
VTES - TD 1 Loïg Jezequel

Reactive modules

These exercises are mostly taken from Rajeev Alur and Thomas A. Henziger lectures
on computer aided verification.

Exercise 1 Synchronous circuits

Figure 1 defines a deterministic, synchronous, passive module for modeling logical Not.

Reactive Modules 35

module SyncNot is

interface out : B
external in : B
atom controls out awaits in

initupdate

[] in 0 = 0 ! out 0 := 1
[] in 0 = 1 ! out 0 := 0

module SyncAnd is

interface out : B
external in1; in2 : B
atom controls out awaits in1; in2
initupdate

[] in 01 = 0 ! out 0 := 0
[] in 02 = 0 ! out 0 := 0
[] in 01 = 1 ^ in 02 = 1 ! out 0 := 1

module SyncOr is

|interface out

|external in1; in2
hide z1; z2; z3 in
k SyncAnd [in1; in2; out := z1; z2; z3]
k SyncNot [in ; out := in1; z1]
k SyncNot [in ; out := in2; z2]
k SyncNot [in ; out := z3; out ]

Figure 1.15: Synchronous Not, And, and Or gates

Figure 1 – Module for logical Not

1. Propose a modelisation of logical And as a deterministic, synchronous, passive module,
taking inspiration from the logical Not presented Figure 1.

2. Using de Morgan’s law – ¬(¬x∧¬y) = x∨y – propose a modelisation of logical Or, using
parallel composition of the modules for logical Not and logical And, variable renaming,
and variable hiding.

3. What does the module SyncLatch of Figure 2 do ?

4. Represent the mysterious module of Figure 3 as a block diagram. Are you able to
understand the behavior of this module ?

5. Use the module of Figure 3 to build a 3 bit counter.

1



VTES - TD 1 Loïg Jezequel

Reactive Modules 38

module SyncLatch is

private state : B
interface out : B
external set ; reset : B

atom ComputeOutput controls out reads state

init

[] true ! out 0 := B

update

[] true ! out 0 := state

atom ComputeNextState controls state awaits out ; set ; reset
initupdate

[] set 0 = 1 ! state 0 := 1
[] reset 0 = 1 ! state 0 := 0
[] set 0 = 0 ^ reset 0 = 0 ! state 0 := out 0

Figure 1.17: Synchronous latch

block diagram. As with logic gates, we omit the unprimed output wire from
the abstract block diagram of the latch, because it is not used for building cir-
cuits. Note that while zero-delay logic gates have (derived) await dependencies
between inputs and outputs, the unit-delay latch does not. For this it was nec-
essary to model the latch with two atoms, each controlling one variable, rather
than with a single atom controlling both variables: in the module SyncLatch,
the state variable state waits for the input variables set and reset ; the output
variable out does not. This decoupling of the output computation, which re-
quires no inputs, from the next-state computation, which requires both inputs,
into separate subrounds is essential for composing latches with logic gates which,
in every round (clock cycle), provide the latch inputs dependent on the latch
outputs.

Example 1.16 [Binary counter] As an example of a sequential circuit, we design
a three-bit binary counter. The counter takes two boolean inputs, represented by
the external variables start and inc, for starting and incrementing the counter.
The counter value ranges from 0 to 7, and is represented by three bits. We do
not make any assumption about the initial counter value. A start command
resets the counter value to 0 and overrides any increment command that is
issued in the same round. An increment command increases the counter value
by 1. If the counter value is 7, the increment command changes the counter
value to 0. In every round, the counter issues its value as output |the low bit
on the interface variable out0, the middle bit on the interface variable out1, and
the high bit on the interface variable out2. (While combinational circuits are

Figure 2 – Module SyncLatch

Reactive Modules 40

module Sync1BitCounter is

|interface out ; carry
|external start ; inc
hide set ; reset ; z in
k SyncLatch[set ; reset ; out ]
k SyncAnd [in1; in2; out := out ; inc; carry ]
k SyncOr [in1; in2; out := carry ; start ; reset ]
k SyncNot [in ; out := reset ; z]
k SyncAnd [in1; in2; out := inc; z; set ]

module Sync3BitCounter is

|interface out0; out1; out2
|external start ; inc
hide carry0; carry1; carry2 in
k Sync1BitCounter [start ; inc; out ; carry := start ; inc; out0; carry0]
k Sync1BitCounter [start ; inc; out ; carry := start ; carry0; out1; carry1]
k Sync1BitCounter [start ; inc; out ; carry := start ; carry1; out2; carry2]

Figure 1.19: One-bit and three-bit binary counters

input, and use out for output. (b) Why is

hide z in
k SyncNor [in1; in2; out := set ; z; out]
k SyncNor [in1; in2; out := reset ; out ; z]

not a legal de�nition of a module? (c) Consider the module

module SyncDelay is

private state : B
interface out : B
external in : B
atom ComputeOutput controls out reads state

atom ComputeNextState controls state awaits in

initupdate

[] true ! state 0 := in 0

which shares the atom ComputeOutput with the module SyncLatch from Fig-
ure 1.17. Give a few initialized trajectories of the module SyncDelay . Then
characterize, in precise words, the set of all initialized trajectories of SyncDelay .
Is the module SyncDelay �nite? Closed? Deterministic? Privately determinis-

Figure 3 – Mysterious module

2



VTES - TD 1 Loïg Jezequel

Exercise 2 Shared-variables protocols : mutual exclusion

The mutual exclusion problem we consider is the following : there is a shared variable
between two processes and one wants to ensure that this variable is only accessed by one
process at a time. The part of each process accessing the shared variable is called critical
section. The problem is then stated more clearly as follows : 1) mutual exclusion : no two
processes have to be in their critical section at the same time, 2) accessibility : if some
process requests an access to its critical section then it will have the opportunity to enter
it at some time (as soon as the other process does not stay in its critical section forever).
1. Prove that SyncMutex (Figure 4) solves the mutual exclusion problem synchronously.

Reactive Modules 46

module Q1 is

interface pc1 : foutC ; reqC ; inC g
external pc2 : foutC ; reqC ; inCg
atom controls pc1 reads pc1; pc2
init

[] true ! pc01 := outC

update

[] pc1 = outC !
[] pc1 = outC ! pc01 := reqC

[] pc1 = reqC ^ pc2 6= inC ! pc01 := inC

[] pc1 = inC !
[] pc1 = inC ! pc01 := outC

module Q2 is

interface pc2 : foutC ; reqC ; inC g
external pc1 : foutC ; reqC ; inCg
atom controls pc2 reads pc1; pc2
init

[] true ! pc02 := outC

update

[] pc2 = outC !
[] pc2 = outC ! pc02 := reqC

[] pc2 = reqC ^ pc1 = outC ! pc02 := inC

[] pc2 = inC !
[] pc2 = inC ! pc02 := outC

module SyncMutex is Q1 kQ2

Figure 1.22: Synchronous mutual exclusionFigure 4 – Synchronous mutual exclusion

2. SyncMutex is active (why ?), modify it to make it passive (no variable needs to be
added).

3



VTES - TD 1 Loïg Jezequel

3. Prove that Pete (Figure 5) solves the mutual exclusion problem asynchronously.

Reactive Modules 47

module P1 is
interface pc1 : foutC ; reqC ; inC g; x1 : B
external pc2 : foutC ; reqC ; inCg; x2 : B
lazy atom controls pc1; x1 reads pc1; pc2; x1; x2
init

[] true ! pc01 := outC ; x01 := B

update

[] pc1 = outC ! pc01 := reqC ; x01 := x2
[] pc1 = reqC ^ (pc2 = outC _ x1 6= x2) ! pc01 := inC

[] pc1 = inC ! pc01 := outC

module P2 is
interface pc2 : foutC ; reqC ; inC g; x2 : B
external pc1 : foutC ; reqC ; inCg; x1 : B
lazy atom controls pc2; x2 reads pc1; pc2; x1; x2
init

[] true ! pc02 := outC ; x02 := B

update

[] pc2 = outC ! pc02 := reqC ; x02 := :x1
[] pc2 = reqC ^ (pc1 = outC _ x1 = x2) ! pc02 := inC

[] pc2 = inC ! pc02 := outC

module Pete is hide x1; x2 in P1 kP2

Figure 1.23: Asynchronous mutual exclusionFigure 5 – Asynchronous mutual exclusion using Peterson’s protocol

4. Specify the three protocols mutual exclusion problem.

5. Propose a solution to the three protocols mutual exclusion problem, generalizing Peter-
son’s protocol.

4



VTES - TD 1 Loïg Jezequel

Exercise 3 Trajectories of compound modules

The objective is to prove that for every pair P,Q of compatible modules, a sequence s
of states in ΣP‖Q is an initialized trajectory of the compound module P‖Q if and only if
s[XP ] is an initialized trajectory of P and s[XQ] is an initialized trajectory of Q.

1. Assume that the two modules have no private variables and that the interface variables
of one are the external variables of the other. What can you deduce about the state
spaces of P,Q, and P‖Q ? Prove that s→P‖Q t if and only if s→P t and s→Q t. What
can you say about the initial states of the compound module ?

2. Assume that the two modules have no variables in common. Remark that ΣP‖Q =
{s1 ∪ s2|s1 ∈ ΣP ∧ s2 ∈ ΣQ}. Prove that (s1 ∪ s2) →P‖Q (t1 ∪ t2) if and only if s1 →P t1
and s2 →Q t2. What can you say about the initial states of the compound module ?

3. Consider the general case. Consider two states s and t of the compound module. Prove
that s ∈ σI

P‖Q if and only if s[XP ] ∈ σI
P and s[XQ] ∈ σI

Q. Prove that s →P‖Q t if and
only if s[XP ] →P t[XP ] and s[XQ] →Q [XQ].

4. Conclude.

5


