REACHABILITY, MONITORS

These exercises are mostly taken from Rajeev Alur and Thomas A. Henziger lectures on computer aided verification.

Figure 1 - A railroad

Figure 1 represents a railroad. It is composed of two tracks, one for trains traveling clockwise and the other one for trains traveling counterclockwise. The two tracks share a bridge. At both entrance (east and west) of the bridge are signals that allow or not trains to cross the bridge. Trains are modeled by the modules of Figures 2 and 3.

The goal is to design a controller module which prevents collisions between the trains, that is, which ensure that in all rounds at most one train is on the bridge. A proposal is the module of Figure 4.

This exercise aims at studying the system built from the trains and the controller, checking if it prevents collisions.

1. How many states does the module $\operatorname{Train}_{W}\left\|\operatorname{Train}_{E}\right\|$ Controller $_{2}$ have?
2. How many of these states are reachable? To answer this question draw the reachable subgraph of the transition graph.
3. Is there a reachable state with both trains on the bridge?
4. What can you say about the fairness of this system?
5. Recall what is a monitor.
6. Why is a monitor required to check the fairness of the railroad system studied ?
7. Propose a module for monitoring the fairness of the railroad system with respect to the train traveling clockwise.
8. Use it to monitor the fairness of the railroad system.
```
module Train is
    interface pc: \{away, wait, bridge \(\}\); arrive, leave : \(\mathbb{E}\)
    external signal: \(\{\) green, red \(\}\)
    lazy atom controls arrive reads \(p c\)
        update
            】 \(p c=\) away \(\rightarrow\) arrive!
    lazy atom controls leave reads \(p c\)
        update
            】 \(p c=\) bridge \(\rightarrow\) leave!
```

 lazy atom controls \(p c\) reads \(p c\), arrive, leave, signal awaits arrive, leave
 init
 』 true \(\rightarrow p c^{\prime}:=\) away
 update
 \(\rrbracket p c=\) away \(\wedge\) arrive \(? \quad \rightarrow p c^{\prime}:=\) wait
 \(\| p c=\) wait \(\wedge\) signal \(=\) green \(\rightarrow p c^{\prime}:=\) bridge
 \(\| p c=\) bridge \(\wedge\) leave \(? \quad \rightarrow p c^{\prime}:=\) away
 Figure 2 －A train
module Train_{E} is
$\operatorname{Train}\left[p c\right.$, arrive，signal，leave $:=p c_{E}$, arrive $_{E}$, signal $_{E}$, leave $\left._{E}\right]$. module Train_{W} is
$\operatorname{Train}\left[p c\right.$, arrive，signal，leave $:=p c_{W}$, arrive $_{W}$, signal $_{W}$, leave $\left._{W}\right]$,

Figure 3 －Modules for trains

```
module Controller2 is
    private near \(_{W}\), near \(_{E}: \mathbb{B}\)
    interface signal \(_{W}\), signal \(_{E}:\{\) green, red \(\}\)
    external arrive \(_{W}\), arrive \(_{E}\), leave \(_{W}\), leave \(_{E}: \mathbb{E}\)
    passive atom controls near \(_{W}\)
        reads near \(_{W}\), arrive \(_{W}\), leave \(_{W}\)
        awaits arrive \(_{W}\), leave \(_{W}\)
        init
            】 true \(\rightarrow\) near \(_{W}^{\prime}:=\) false
        update
            】 arrive \(_{W} ? \rightarrow\) near \(_{W}^{\prime}:=\) true \(^{2}\)
            ॥ leave \(_{W}\) ? \(\rightarrow\) near \(_{W}^{\prime}:=\) false
    passive atom controls near \(_{E}\)
        reads near \(_{E}\), arrive \(_{E}\), leave \(_{E}\)
        awaits arrive \(_{E}\), leave \(_{E}\)
        init
            】true \(\rightarrow\) near \(_{E}^{\prime}:=\) false
        update
            】 arrive \(_{E}\) ? \(\rightarrow\) near \(_{E}^{\prime}:=\) true
            ॥ leave \({ }_{E}\) ? \(\rightarrow\) near \(_{E}^{\prime}:=\) false
    lazy atom controls signal \(_{W}\), signal \(_{E}\)
        reads near \(_{W}\), near \(_{E}\), signal \(_{W}\), signal \(_{E}\)
        init
            】true \(\rightarrow\) signal \(_{W}^{\prime}:=\) red \(;\) signal \(_{E}^{\prime}:=\) red
        update
            】 near \(_{W} \wedge\) signal \(_{E}=\) red \(\rightarrow\) signal \(_{W}^{\prime}:=\) green
            】near \({ }_{E} \wedge\) signal \(_{W}=\) red \(\rightarrow\) signal \(_{E}^{\prime}:=\) green
            \| \(\neg\) near \(_{W} \quad \rightarrow\) signal \(_{W}^{\prime}:=\) red
            \(\rrbracket \neg\) near \(_{E} \quad \rightarrow\) signal \(_{E}^{\prime}:=\) red
```

Figure 4 －A possible controller

Consider a module P with an interface variable x that ranges over non-negative integers. Assume it is ok for x to decrease during one update round but not to decrease twice in a row (that is during two consecutive update rounds).

1. Why is a monitor required for checking this requirement?
2. Propose a monitor which checks this requirement.

Exercise 3
Finite reachability

1. Recall the definition of finitely reaching for a transition graph.
2. Prove that every finite transition graph is finitely reaching.
3. Prove that every graph which is both finitely branching and finitely reaching is such that its reachable subgraph is finite.
