Turbo Planning

${\sf Eric} \ {\sf FABRE} \ {\sf and} \ {\sf Lo\"{i}g} \ {\sf JezeQUEL}$

INRIA Rennes Bretagne Atlantique, ENS Cachan Bretagne

WODES 2012

Message passing algorithm, Motivations

Principle of turbo methods Turbo for constraint solving Turbo for optimization Planning problem Message passing algorithm Motivations

Outline

- Planning problem
- Message passing algorithm
- Motivations

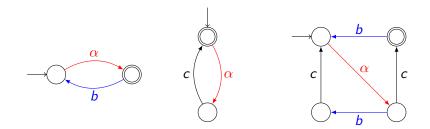
▲ 同 ▶ → 三 ▶

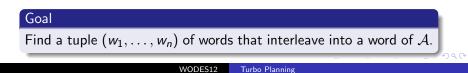
Planning problem Message passing algorithm Motivations

Our representation of planning problems

Network of automata

$$\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_n.$$





Planning problem Message passing algorithm Motivations

Proposed resolution method [CDC09]

Idea

For each \mathcal{A}_i compute an \mathcal{A}'_i such that $\mathcal{L}(\mathcal{A}'_i) = \prod_{\Sigma_i} (\mathcal{L}(\mathcal{A}))$.

Method

Use a message passing algorithm which progressively refines A_i by removing "bad" words (i.e do not fit with words of its neighbors). **Convergence:** no more word can be removed (stability).

Condition for convergence

Convergence is ensured as soon as the graph of interaction between the A_i is a tree.

< 4 ₽ > < E

Planning problem Message passing algorithm Motivations

Why using turbo methods

Problem

The MPA only works on trees.

Existing solution

- Tree-decomposition of graphs:
 - tree-width can be huge
 - not all parameters taken into account

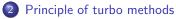
Proposed solution

- Turbo methods:
 - promising results in many domains

- ▲ 🖓 🕨 - ▲ 🖻

What is computed Solution extraction

Outline



- What is computed
- Solution extraction

э

< 1 →

What is computed Solution extraction

What is computed

Idea

Run MPA on non-tree interaction graphs.

Result after MPA convergence

From $\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_n$ one gets some \mathcal{A}''_i such that:

 $\mathcal{L}(\mathcal{A}'_i) \subseteq \mathcal{L}(\mathcal{A}''_i) \subseteq \mathcal{L}(\mathcal{A}_i).$

Image: A image: A

What is computed Solution extraction

Extracting solutions on trees

Extracting a solution of \mathcal{A} from the \mathcal{A}'_i is straightforward with tree shaped interaction graphs.

1 let w_i be a word in some \mathcal{A}'_i

. . .

- 2 let w_j be a word compatible with w_i in some \mathcal{A}'_j neighbor of \mathcal{A}_i
- 3 let w_k be a word compatible with w_i and w_j in some A'_k neighbor of A_i or A_j

 $\mathsf{n}{+}1$ $(\textit{w}_1,\ldots,\textit{w}_n)$ can be interleaved into a word in $\mathcal A$

What is computed Solution extraction

Extracting solutions in general

In general: extracting a solution from the \mathcal{A}''_i in an interaction graph with cycles is more difficult than from the \mathcal{A}'_i in a tree-shaped interaction graph.

May require backtracking.

Our hope

Not much backtracking in general.

Outline

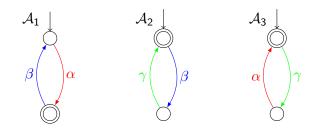
3 Turbo for constraint solving

- Deciding convergence
- Experimental results

A ►

Deciding convergence Experimental results

No convergence in general



æ

3

Image: A image: A

Deciding convergence Experimental results

Condition for deciding convergence

Distance between automata

$$d(\mathcal{A}_1,\mathcal{A}_2)=\sum_{n=0}^{\infty}\frac{1}{2^n}\boldsymbol{I}_{\mathcal{L}_n(\mathcal{A}_1)\neq\mathcal{L}_n(\mathcal{A}_2)}$$

Condition for deciding convergence

$$d(\mathcal{A}_i^k, \mathcal{A}_i^{k+1}) \leq \epsilon$$

Always stops:

- updating A_i only removes words
- the number w such that $|w| \leq k$ is bounded

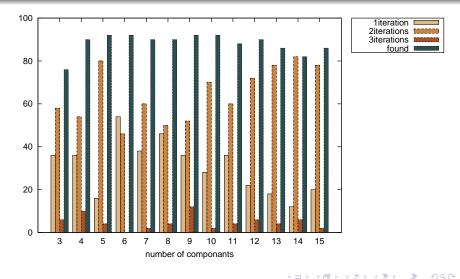
Deciding convergence Experimental results

Experimental setting

- randomly generated automata
- two different shapes for interaction graphs
- selection of 50 difficult problems
- only problems with solutions
- no backtracking

Deciding convergence Experimental results

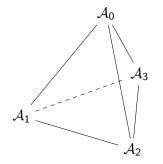
Automata on circles: results



WODES12 Turb

Deciding convergence Experimental results

Automata on a tetrahedron



- 1 iteration: 2%
- 2 iterations: 52%
- 3 iterations: 42%
- 4 iterations: 4%

found: 85%

____ ▶

Normalization Experimental results

Outline

Turbo for optimization

- Normalization
- Experimental results

э

A ►

Normalization Experimental results

The problem

From now on we consider weighted automata.

Objective

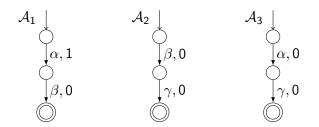
Find close-to-optimal solutions: (w_1, \ldots, w_n) minimizing $\sum_i c(w_i)$.

Image: A image: A

э

Normalization Experimental results

Necessity of normalization



æ

< 日 > < 同 > < 三 > < 三 >

Normalization Experimental results

Normalization in practice

Two possible ways of normalizing:

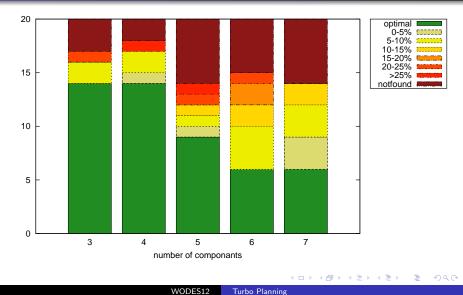
- multiplicative normalization: $c' = c \times N$
 - easy to perform: multiply the cost of each transition by \boldsymbol{N}
 - may change the difference between costs of paths
- additive normalization: c' = c + N
 - preserves the difference between costs of paths

A possible normalization constant:

• minimal cost of a path minus one

Normalization Experimental results

Automata on circles (20 problems per circle size)



Normalization Experimental results

Automata on a tetrahedron (50 problems)

found	opt	0-5%	5-10%	10-15%	15-20%	>20%
34	17	0	7	3	4	3

- 4 同 6 4 日 6 4 日 6

э

Normalization Experimental results

Conclusion

Summary of this work:

- experimental study of the use of turbo algorithms in planning
- methods for deciding convergence
- methods for normalization when dealing with costs

Outcome:

• approximate methods (in particular turbo algorithms) seem to be promising for factored planning

Further work:

- other normalization constants
- other distances between automata
- use on real planning problems