VTES - TD 1 Loig Jezequel

REACTIVE MODULES

These exercises are mostly taken from Rajeev Alur and Thomas A. Henziger lectures
on computer aided verification.

Exercise 1 Synchronous circuits

Figure 1 defines a deterministic, synchronous, passive module for modeling logical Not.

module SyncNot is
interface out: B
external in: B
atom controls out awaits in
initupdate
[in' =0 — out' :=1
[in' =1 — out' :=0

FIGURE 1 — Module for logical Not

1. Propose a modelisation of logical And as a deterministic, synchronous, passive module,
taking inspiration from the logical Not presented Figure 1.

2. Using de Morgan’s law — =(—zA—y) = 2Vy — propose a modelisation of logical Or, using
parallel composition of the modules for logical Not and logical And, variable renaming,
and variable hiding.

3. What does the module SyncLatch of Figure 2 do?

4. Represent the mysterious module of Figure 3 as a block diagram. Are you able to
understand the behavior of this module?

5. Use the module of Figure 3 to build a 3 bit counter.

VTES - TD 1 Loig Jezequel

module SyncLatch is
private state : B
interface out: B
external set, reset: B

atom ComputeOutput controls out reads state
init
| true — out’ :=B
update
| true — out' := state

atom ComputeNextState controls state awaits out, set, reset

initupdate
[set' =1 — state’ :=1
| reset’ =1 — state’ :=0

[set’ =0 A reset' =0 — state’ := out’

FIGURE 2 — Module SyncLatch

module SynciBitCounter is

—interface out, carry

—external start, inc

hide set, reset, z in
|| SyncLatch|[set, reset, out]
|| SyncAnd[iny,ins, out := out, inc, carry]
|| SyncOrliny, in2, out := carry, start, reset]
|| SyncNot[in, out := reset, z]
|| SyncAnd[iny,ins, out := inc, z, set]

FIGURE 3 — Mysterious module

VTES - TD 1 Loig Jezequel

Exercise 2 Shared-variables protocols : mutual exclusion

The mutual exclusion problem we consider is the following : there is a shared variable
between two processes and one wants to ensure that this variable is only accessed by one
process at a time. The part of each process accessing the shared variable is called critical
section. The problem is then stated more clearly as follows : 1) mutual exclusion : no two
processes have to be in their critical section at the same time, 2) accessibility : if some
process requests an access to its critical section then it will have the opportunity to enter
it at some time (as soon as the other process does not stay in its critical section forever).

1. Prove that SyncMutex (Figure 4) solves the mutual exclusion problem synchronously.

module (), is
interface pc,: {outC, reqC,inC'}
external pc,: {outC, reqC,inC}
atom controls pc, reads pcy, pco

init
| true — pc| = outC

update
| pe; = outC —
| pc; = outC — pc) = reqC
| pc; = reqC A pcy # inC — pc) = inC
| pc; = inC -
| pe; = inC — pcl = outC

module () is
interface pc,: {outC, reqC, inC'}
external pc,: {outC,reqC,inC'}
atom controls pc, reads pcy, pc,

init
| true — pc = outC

update
| pey = outC —
| pcy = outC — pch = reqC
| pco = 1reqC A pey = outC — pch = inC
| pcy = inC —
| pey = inC — pch = outC

module SyncMutez is Q1 || Q-

FIGURE 4 — Synchronous mutual exclusion

2. SyncMutex is active (why?), modify it to make it passive (no variable needs to be
added).

VTES - TD 1 Loig Jezequel

3. Prove that Pete (Figure 5) solves the mutual exclusion problem asynchronously.

module P is
interface pc,: {outC,reqC,inC}; x1: B
external pc,: {outC,reqC,inC}; zo: B
lazy atom controls pc,,z; reads pc,, pcy, x1, T2

init
| true — pci := outC; x| :=B
update
| pc; = outC — pci = reqC;) = 1o
| pcy = reqC A (pey = outC V x1 # x3) — pci = inC
| pcq, = inC — pct = outC

module P; is
interface pc,: {outC,reqC,inC}; xo: B
external pc,: {outC,reqC,inC}; z1: B
lazy atom controls pc,, x5 reads pc,, pcy, 1, 22

init
| true — pch := outC; x4y :=B
update
| pcy = outC — pchy = reqC; xhy = 1y
| pcy = reqC A (pey = outC V 1 = x2) = pey == inC
| pco = inC — pch = outC

module Pete is hide x1, 25 in Py || P>
FIGURE 5 — Asynchronous mutual exclusion using Peterson’s protocol
4. Specify the three protocols mutual exclusion problem.

5. Propose a solution to the three protocols mutual exclusion problem, generalizing Peter-
son’s protocol.

VTES - TD 1 Loig Jezequel

Exercise 3 Trajectories of compound modules

The objective is to prove that for every pair P, of compatible modules, a sequence s
of states in Xp|q is an initialized trajectory of the compound module P||Q if and only if
5[Xp]| is an initialized trajectory of P and 5[X(] is an initialized trajectory of Q.

1. Assume that the two modules have no private variables and that the interface variables
of one are the external variables of the other. What can you deduce about the state
spaces of P,Q, and P||Q? Prove that s —pg t if and only if s —p ¢t and s —¢ t. What
can you say about the initial states of the compound module ?

2. Assume that the two modules have no variables in common. Remark that Xpjo =
{s1Usy|s1 € Ep Asy € Eg}. Prove that (s; Usy) —pjg (t1 Uty) if and only if sy —p ¢
and sy —¢ to. What can you say about the initial states of the compound module ?

3. Consider the general case. Consider two states s and ¢ of the compound module. Prove
that s € O{DIIQ if and only if s[Xp] € op and s[Xq| € of,. Prove that s —pjq t if and
only if s[Xp|] —p t[Xp] and s[Xg] —¢ [Xo].

4. Conclude.

