Expert Group) MM testplan [23], following correponding observers screening method.
The highest quality score (indicating the best quality) is equal to 2.94 (corresponding to slightly annoying) and
is obtained by the sequence CrowdRun. The lowest one is equal 1.3 (between very annoying and annoying). It is
obtained by the sequence Hockey. The average and the median MOS is equal to 2 (annoying) and 2.21 (between
annoying and slightly annoying), respectively.

IV. COMPARISON OF HUMAN PRIORITY MAPS AND INTER-OBSERVER CONGRUENCY

The main question of this article is whether or not video coding impairments influences overt attention. Two
indicators are examined. The first is the degree of similarity between the salience deduced from the impaired or the
original sequence is assessed. Does the similarity degree become more variable with video coding artifacts? This
specific problem is tackled by comparing the saliency values stemming from the two sets of results. The comparison
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is done by using three different indicators: the linear correlation coefficient, the KullbackLeiblur divergence (KL-
divergence) and the Receiver Operating Characteristic, commonly called ROC.
The second is the congruency between observers. If video coding artifacts influence overt attention, the inter-observer
congruency could be higher in impaired video sequences than in original video sequences.

A. Correlation coefficient and KL-divergence

Two global metrics are used to assess the similarity degree between the two saliency maps. The first metric
used is the 2D linear correlation coefficient, noted cc. It is a measure of dependence between two data sets. The
correlation coefficient detects linear dependencies between two data sets. If the two data sets are independent,
the correlation coefficient is 0. There is almost a perfect linear relationship between the two variables when the
correlation value is close to -1 or 1:

cc(SMp, SMh) =
cov(SMp, SMh)

σpσh
(3)

with SMh and SMp are the unimpaired and impaired saliency maps, respectively. cov(SMp, SMh) is the covariance
value between the two maps.
The second metric is the Kullback-Leibler divergence, noted KL [24]. The KL-divergence estimates the dissimilarity
between two probability density functions:

KL(p|h) =
N−1∑
i=0

p(si)log
p(si)

h(si)
(4)

with h and p the 2D probability density functions of the experimental priority maps. si represent the spatial
coordinates of the pixel i. N is the number of pixel in the picture. h and p are deduced from SMp and SMh,
respectively:

p(xi) =
SMp(si)∑N−1

k=0 SMp(sk)
(5)

h(xi) =
SMh(xi)∑N−1

k=0 SMh(sk)
(6)

Therefore, p and h are homogeneous to a probability density function:
∑N−1

k=0 p(sk) = 1 and ≤ p(sk) ≤ 1, ∀k.

When the two probability densities are strictly equal, the KL-divergence value is zero. An upper-bound for the
KL-divergence is obtained by computing the degree of similarity between the probability density deduced from the
experimental priority map (based on the unimpaired sequence) and a uniform probability density function.

Average coefficients, obtained by averaging the coefficient values across frames, are presented in Table V. The
similarity degree between the two maps is strong. Indeed, for most of the sequences, the correlation is above 0.7.
The worst results are obtained for the sequence CrowdRun and Mobcal.

Concerning the KL-divergence, the dissimilarity between priority maps is about 4.56 whereas the dissimilarity
between a priority and a uniform map is about 22. The dissimilarity between priority maps could be explained
by the dispersion that exists between observers over time. This dispersion, or the inter-observer congruency is
examined in subsection IV-C.

B. ROC analysis

In this study, the ROC analysis rests on a binary classification of the two data sets. Pixels of the original and
impaired saliency sequences are labeled as fixated or not.
The reference, or the ground truth, is the unimpaired priority map. On this reference, the areas having a salience
greater than a given threshold are labeled as fixated regions. Two thresholds (THorig)are used: 10 and 14. As
the saliency maps are encoded in grey level on 8 bits, the maximum value 255 is obtained in the case where all
observers looked at the same areas at the same time. Given that the eye tracking experiment involved 36 observers,
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TABLE V
AVERAGE CORRELATION COEFFICIENT (CC) AND KL-DIVERGENCE COMPUTED ON THE WHOLE SEQUENCE.

Clip cc±CI KL±CI KL±CI (uniform)
Dance 0.77±0.02 3.98±0.31 21.07±0.28

PrincessRun 0.83±0.02 5.43±0.5 23.4±0.32
Foot 0.89±0.01 3.75±0.27 24.46±0.18

Hockey 0.86±0.01 4.23±0.28 23.86±0.13
CrowdRun 0.58±0.02 5.74±0.37 20±0.38

Ducks 0.80±0.01 3.23±0.24 22.9±0.24
Trees 0.72±0.01 4.3±0.29 22.11±0.29

Mobcal 0.62±0.02 7.1±0.39 21±0.26
ParkRun 0.92±0.01 3.82±0.3 24.6±0.27
ParkJoy 0.83±0.01 4.05±0.34 23.21±0.25
Average 0.782 4.56 22.67

TABLE VI
CONFUSION MATRIX FOR A BINARY CLASSIFIER. THE VALUES TP, FP, FN AND TN ARE OBTAINED FOR A GIVEN COUPLE OF

THRESHOLDS (THorig, THdeg).

Original
Fixated Not fixated

Impaired Fixated TP FP
Not fixated FN TN

the contribution of a particular observer is around 7 on the grey level scale. Therefore, a threshold equal to 14
means that an area with the label fixated is an area that has been simultaneously and exactly fixated by at least two
observers. Figure 6 gives two examples: on the first row (c), a threshold equal to 14 is used. The resulting map is
a binary map, where black areas represent the non fixated areas and the white areas are the fixated areas. A small
threshold value conducts to an over detection whereas a higher threshold favors the most salient areas of the map.
Concerning the impaired priority map, or outcome in ROC’s terminology, 128 thresholds THdeg are used. These
thresholds are linearly distributed on 0 to 255. For each threshold, a binary map is deduced. This map is then
compared to the binary map coming from the unimpaired video sequence.
For each pair of thresholds ((THorig, THdeg)), we can compute four numbers featuring the quality of the classifi-
cation. These four numbers are grouped into a 2×2 confusion matrix as illustrated by Table VI. The four numbers
represent the true positives (TP), the false positives (FN), the false negatives (FN) and the true negatives (TN). The
true positive number is the number of fixated areas in the reference (original video sequence) that are also labeled
as fixated in the impaired video sequence.

The true positive rate (TPR), also called sensitiviy or recall, is defined as:

TPR =
TP

TP + FN
(7)

The false positive rate (FPR), also called the false acceptance rate, is defined as:

FPR =
FP

TP + FN
(8)

A ROC curve is a plot of TPR versus FPR for different thresholds. The properties of the ROC curve are briefly
recalled below:

• the best possible prediction method would yield a point in the upper left corner or coordinate (0,1) of the
ROC space;

• the diagonal line divides the ROC space in areas of good or bad classification.
TPR and FPR are first computed for each frame of a given sequence. Then, the average values of TPR and FPR
are deduced. The quality of the classification is summarized using the area under curve (AUC). Higher AUC scores
are better. The maximum is one. It indicates that the two binary maps are exactly the same.
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Figure 9 gives the ROC curves for each sequence considering a threshold THorig and the set of thresholds THdeg

and table VII gives the corresponding AUC. The AUC is close to one, meaning that a threshold value can be easily
determined to achieve a good classification.

(a)

(b)

Fig. 9. ROC curves for each sequence: (a) with a threshold equal to 10 for the human priority map coming from the unimpaired video;
(b) same as before but with a threshold equal to 14.

Results of figure 9 and table VII suggest there are no significant differences between the attentional allocation on
the original and on the impaired sequence. The worst cases are obtained with the sequences CrowdRun, Mobcal,
Trees and Ducks. Two explanations can be proposed, one dependent on the amount and the distribution of impairment
and the other related to the content of the video. The first explanation is the less probable. Indeed, all sequences
have been encoded with the same video scheme and with the same encoding setting. Moreover, the subjective
quality scores for these three sequences are not dramatically different from the other quality scores. They vary
between 1.55 and 2.94 (we remind that a quality score of 1 means a very annoying quality whereas 3 means
slightly annoying). Finally, as the quantization is the same for all the pictures, we cannot say that the salient areas
are more impaired than the other ones.
The second explanation is the most plausible one and concerns the inter-observer congruency. The next section
examines it.

C. Inter-observer congruency

As in Torralba et al. [25], the inter-observer congruency is measured for each frame of a sequence. A priority
map, noted SMall, is computed from the visual fixations generated by all-expect-one observers. This map excluding
fixations coming from participant i is then compared to the priority map of participant i. We call this map SM i.
Following the proposition of Torralba et al. [25], the priority map SMall is thresholded to select the most important
salient areas. The threshold is chosen arbitrary small to favor the selection of the salient regions. The consistency
across participants is determined by the percentage of visual fixations of the ith participant that fell within the
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TABLE VII
AUC FOR THE CLIPS, FOR THE TWO CONSIDERED THRESHOLDS (AUC = 0.5 (NO DISCRIMINATION); AUC = 0.6− 0.7 (POOR);

AUC = 0.7− 0.8 (FAIR); AUC = 0.8− 0.9 (GOOD); AUC > 0.9 (OUTSTANDING))

Clip Th=10 Th=14
Dance 0.93 0.95

PrincessRun 0.96 0.98
Foot 0.98 0.99

Hockey 0.96 0.97
CrowdRun 0.86 0.87

Ducks 0.95 0.96
Trees 0.94 0.95

Mobcal 0.9 0.91
ParkRun 0.97 0.98
ParkJoy 0.97 0.98

salient areas of SMall for a given frame. The final result is obtained by averaging the consistency obtained for all
participants and all frames of the sequence.
Table VIII gives the congruency between observers for the original and impaired video sequences. Results reveal
that there is a significant difference in the inter-observer congruency for most of the sequences. However, results
indicate that the differences of the fixation behavior are not due to the impairment level but rather to the order
of presentation of stimuli. Indeed we observe that an impaired video sequence does not provoke systematically a
decrease of the inter-observer congruency. For instance, for the sequences Ducks, Mobcal and Parkrun, the highest
inter-observer congruency is obtained when the sequence is impaired. What it is also interesting is to compare
these results to the presentation list given in subsection II-D: the congruency between observers is significantly
smaller for video sequence viewed in the second position, whatever the quality. Therefore, although the order of
presentation of the stimuli was designed to lessen a possible memory effect, the fixation behavior of individual
subjects during the second viewing was influenced by the first viewing of the sequence. This influence is statistically
significant for 6 sequences. The three sequences for which the difference is not significant are Hockey, ParkRun
and ParkJoy. It means that the content of these sequences leads subjects to fixate more similar locations than for
other sequences. Sequences ParkRun and ParkJoy are similar sequences (see figure 1 and table I). There is a strong
region of interest (man and people running) and this feature can explain why subjects tend to fixate more similar
locations. Concerning the sequence Hockey, there is also a strong region of interest which is the hockey player.
Table VIII also indicates that the inter-observer congruency differs strongly between the different sequences. For the
first viewing, the congruence values vary between 1.78% and 60% of similar fixation locations. For three sequences
(CrowdRun, Trees and Mobcal), the congruency value is inferior to 5%. The content of these sequences does not
present a region of interest that clearly pops out from the background (see figure 1) and therefore it is difficult
to predict where a subject is going to fixate. It also explains why we obtained on these sequences a low degree
of similarity of priority maps. As mentioned previously, these three sequences had the lowest AUC, KL and CC
values. Note that performances of computational models of visual attention are more and more compared to the
inter-observer congruency. This value is considered as an upper bound of prediction.
Finally, in spite of the memory effect, these results suggest that the video coding degradations do not change the
fixation behavior of individual subjects. A lack of similarity between priority maps is probably due to the intrinsic
inter-observer congruency.

V. DISCUSSION

In this study, we investigated whether or not the presence of strong visual coding degradations disturbed the
deployment of visual attention.
We found that the saliency sequences for the impaired sequences are not significantly different from the original
ones, indicating that the visual attention is almost invariant to video coding artifacts (impairements affect attention
but the effect is rather small). At this stage, it is again worth mentioning that the degradations of the video clips
are at least estimated as annoying by a panel of observers.
Considering that the deployment of the visual attention is significantly influenced by the low-level visual properties
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TABLE VIII
AVERAGE PERCENTAGE OF FIXATIONS OF ONE PARTICIPANT THAT FALL WITHIN THE MOST SALIENT AREAS OF A PRIORITY MAP

DEDUCED FROM ALL-EXPECT-ONE OBSERVER. THE CONGRUENCY IS COMPUTED ON BOTH THE ORIGINAL AND THE IMPAIRED VIDEO
SEQUENCES. RESULTS ARE GIVEN FOR THE FIRST AND SECOND VIEWING OF THE SEQUENCE (SEE THE PRESENTATION ORDER OF THE

STIMULI II-D).

Clip First viewing Second Viewing Paired t-test
Dance 38.21 17.17orig p = 10−5

PrincessRun 36.67 26.11orig p = 0.056
Foot 60.3orig 47.23 p = 0.03

Hockey 43.41orig 40.70 p = 0.31
CrowdRun 5.25orig 3.18 p = 0.036

Ducks 17.82 7.27orig p = 0.0004
Trees 16.88orig 8.39 p = 0.002

Mobcal 1.78 4.91orig p = 0.001
ParkRun 38.09 32.51orig p = 0.22
ParkJoy 34.16orig 26.87 p = 0.07

(especially under free viewing [26]) and that the quality of the video was significantly reduced (to be at least
annoying when a specific task of quality was given), it was not absurd to presume that observers would watch the
video clips in a different way than those watching the same unimpaired clips. This is not the case, even though
great care was taken on the way the quality of the video sequences was degraded. Indeed, as depicted by figures 3,
2 and 4 that shows the temporal evolution of objective quality scores, some distortion maps and two examples of
distortion, respectively, the amount of impairment is not at all uniformly distributed spatially as well as temporally.
Therefore, there are numbers of variations of quality that might potentially disturb the attention of the observer.
How could we explain that there is no modification of the overt visual attention?

This result would indicate that the oculomotor behavior is also influenced by factors others than the low-level
visual features, under free viewing task. It is not surprising since the transformation of visual precepts is the result
of a series of complex biological and mental processes. As stated by Lester [27], visual perception is a function of
the meaning we associate -through learned behavior or intelligent assumptions- with the object we see.
The fact that there is no explicit task does not mean that top-down influences are ruled out. To catch a total com-
prehension and understanding of visual images, observers use their own knowledge (memory, shape recognition...)
to understand, to recognize and to interpret the scene.
No one can dispute the importance of early vision. An approximation to human fixations can be accomplished with
mathematical models purely based on the low-level visual features. Several models, purely based on the low-level
visual features, exist in the literature. A short review has been proposed in [28]. However, Torralba et al. [25]
demonstrated that the performances of a model predicting where observers would look at on still pictures are much
better when a combination of contextual information and low-level visual features is used than when the low-level
visual features are used solely.
Finally, the fact that there is no significant modification in the deployment of visual attention in presence of
distortion would suggest again that the fixation points are closely linked with the semantic and the context of the
scene semantic, as suggested by [7], [29].
However, it could be argued that the amount of degradation on the shape of the object is likely not sufficient both
to annoy the recognition of patterns and shapes and to disturb the comprehension of the scene. In a recent study,
Rouse and Hemami [30] introduced the concept of similarity metric. Conversely to fidelity metric (PSNR, SSIM
and WQA), a similarity metric is used to assess the quality of edges of the shapes. This kind of metric assesses
the visual equivalence between two pictures by providing a score indicating the usefulness or utility of the content.
A future work will consist in impairing the set of video sequences to dramatically reduce their utility scores. New
eye tracking experiments will be conducted with these new materials. In addition, we will examine the influence
of the transmission artifacts. Finally, the ability of computation models to predict regions of interest on impaired
video sequences will be examined.
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