VTES - TD 2 Loig Jezequel

REACHABILITY, MONITORS

These exercises are mostly taken from Rajeev Alur and Thomas A. Henziger lectures

on computer aided verification.

Exercise 1 Railroad

signal g

mns 2 A

FIGURE 1 — A railroad

Figure 1 represents a railroad. It is composed of two tracks, one for trains traveling

clockwise and the other one for trains traveling counterclockwise. The two tracks share a
bridge. At both entrance (east and west) of the bridge are signals that allow or not trains
to cross the bridge. Trains are modeled by the modules of Figures 2 and 3.

The goal is to design a controller module which prevents collisions between the trains,

that is, which ensure that in all rounds at most one train is on the bridge. A proposal is
the module of Figure 4.

This exercise aims at studying the system built from the trains and the controller,

checking if it prevents collisions.

1.

NS ok ®

How many states does the module Trainy ||Traing||Controllery have ?

How many of these states are reachable? To answer this question draw the reachable
subgraph of the transition graph.

Is there a reachable state with both trains on the bridge ?

What can you say about the fairness of this system ?

Recall what is a monitor.

Why is a monitor required to check the fairness of the railroad system studied ?

Propose a module for monitoring the fairness of the railroad system with respect to the
train traveling clockwise.

Use it to monitor the fairness of the railroad system.

VTES - TD 2 Loig Jezequel

module Train is
interface pc: {away, wait, bridge}; arrive, leave: E
external signal: {green, red}
lazy atom controls arrive reads pc

update
| pc = away — arrive!

lazy atom controls leave reads pc
update
| pc = bridge — leave!

lazy atom controls pc reads pc, arrive, leave, signal awaits arrive, leave

init
| true — pc’ := away
update
| pc = away A arrive? — pc’ = wait
| pc = wait A signal = green — pc’ := bridge
| pc = bridge A leave? — pc’ = away

FIGURE 2 — A train

module Traing is

Train[pc, arrive, signal, leave := pc g, arrive g, signal g, leave g].
module Trainy is

Train|pc, arrive, signal, leave := pcy,, arriveyy , signaly, , leavey |,

FIGURE 3 — Modules for trains

VTES - TD 2 Loig Jezequel

module Controller? is
private nearyw ,nearg: B
interface signaly,, signal g : {green, red}
external arrivey, arriveg, leavey , leaver : E

passive atom controls neary,
reads nearyy, arrivey, leaveyy
awaits arrvey, leavey
init
.
| true — neary, = false
update
- ro
| arrivew? — neary, = true
-
| leavew? — neary, = false

passive atom controls nearg
reads nearg, arriveg, leave g
awaits arriveg, leaveg
init
I
| true — near’y, := false
update
: I
| arriveg? — near'y, = true
A
| leaver? — near’y := false

lazy atom controls signaly;,, signal

reads nearw, nearg, signaly,, signal g

init
| true — signalyy, = red; signaly = red

update
| nearw A signalp = red — signalyy, := green
| nearg A signaly, = red — signal’y == green
| =nearw — signaly, = red
| —nearg — signal'y = red

FIGURE 4 — A possible controller

VTES - TD 2 Loig Jezequel

Exercise 2 Monitoring alternation

Consider a module P with an interface variable x that ranges over non-negative integers.
Assume it is ok for x to decrease during one update round but not to decrease twice in a
row (that is during two consecutive update rounds).

1. Why is a monitor required for checking this requirement ?

2. Propose a monitor which checks this requirement.

Exercise 3 Finite reachability

1. Recall the definition of finitely reaching for a transition graph.
2. Prove that every finite transition graph is finitely reaching.

3. Prove that every graph which is both finitely branching and finitely reaching is such
that its reachable subgraph is finite.

