
VTES - TD 2 Loïg Jezequel

Reachability, monitors

These exercises are mostly taken from Rajeev Alur and Thomas A. Henziger lectures
on computer aided verification.

Exercise 1 Railroad
Invariant Verification 15

signalW

signalE

TrainE

TrainW

Figure 2.5: Railroad example

If the observation predicate r is not an invariant of the module P , then error
trajectories present evidence to the designer of P as to how the module can end
up in a state that violates r. Error trajectories thus provide valuable debugging
information on top of the answer No to an invariant-verification question.

Example 2.8 [Railroad control] Figure 2.5 shows two circular railroad tracks,
one for trains that travel clockwise, and the other for trains that travel coun-
terclockwise. At one place in the circle, there is a bridge which is not wide
enough to accommodate both tracks. The two tracks merge on the bridge, and
for controlling the access to the bridge, there is a signal at either entrance. If
the signal at the western entrance is green, then a train coming from the west
may enter the bridge; if the signal is red, the train must wait. The signal at the
eastern entrance to the bridge controls trains coming from the east in the same
fashion.

A train is modeled by the asynchronous and passive module Train shown in
Figure 2.6. When the train approaches the bridge, it sends an arrive event to
the railroad controller and checks the signal at the entrance to the bridge (pc =
wait). When the signal is red, the train stops and keeps checking the signal.
When the signal is green, the train proceeds onto the bridge (pc = bridge).
When the train exits from the bridge, it sends a leave event to the controller
and travels around the circular track (pc = away). The traveling around the
circular track, the checking of the signal, and the traveling time across the bridge
each take an unknown number of rounds. There are two trains, one traveling
clockwise and the other traveling counterclockwise. The first train, which arrives
at the western entrance of the bridge, is represented by the module

module TrainW is
Train[pc, arrive, signal , leave := pcW , arriveW , signalW , leaveW ],

Figure 1 – A railroad

Figure 1 represents a railroad. It is composed of two tracks, one for trains traveling
clockwise and the other one for trains traveling counterclockwise. The two tracks share a
bridge. At both entrance (east and west) of the bridge are signals that allow or not trains
to cross the bridge. Trains are modeled by the modules of Figures 2 and 3.

The goal is to design a controller module which prevents collisions between the trains,
that is, which ensure that in all rounds at most one train is on the bridge. A proposal is
the module of Figure 4.

This exercise aims at studying the system built from the trains and the controller,
checking if it prevents collisions.

1. How many states does the module TrainW‖TrainE‖Controller2 have ?

2. How many of these states are reachable ? To answer this question draw the reachable
subgraph of the transition graph.

3. Is there a reachable state with both trains on the bridge ?

4. What can you say about the fairness of this system ?

5. Recall what is a monitor.

6. Why is a monitor required to check the fairness of the railroad system studied ?

7. Propose a module for monitoring the fairness of the railroad system with respect to the
train traveling clockwise.

8. Use it to monitor the fairness of the railroad system.

1



VTES - TD 2 Loïg Jezequel

Invariant Verification 16

module Train is
interface pc : {away ,wait , bridge}; arrive, leave : E
external signal : {green, red}
lazy atom controls arrive reads pc

update
[] pc = away → arrive!

lazy atom controls leave reads pc
update

[] pc = bridge → leave!

lazy atom controls pc reads pc, arrive, leave, signal awaits arrive, leave
init

[] true → pc′ := away
update

[] pc = away ∧ arrive? → pc′ := wait
[] pc = wait ∧ signal = green → pc′ := bridge
[] pc = bridge ∧ leave? → pc′ := away

Figure 2.6: Train

and the second train, which arrives at the eastern entrance, is represented by
the module

module TrainE is
Train[pc, arrive, signal , leave := pcE , arriveE , signalE , leaveE ].

We are asked to design a passive controller module Controller that prevents
collisions between the two trains by ensuring the train-safety requirement that
in all rounds, at most one train is on the bridge. The module Controller enforces
the train-safety requirement iff the observation predicate

rsafe : ¬(pcW = bridge ∧ pcE = bridge)

is an invariant of the compound module

module RailroadSystem is
hide arriveW , arriveE , leaveW , leaveE in
‖ TrainW

‖ TrainE

‖ Controller .

The external variables of the module Controller should be arriveW , arriveE ,
leaveW , and leaveE .

Figure 2 – A train

Invariant Verification 16

module Train is
interface pc : {away ,wait , bridge}; arrive, leave : E
external signal : {green, red}
lazy atom controls arrive reads pc

update
[] pc = away → arrive!

lazy atom controls leave reads pc
update

[] pc = bridge → leave!

lazy atom controls pc reads pc, arrive, leave, signal awaits arrive, leave
init

[] true → pc′ := away
update

[] pc = away ∧ arrive? → pc′ := wait
[] pc = wait ∧ signal = green → pc′ := bridge
[] pc = bridge ∧ leave? → pc′ := away

Figure 2.6: Train

and the second train, which arrives at the eastern entrance, is represented by
the module

module TrainE is
Train[pc, arrive, signal , leave := pcE , arriveE , signalE , leaveE ].

We are asked to design a passive controller module Controller that prevents
collisions between the two trains by ensuring the train-safety requirement that
in all rounds, at most one train is on the bridge. The module Controller enforces
the train-safety requirement iff the observation predicate

rsafe : ¬(pcW = bridge ∧ pcE = bridge)

is an invariant of the compound module

module RailroadSystem is
hide arriveW , arriveE , leaveW , leaveE in
‖ TrainW

‖ TrainE

‖ Controller .

The external variables of the module Controller should be arriveW , arriveE ,
leaveW , and leaveE .

Invariant Verification 15

signalW

signalE

TrainE

TrainW

Figure 2.5: Railroad example

If the observation predicate r is not an invariant of the module P , then error
trajectories present evidence to the designer of P as to how the module can end
up in a state that violates r. Error trajectories thus provide valuable debugging
information on top of the answer No to an invariant-verification question.

Example 2.8 [Railroad control] Figure 2.5 shows two circular railroad tracks,
one for trains that travel clockwise, and the other for trains that travel coun-
terclockwise. At one place in the circle, there is a bridge which is not wide
enough to accommodate both tracks. The two tracks merge on the bridge, and
for controlling the access to the bridge, there is a signal at either entrance. If
the signal at the western entrance is green, then a train coming from the west
may enter the bridge; if the signal is red, the train must wait. The signal at the
eastern entrance to the bridge controls trains coming from the east in the same
fashion.

A train is modeled by the asynchronous and passive module Train shown in
Figure 2.6. When the train approaches the bridge, it sends an arrive event to
the railroad controller and checks the signal at the entrance to the bridge (pc =
wait). When the signal is red, the train stops and keeps checking the signal.
When the signal is green, the train proceeds onto the bridge (pc = bridge).
When the train exits from the bridge, it sends a leave event to the controller
and travels around the circular track (pc = away). The traveling around the
circular track, the checking of the signal, and the traveling time across the bridge
each take an unknown number of rounds. There are two trains, one traveling
clockwise and the other traveling counterclockwise. The first train, which arrives
at the western entrance of the bridge, is represented by the module

module TrainW is
Train[pc, arrive, signal , leave := pcW , arriveW , signalW , leaveW ],

Figure 3 – Modules for trains

2



VTES - TD 2 Loïg JezequelInvariant Verification 18

module Controller2 is
private nearW ,nearE : B
interface signalW , signalE : {green, red}
external arriveW , arriveE , leaveW , leaveE : E

passive atom controls nearW

reads nearW , arriveW , leaveW

awaits arriveW , leaveW

init
[] true → near ′W := false

update
[] arriveW ? → near ′W := true
[] leaveW ? → near ′W := false

passive atom controls nearE

reads nearE , arriveE , leaveE

awaits arriveE , leaveE

init
[] true → near ′E := false

update
[] arriveE? → near ′E := true
[] leaveE? → near ′E := false

lazy atom controls signalW , signalE
reads nearW ,nearE , signalW , signalE
init

[] true → signal ′W := red ; signal ′E := red
update

[] nearW ∧ signalE = red → signal ′W := green
[] nearE ∧ signalW = red → signal ′E := green
[] ¬nearW → signal ′W := red
[] ¬nearE → signal ′E := red

Figure 2.9: Second attempt at railroad controlFigure 4 – A possible controller

3



VTES - TD 2 Loïg Jezequel

Exercise 2 Monitoring alternation

Consider a module P with an interface variable x that ranges over non-negative integers.
Assume it is ok for x to decrease during one update round but not to decrease twice in a
row (that is during two consecutive update rounds).

1. Why is a monitor required for checking this requirement ?

2. Propose a monitor which checks this requirement.

Exercise 3 Finite reachability

1. Recall the definition of finitely reaching for a transition graph.

2. Prove that every finite transition graph is finitely reaching.

3. Prove that every graph which is both finitely branching and finitely reaching is such
that its reachable subgraph is finite.

4


