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Visual Attention and Applications in
Multimedia Technologies

Patrick Le Callet, Member, IEEE, and Ernst Niebur

Abstract—Making technological advances in the field of
human-machine interactions requires that the capabilities and
limitations of the human perceptual system are taken into
account. The focus of this report is an important mechanism
of perception, visual selective attention, which is becoming more
and more important for multimedia applications. We introduce
the concept of visual attention and describe its underlying
mechanisms. In particular, we introduce the concepts of overt
and covert visual attention, and of bottom-up and top-down
processing. Challenges related to modeling visual attention and
their validation using ad hoc ground truth are also discussed. Ex-
amples of the usage of visual attention models in image and video
processing are presented. We emphasize multimedia delivery, re-
targeting and quality assessment of image and video, medical
imaging, and the field of stereoscopic 3D images applications.

Index Terms—Visual system, video signal processing, multime-
dia systems, image analysis, image processing, image communi-
cation, image coding, stereo vision

I. INTRODUCTION

SELECTIVE attention is nature’s answer to a problem
that is present in all but the simplest organisms and

increasingly also in machines: information overload. To work
efficiently in a variety of complex environments, animals and
machines are equipped with an array of sensors, all of which
are needed in one situation or another to assure survival of
the animal or proper function of the machine. In any given
situation,, however, only a subset of the sensory input is
needed and it would be wasteful (and in many cases practically
impossible) to process all sensory input at all times. Therefore,
selection has to be made which sensors are relevant at a given
time, and only information provided by those is allowed access
to central processing resources, Frequently, even the input
stream from one sensor may be overwhelmingly rich. For
instance, all visual input to the human brain1 is provided by
about 106 retinal ganglion cells per eye. Assuming a maximal
firing rate of these neurons of about 100 Hz results in a channel
capacity of 100 Mbits per second per eye. Indeed, analyses of
spike train statistics of visual input to the brain in primates [1],
carnivores [2] and insects [3] confirm that the rate of the
transmitted information is within an order of magnitude of
the channel capacity. This torrent of information cannot be,
and does not have to be, processed in detail. Instead, only a
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1Although attention controls input from all senses, we focus on vision

throughout this article.

fraction of the instantaneously available information is selected
for detailed processing while the remainder is discarded.

The filtering process is called selective attention and its
mechanisms have been studied systematically for well over a
century [4]–[6]. The first parallel stages of sensory processing
are followed by a bottleneck that restricts the amount of
information allowed to proceed to more central processing
stages [7], [8]. Information processing in these later stages
occurs sequentially rather than in parallel. This allows the
application of powerful algorithms to the selected parts of the
input that would be too costly to implement for all of sensory
input.

For instance, search for a “singleton” target (that is dis-
tinguished from distractors by one feature, e.g., by its color)
is usually a parallel process (with search times nearly in-
dependent of the number of distractors) while search times
for “conjunctive” targets (that can be distinguished from
distractors only be considering more than one feature, e.g.,
color and orientation) increase linearly with the number of
distractors, suggesting a serial search. Treisman and colleagues
argue in their Feature Integration Theory [9] that identification
of conjunctive targets requires to bind its various features to a
coherent object, a task that cannot be performed by elementary
feature maps but requires the resources of a more powerful
attentional mechanism. This mechanism is not available in
parallel for the whole visual field but needs to be applied
sequentially. A more differentiated view of visual search has
emerged since Treisman’s original theory, e.g., refs [10]–[13],
but it is generally accepted that visual processing consists of a
parallel stage that is fast but relatively simple, followed (if the
task requires it) by application of a more powerful mechanism
that needs to be applied sequentially to one (or possibly a
few) parts of visual input. Exploitation of this limitation of
the human visual system is the basis for applications in multi-
media which is the topic of this paper.

In section II, we discuss mechanisms of selective selective
attention in primate vision and existing computational models.
In section III, we focus on some multi-media applications
without seeking for exhaustiveness, and we conclude in sec-
tion IV.

II. VISUAL ATTENTION MECHANISMS AND
COMPUTATIONAL MODELS

In this Section, we introduce detailed computational models
of selective attention and some of their limitations. We define
two dichotomies, overt vs. covert attention in Section II-A
and bottom-up vs. top-down attention in Section II-B. In
section II-C, we briefly discuss difficulties in obtaining ground
truth for model predictions.
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Fig. 1. Examples of scanpath (a), Region of Interest Map and corresponding content (b), Fixation density Map and corresponding content (c).

A. Overt versus covert visual attention

Due to the much higher resolution in the center of the
retina compared to its more peripheral regions, humans and
other primates usually direct their center of gaze towards the
most relevant areas of the visual scene. This generates a series
of fixations (and smooth eye movements although the latter
are not often discussed in the context of selective attention)
called “overt attention,” since allocation of the high-resolution
resources in the fovea can be easily observed by following the
person’s eyes, most conveniently and quantifiably with an eye
tracker. It has been proposed that far-reaching conclusions can
be drawn about the state of the human mind by analyzing the
details of this so-called “scan path” [14], [15].

Primates, however, do not have to attend compulsively to
objects in their center of gaze. As discovered early on both
experimentally [4] and through introspection [6], humans are
able to focus their attention to peripheral locations, away from
their center of gaze. An illustration of this process is a car
driver who fixates the road while simultaneously and covertly
monitoring road signs and lights that appear in the retinal
periphery. Since this redirection of attention is not visible
immediately, it is referred to as covert attention.

There are many experimental paradigms that can determine
the movements of the covert focus of attention but none is
as convenient, fast, and easy to understand as tracking the
eyes of an observer; in other words, measuring his or her
overt attentional state. Fortunately, although the locations of
overt and covert attention can be dissociated, as discussed,
psychophysical evidence shows that an eye movement to a
new location is necessarily preceded by focal attention to this
locationq [16]–[21]. This makes it possible to easily obtain a
close correlate of overt attentional selections by recording eye
movements which thus serve as a proxy for shifts of covert
attention. Of course, prediction of eye movements is also
of immense interest by itself and of great practical interest,
including for multimedia applications, Section III. Frequently,
models for covert attention are, explicitly or implicitly, used
to predict eye movements.

B. Bottom-up versus top-down attention

Attentional selection is a central part of perception and
cognition. As such, it is influenced by many factors, both
internal and external to the observer. What is attended depends,
for instance, on the observer’s motivation and the specific
task he or she is performing. In a set of classic experiments,
Yarbus [22] showed that eye movements (overt attention)
of the same observer viewing the same visual scene differ
dramatically depending on what information the observer is
looking for in the scene. Attentional selection that depends
on the internal state of the observer is referred to as “top-
down attention.” It is very difficult to develop biologically
realistic detailed models of such mechanisms which may
include influences such as the personal history of the observer.

On the other hand, “bottom-up” selection only depends
on the visual input provided instantaneously or in the very
recent past (as in immediately preceding frames of a movie).
As such, it is not only much easier to control but it is also
easier to quantify the correlation between input and resulting
behavior. For this reason, Koch and Ullman [23] proposed
that bottom-up attention is a suitable candidate for detailed
computational models of selective attention. Specifically, they
proposed that bottom-up attention is directed to salient parts
of the visual scene and they proposed the concept of a saliency
map. This is a topographic map of the visual field whose
scalar value is the saliency at the respective location. Saliency
is computed at multiple scales from the local differences in
visual submodalities (color, orientation, . . .). If both the basic
premise that bottom-up attention is attracted by salience as
well as their concept how salience is computed are correct,
attentional control is then reduced to finding the local maxima
in the saliency map and assigning the successively visited foci
of attention to those maxima in order of decreasing peak value.
This results in a “covert attentional scan path,”, see Figure 1
for an illustrative example, in analogy to the sequence of eye
movements in overt attention.

This conceptual idea of attentional control by a saliency
map was subsequently implemented in biologically realistic
computational models [24]–[26]. Over the last decade and
a half, these models have been refined, tested and applied
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by a large number of groups. Borji and Itti [27] provide an
excellent overview of the current state-of-the-art of visual at-
tention modeling including a taxonomy of models (information
theoretical, cognitive, graphical, spectral, pattern classification,
Bayesian, . . .).

The simplicity of the original saliency map model makes
it attractive both conceptually as well as for applications but
it also engenders limitations. For instance, it has been found
that eye movements are typically oriented towards the centers
of objects, rather than their borders which is where bottom-up
saliency peaks [28]. Such deviations can be explained, at the
cost of slightly higher complexity, by directing attention to
proto-objects, rather than purely spatially defined regions of
the visual scene [28], [29].

While bottom-up influences are thus important, it is clear
that in many situations top-down attention plays a role,
too. One consequence of the saliency map model is that
its first selections in a new scene should agree better with
observed eye movements than later ones, since less top-down
guidance is expected to exist for input never seen before;
this was confirmed experimentally [30]. It is also important
to distinguish the term “salience” and “importance” (as in,
e.g., Region of Interest/Importance, RoI) which are frequently
considered synonyms in the signal processing literature. While
both visual salience and visual importance denote the most
visually “relevant” parts of the scene, it is useful to reserve
the term “salience” for strictly bottom-up influences, while
“important” areas can be selected based on both bottom-up and
top-down criteria. The two mechanisms are thus driven by a
different combination of sources. The interplay between these
mechanisms has been studied showing that their relationship
might vary along viewing time [31].

Even though top-down influences play an important role in
attentional selection, we have already discussed that develop-
ing computational models of top-down attention in as much
detail as for bottom-up attention is virtually impossible. Some
progress has been made for parts of the general problem, for
instance for finding objects [32]. This field must be considered,
however, as being in its infancy. For instance, it is known
that not only the properties of objects and their immediate
surrounds but the interaction between objects on the image
scale as well as the “gist” of the scene [33], [34] strongly
influence search patterns and response times [35]. On the other
hand, it was shown that low-level saliency is significantly
predictive not only of eye movements but, surprisingly, even
for conscious decisions of what observers consider interest-
ing [36]. The fact that the very simple quantities computed
in the original saliency map [24], [25] significantly influence
human behavior after conscious deliberation and after many
seconds of response time engenders hope that these easily and
cheaply computed models and their derivatives can be useful
for technical applications, even when humans are “in the loop,”
as in multi-media applications.

C. Visual attention models and ground truth

Developing and testing computational models of visual
attention depends on the availability of ground truth. Many

Fig. 2. Steps for transforming eye-tracking data into a Fixation Density
Map. After gathering the raw data (top), saccades are identified and fixation
locations are determined (center). The fixation map is then obtained by
convolving fixation locations with a Gaussian whose size is determined by
a combination of mean eye tracking error and the size of the human fovea
(bottom).

studies rely on fixation density maps (FDM) generated from
eye-tracking experiments (see Figure 2 for an illustration of
the process leading to the generation of FDM). Consequently,
most of the models are supposed to address mainly overt
visual attention. Nevertheless, recommendations to properly
generate FDM are still missing. Several eye-tracking FDM
databases have been made publicly available corresponding to
experiments conducted independently in different conditions.
The question of corresponding viewing time is particularly
critical regarding top-down and bottom-up competition, while
rarely considered. How the difference between various exper-
imental set up to obtain FDM may impact image processing
applications has been recently investigated [37].

Computational models of attention produce very different
predictions for FDM (see examples in Figure 3). How to
quantitatively compare the performance of different models
given the ground truth is another topic of research, see ref. [38]
for a recent study proposing several metrics to assess model
performance. It should also be noted that using FDM as ground
truth may not be warranted for all models since some are
designed to explain aspects of visual attention mechanisms
that are not reflected in FDM.

Given these caveats, the usage of a given visual attention
models should be achieved cautiously in image processing
applications, considering the model type (e.g: top-down vs
bottom-up) but also its performance regarding a given appli-
cation context. Better characterization of a model should lead
to comprehensive recommendation of proper usage.

III. APPLICATIONS OF VISUAL ATTENTION MODELS IN
IMAGE AND VIDEO PROCESSING

In the following, we give an overview of applications
of models of visual selective attention. In Sections III-A
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Fig. 3. Examples of FDM generated by visual attention models: original content (a), AIM model [?] (b), STB model [28] (c) , SR model [39] (d)

and III-B, we discuss multimedia delivery. Section III-C is
devoted to re-targeting, Section III-D to quality assessment,
and Section III-E to applications in medical imaging. Finally
in Section III-F we discuss stereoscopic 3D images.

A. Multimedia Delivery: improving source coding

Several stages of the media delivery chain can benefit from
insights into visual attention mechanisms. The first attempts
were applied to selective compression of image and video
contents. A survey on this topic can be found in [40]. Sen-
sitivity and resolution reduction of the human visual system
as a function of eccentricity is one the that could benefits
to improve compression performance once salient location
identified [43]. Selective compression is based on two priors:
a prior of selection, that defines the most informative areas
of an image, and a prior of compression that defines the
coding nature and bit rate allocation strategy. Compression
rate (prior of coding), and consequently the visual quality, can
be differentially adapted to different image areas depending
on the level of attention devoted to them by the human
observers (prior of selection). The importance of a given image
region can be computed based on the contribution of different
features (contrast in color, orientation, intensity, . . . ) [24],
[41], [42] or in a simplified version under the assumption that
human faces attract attention [43]. There are two principle
approaches to prioritize coding of different image areas using
saliency information. The first is the indirect approach [44] in
which the graphical contents is pre-processed. Image agreas
are selectively encoded according to their saliency, e.g., by
low-pass filtering less important regions. The choice of pre-
processing methods needs to be compatible with the coding
scheme, especially with the quantization operator.

The direct approach is applied in block based coding
methods. Bit rates are allocated to each macro block separately

according to a visual saliency criterion (see Figure 4). Most
of the time, this is achieved by changing the quantization
parameters. This can be done using conventional RDO (Rate
Distortion Optimization) techniques [45]–[48] or by providing
a map based on a preceding analysis of the contents [49].

With the recent availability of low-cost, consumer-grade
eye trackers, visual attention-based bit allocation techniques
for network video streaming have been introduced [50]. To
improve the efficacy of such gaze-based networked systems,
gaze prediction strategies can be used to predict future gaze
locations to lower the end-to-end reaction delay due to the
finite round trip time (RTT) of transmission networks. Feng
et al. [50] demonstrated that the bit rate can be reduced
by slightly more than 20% without noticeable visual quality
degradation even when end-to-end network delays ares as high
as 200ms.

In another approach [51], the audio component is also
taken into account to improve RoI encoding based on the
observation that sound-emitting regions in an audio-visual
sequence typically draw a viewer’s attention.

B. Multimedia Delivery: Improving Resilience to Transmis-
sion Errors

Packets in a video bitstream contain data with different
levels of importance from the visual information point of view.
This results in unequal amounts of perceived image quality
degradation when these packages are lost. Quality assessment
experiments with observers have demonstrated that the effect
of a lost packet depends on the spatio-temporal location of
the visual information coded in the packet. Perceived quality
degradation is lowest when the loss affects regions of “non
interest” [52]–[54]. Visual attention based error resilience or
RoI based channel coding methods are consequently good
candidates to attenuate the perceptual quality loss resulting
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Fig. 4. Distribution of encoding cost of natural scenes (shown in a) for a
conventional H.264 coding (b) and a saliency based approach (c) (from O. Le
Meur, P. Le Callet, D. Barba Selective H.264 video coding based on a saliency
map, http://people.irisa.fr/Olivier.Le Meur). Color coded pixels show the cost
in the respective areas. The color scale at the bottom is common for all panels
in rows b and c.

from packet loss. In the context of highly prediction based cod-
ing technologies such as H.264/AVC, for good compression
performance there is a high dependency between many parts
of the coded video sequence. However, this dependency comes
with the drawback of allowing a spatio-temporal propagation
of the error resulting from a packet loss. RoI based coding
should also consider attenuating the effect of this spatio-
temporal dependency when important parts of the bitstream
are lost. As part of the H.264/AVC video coding standard,
error resilience features such as Flexible Macroblock Ordering
(FMO) and Data Partitioning (DP) can be exploited to improve
resilience of salient regions of video content. DP partitions
code slice into three separate NAL (Network Abstract Layer)
units, containing each different part of the slice. FMO allows
the ordering of macroblocks in slices according to a predefined
map rather than using the usual raster scan order. Coupled with
RoI-based coding, FMO is can be used to gather RoI mac-
roblocks into a single slice [55]. An alternative approach [56]
consist in confining the RoI in separate slices to prevent error
propagation within a picture and then constraining the coding
prediction process in the RoIs to avoid that the resulting loss
distortion reaching RoIs in other pictures.

C. Image and Video retargeting

With the recent explosion of commonly available device
types (tablet, smart phone, large displays, . . . ), formats (3D,
HD, Ultra HD, . . . ) and services (video streaming, image
database browsing, . . . ), the visual dimension of multimedia
contents viewed by a human observer can vary enormously,
resulting in the stimulation of very different fractions of
his or her visual field. Depending on display capacity and
the purpose of the application, contents often need to be

Fig. 5. Process of saliency-based reframing [58]. The saliency-based thumb-
nail focuses on the most relevant image parts.

repurposed to generate smaller versions, with respect to image
size, resolution, frame rate, . . . . A common way to achieve
this goal is to dramatically down-sample the picture homo-
geneously, as in thumbnail modes. This often yields poorly
rendered pictures since important objects of the scene may
be no longer recognizable. Alternatively, content repurposing
techniques perform content-aware image resizing, for example
by seam carving [57]. Saliency based image re-targeting (or
content repurposing or reframing techniques) algorithms have
been proposed following this idea: identify important regions
of interest and compute the reduced picture centered on these
parts [58], [59] (see figure 5 for an illustration). More recently,
dynamic (i.e. time changing) thumbnails have been introduced
using a dynamic computational model of visual attention [60].
Rubinstein and colleagues [61] have evaluated many image
re-targeting algorithms both objectively and subjectively and
demonstrated the value of saliency based cropping approaches.

D. Image and Video quality assessment

Perceptual objective image quality assessment uses an algo-
rithm that evaluates the quality of pictures or video as a human
observer would do based on the properties of the human visual
system. Visual attention is one of the features that can be
considered based on the rationale that an artifact is likely more
annoying in a salient region than in other areas [62]. Most
of objective quality assessment methods can be decomposed
in two steps. Image distortion is first locally (pixel-base,
block-based, . . . ) evaluated resulting in a distortion map. In
the second step, a pooling function is used to combine the
distortion map values into a single quality score value. An

http://people.irisa.fr/Olivier.Le_Meur
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intuitive idea to improve quality assessment methods using
visual attention information is to give greater weight at the
pooling stage to degradation appearing in salient areas than
in non-salient areas [63], [64]. Initial approaches consisted
in weighting the distortion map using local saliency values
before computing a linear or non linear mean. More recent
studies, based on eye tracking data, demonstrated that this
simple weighting is not very effective [65], [66] in the case
of compression artifacts. Nevertheless, such approaches can
lead to significantly improved performance in the case of non-
uniformly located distortions such as those due to transmission
impairments [67]. Alternative weighting methods have been
introduced for compression artifacts with varying success [68],
[69]. In ref. [70], more complex combinations of saliency map
and distortion are introduced, assuming that weights should
be a function of both saliency value and distortion level. You
etal [71], [72] revisit the problem at the distortion level for
video content. Distortion visibility can be balanced according
to the human contrast sensitivity function. As the latter is
spatially non uniform, gaze estimation should be considered
to properly apply it.

Another open issue is which parts of the original content and
its distorted version should be used for estimating the saliency
map. Artifacts themselves may affect the deployment of visual
attention; they may, for instance, attract attention [73]. More-
over, objective quality measures are expected to correlate with
the outcomes of quality assessment experiments performed
by observers. To obtain comparison data, observers need to
perform specific tasks. Such tasks are likely to affect the visual
attention deployment compared to a free-viewing [74]–[76].

E. Medical imaging

Over the past twenty years, digital medical imaging tech-
niques (Computed Tomography, Magnetic Resonance Imag-
ing, Ultrasound, Computed Radiography/Digital Radiography,
Fluoroscopy, Positron Emission Tomography, Single Photon
Emission Computed Tomography, . . . ) have revolutionized
healthcare practice, becoming a core source of information for
clinicians to render diagnostic and treatment decisions. Prac-
tical analysis of medical images requires two basic processes:
visually inspecting the image (involving visual perception
processes, including detection and localization tasks), and
performing an interpretation (requiring cognitive processes).
Unfortunately, interpretation is not error-free and can be af-
fected by the observer’s level of expertise and by technological
aspects. Moreover, a side effect of the dramatic increase in the
availability and use of medical images is a shortage of qualified
image reading experts. It is likely that the time per image that
is available for interpretation will continue to decrease in the
future. Expertise in medical image reading therefore needs
to be seen under the two aspects: accuracy and speed [77].
Understanding how clinicians read images, how they develop
expertise throughout their careers, and why some people are
better at interpreting medical images than others are crucial
questions that are related to visual attention.

Such knowledge represents great potential to develop better
training programs and create new tools that could enhance

Fig. 6. Scanpath and gaze fixations on multiple MRI sequences. Shown are
different MRI sequences (gray) taken from one patient’s head, overlaid with
eye movement data of a clinical expert (green). Lines are saccades and shaded
circles signify fixations, with the diameter proportional to viewing time. It is
seen that the image reader uses several sequences, implying comparison of
different source of information from the different representations in several
panels.

and speed up the learning process. A longitudinal study [77]
of pathology residents during their development of expertise in
reading slides of breast biopsies used eye tracking experiments
at the beginning of each of their three years of residency,
documenting changes of their scan paths as they increased
the level of their experience. The data showed that search
patterns changed with each successive year of experience.
Over time, residents spent significantly less time per slide,
made fewer fixations, and performed less examination of non-
diagnostic areas. Similar findings have been obtained in radi-
ology on multi-slice images such as Computer Tomography
scans (CCT) [78] or multi sequences Magnetic Resonance
Imaging (MRI) [79]. Figure 6 shows an example of scanpath
and gaze fixations in the case of multiple MRI sequences.

F. Stereoscopic 3D: new opportunities for visual attention

A key factor required for the wide-spread adoption of
services based on stereoscopic images will be the creation
of a compelling visual experience for the end-user. Perceptual
issues and the importance of considering 3D visual attention
to improve the overall 3D viewing experience in 3DTV
broadcasting have been discussed extensively [80]. Integrating
visual attention at source and channel coding level represents
limited adaption compared to 2D case. More interestingly,
content production offers new original opportunities to make
use of insights in visual attention mechanisms, especially
dealing with perceptual concept such as visual comfort. Com-
fortable viewing conditions, e.g., zone of comfortable viewing,
of stereoscopic content is linked to several factors such as
accommodation-vergence conflict, range of depth of focus and
range of fusion [81], [82]. A seminal study by Wopking [83]
suggests that visual discomfort increases with high spatial
frequencies and disparities, partially because the limits of
stereoscopic fusion increase as a result of the decreased spatial
frequency. More generally, it appears that blurring can have
a positive impact on visual comfort because it reduces the
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accommodation-vergence conflict, limiting both the need for
accommodation and the effort to fuse [84], [85]. Simulating
depth-of-field (DOF) is a way to take advantage of the
retinal defocusing property in order to improve visual comfort,
by artificially blurring images to a degree that corresponds
to the relative depth from fixated objects. As reported by
Lambooij et al. [86], “three essential steps are required for
proper implementation of a simulated DOF: localization of
the eye positions, determination of the fixation point and
implementation of blur filters to non-fixated layers.” This
procedure has been applied in virtual reality environments but
has drawbacks in more general contexts since it affects depth
cue integration between retinal disparity and areas with high
amounts of blur [87]. Blurring effects can also be used for 3D
content to direct the viewer’s attention towards a specific area
of the image that could meet a comfortable viewing zone.
In gaming and in the computer graphics community, visual
attention modeling has attracted a growing interest. Visual
attention models have been used to produce a more realistic
behavior of a virtual character, to improve interactivity in 3D
virtual environments, and to improve visual comfort when
viewing rendered 3D virtual environments [88]–[90].

Due to geometry issues related to depth rendering, adapta-
tion from a cinema environment to the home environment is
far from being an automatic, straightforward process for 3D
content production. Automated content-based post-production
or post-processing tools to help adapt 3D content to television
are expected to be developed. 3D visual attention models can
be employed to provide the area of interest and convergence
plane to drive the content repurposing of stereoscopic content.
In addition, the adaptation of the scene depth can be used
to improve visual comfort. To reduce both visual discomfort
and fatigue, the convergence plane is usually continuously
set to the main area of interest, as the latter is moving
across different depth levels. A way to reduce eye strain is
to modify the convergence plane of the main area of interest
to place it on the display plane, i.e., by adapting the content
disparity. Such visual attention based adaptive rendering of
3D stereoscopic video has been proposed using a 2D visual
attention model [91].

IV. CONCLUSION

Visual attention is attracting a high level of interest in the
vision science community. In this paper, we have demonstrated
that this research interest is highly penetrating the Informa-
tion and Communication Technology (ICT) field with some
successful outcomes although there are still challenges ahead.
One caveat is that, as in any trans-disciplinary approach, one
has to assure that concepts from one research field are properly
used when appropriated by another. For instance, in the image
processing community, the terms “salience” and “importance”
(or Visual Salience and Region of Interest/Importance) have
sometimes been considered synonymous, while, as stated,
they should be distinguished. Both denote the most visually
“relevant” parts of the scene. However, the concepts differ as
they may refer to two different mechanisms of visual attention:
bottom-up vs. top-down. While the interaction between ICT

and vision science is intensifying, the ICT community needs
to assure carefully that the proper tools (models, validation
protocols, databases, . . . ) are used for the proper needs.
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l’Université de Nantes (Engineering School) in the Electrical Engineering and
the Computer Science departments where is now a Full Professor. Since 2006,
he is the head of the Image and Video Communication lab at CNRS IRCCyN,
a group of more than 35 researchers. He is mostly engaged in research dealing
with the application of human vision modeling in image and video processing.
His current centers of interest are 3D image and video quality assessment,
watermarking techniques and visual attention modeling and applications. He is
co-author of more than 140 publications and communications and co-inventor
of 13 international patents on these topics. He also co-chairs within the VQEG
(Video Quality Expert Group) the “Joint-Effort Group” and “3DTV” activities.
He is currently serving as associate editor for IEEE transactions on Circuit
System and Video Technology, SPRINGER EURASIP Journal on Image and
Video Processing, and SPIE Electronic Imaging.

Ernst Niebur graduated with an MS degree (Diplom
Physiker) from the Universität Dortmund, West Ger-
many. He received a Post-Graduate Diploma in Ar-
tificial Intelligence from the Swiss Federal Institute
of Technology (EPFL), Switzerland, and the Ph.D.
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