Motivation	Solving distributed planning (CDC2009)

Networks of automata with read arcs: a tool for distributed planning

Loïg Jezequel¹, Eric Fabre²

IFAC World Congress 2011

¹ENS Cachan Bretagne ²INRIA Rennes Bretagne Atlantique

Motivation 000000	Solving distributed planning (CDC2009) 0000	Solving distributed planning using read arcs

Conclusion

Outline

Motivation

- The problem considered: planning
- Interest of distributed planning
- Necessity for read arcs
- 2 Solving distributed planning (CDC2009)
 - Problem statement
 - Problem solving
- Solving distributed planning using read arcs
 - Adding read arcs to networks of automata
 - Consequences for languages
 - Main theorem

Motivation	Solving	distributed	planning	(CDC2009)
• 0 0000				

Conclusion O

The problem considered: planning

Planning and control

- Variables:
 - truck position
 - truck content
 - content of each site
- Actions:
 - loading truck
 - moving truck
 - unloading truck

• Goal:

all items at site 3

Relation with control

Corresponds to a weak form of control problem where everything is observable and controllable.

Motivation	Solving distributed	planning	(CDC2009)
00000			

Conclusion 0

The problem considered: planning

Formal representation

Several state variables: truck position, stock quantities...

(G2)

Principle

Each state variable is attached to an automaton:

- states = variable values
- transition = related actions

Some actions may synchronously act on several variables, ex: loading the truck.

Gn

Objective (centralized point of view) find a path in the compound system A_1, \ldots, A_n from state $(v_n)_{1 \le n \le N}$ to one state in the target $G = \times_n G_n$.

Motivation	Solving distributed	planning	(CDC2009)
00000			

Conclusion 0

The problem considered: planning

Formal representation

Several state variables: truck position, stock quantities...

Principle

Each state variable is attached to an automaton:

- states = variable values
- transition = related actions

Some actions may synchronously act on several variables, ex: loading the truck.

Objective (distributed point of view)

(G_n)

find a path in each automaton from state v_i to one state in G_i such that these paths are compatible (= coherent use of shared actions).

Motivation	Solving distributed planning (CDC2009) 0000	Solving distributed planning using read arcs	Conclusion O
Interest of distr	ibuted planning		
Central	ized approach		

() Compute the product of local automata: $A = A_1 \times \cdots \times A_n$.

2 Search for an accepted word in *A*.

Global plans

Sequences of actions, here 4 possible accepted words:

1) γ 2) $\alpha\alpha\beta$ 3) $\alpha\beta\alpha$ 4) $\beta\alpha\alpha$

Distribu	ted approach		
Interest of distribu	ited planning		
Motivation ○○○●○○	Solving distributed planning (CDC2009)	Solving distributed planning using read arcs	Conclusion 0

Idea: look for a tuple of local accepted words that coincide on shared actions.

Distributed plans

Partial orders of actions as tuples, here 2 possible tuples:

1)
$$(\gamma, \gamma)$$
 2) $(\alpha \alpha, \beta)$

Potential complexity gain

- Reduction of the space of possible plans.
- Coordinated local searches vs. global search.

Motivation	Solving distributed	planning	(CDC20
000000			

Conclusion 0

Necessity for read arcs

Existence of reading actions

Concrete example: back to trucks

Load_truck and Refuel_truck does not change the position.

Reading actions

Have preconditions on variables without modifying them.

Conventional modeling: reading is an action

ex: α reads V_2 (and modifies V_1).

Manageria, few wood		
00000		
Motivation	Solving distributed planning (CDC2009)	Solving distributed planning using read

Conclusion 0

Necessity for read arcs

Drawbacks of conventional modeling

A classical distributed plan: (β , $\alpha\beta\alpha$, $\alpha\alpha$)

Drawba<u>ck</u>

Readings are counted.

Question: Does A_2 need to know that A_1 uses α two times ? **Answer:** No! A_2 can remain idle and only display it state. **What would be a better distributed plan:** $(\beta, \alpha\beta\alpha, |v_2)$

Motivation	

Outline

Motivation

- The problem considered: planning
- Interest of distributed planning
- Necessity for read arcs
- Solving distributed planning (CDC2009)
 Problem statement
 - Problem solving
- 3 Solving distributed planning using read arcs
 - Adding read arcs to networks of automata
 - Consequences for languages
 - Main theorem

Conclusion

Motivation

Solving distributed planning (CDC2009) ●○○○ Solving distributed planning using read arcs $_{\rm OOOOO}$

Conclusion O

Problem statement

Stating the problem

Variables, their values, and their dynamics = automata

$$\mathcal{A} = (S, \Sigma, I, F, T)$$

- S=states, Σ =actions, I=initial states, F=final states;
- transition relation: $T \subseteq S \times \Sigma \times S$.

Constraints on variable evolution = synchronous product

Planning problem \Rightarrow network of <u>automata</u>

Network: $\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_n$ **Interaction graph:** edge between \mathcal{A}_i and \mathcal{A}_j iff $\Sigma_i \cap \Sigma_j \neq \emptyset$

Motivation	Solving distributed planning (CDC2009)	Solving distributed planning using read arcs	Conclusion
000000	○●○○		O
Problem statemen	t		

Goal

Given $\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_n$, find an accepted path in \mathcal{A} – as a tuple of compatible local paths – without computing \mathcal{A} nor its language.

Motivation 000000	Solving distributed planning (CDC2009) ○○●○	Solving distributed planning using read arcs	Conclusion 0
Problem solving			
Solving	problems		

Main remark

The projection (ε -reduction) \mathcal{A}'_i of $\mathcal{A} = \mathcal{A}_1 \times \cdots \times \mathcal{A}_n$ on Σ_i contains exactly the paths from \mathcal{A}_i that are part of an accepted path in \mathcal{A} .

Problem solving
000000
Motivation

A possible solution

As soon as the interaction graph is a tree one can use message passing algorithm to compute the A'_i without computing A.

Principle of the MPA

Problem solving
000000
Motivation

A possible solution

As soon as the interaction graph is a tree one can use message passing algorithm to compute the A'_i without computing A.

Principle of the MPA

$$A_1 \xleftarrow{M_{2,1} = \Pi_{\Sigma_1}(A_2 \times M_{3,2})} A_2 \xleftarrow{M_{3,2} = \Pi_{\Sigma_2}(A_3)} A_3$$
$$A_1' = A_1 \times M_{2,1}$$

Motivation	

Outline

Motivation

- The problem considered: planning
- Interest of distributed planning
- Necessity for read arcs
- Solving distributed planning (CDC2009)
 Problem statement
 Problem solving
- Solving distributed planning using read arcs
 - Adding read arcs to networks of automata
 - Consequences for languages
 - Main theorem

4 Conclusion

 Motivation
 Solving distributed planning (CDC2009)

 000000
 0000

Solving distributed planning using read arcs $_{\odot O \odot \odot \odot}$

Conclusion 0

Adding read arcs to networks of automata

Intuitions on the model: automata

Principle

In a component A_i , each transition:

- can read labels, ex: current state of other automata
- can write (or display) labels, ex: next state of A_i

Sample transition

$$\bigcirc$$
 $r, \alpha, w \longrightarrow \bigcirc$

• r: readings, a vector with one entry per component,

- r(j) = s means that s must be read in component A_j ,
- $r(j) = \star$ means nothing special is required from A_j .

• w: writtings,

• for
$$j \neq i$$
, $r(j) = \star$,

Motivation Solving distributed planning (CDC2009 00000 0000 Solving distributed planning using read arcs $\odot{\bullet}{\circ}{\circ}{\circ}{\circ}$

Conclusion 0

Adding read arcs to networks of automata

Intuitions on the model: product

Synchronous product of components: shared actions

Motivation Solving distributed planning (CDC2009)

Solving distributed planning using read arcs $_{\rm OO}{\bullet}{\circ}{\circ}{\circ}$

Conclusion 0

Adding read arcs to networks of automata

Intuitions on the model: product

Synchronous product of components: private actions

Motivation	Solving	distributed	planning	(CDC2009)

Solving distributed planning using read arcs $\circ\circ\circ\bullet\circ$

Conclusion 0

Consequences for languages

Intuitions on the model: languages

Not all words have to be accepted !

Notion of coherent words: readings and writings must be compatible along the word.

Motivation	Solving	distributed	planning	(CDC2009)

Solving distributed planning using read arcs $\circ\circ\circ\bullet\circ$

Conclusion 0

Consequences for languages

Intuitions on the model: languages

Not all words have to be accepted !

Notion of coherent words: readings and writings must be compatible along the word.

Main theorem	
Motivation	Solving distributed planning (CDC2009)

Projection

• Projection is definable in networks of automata with read arcs;

• in the particular networks representing planning problems: $\mathcal{L}(\Pi_{A_i}(A_1 \times A_2)) = \Pi_{A_i}(\mathcal{L}(A_1 \times A_2))$

Theorem

A slightly modified MPA can be used in order to solve planning problems in networks of automata with read arcs, as soon as their interaction graph is a tree.

MPA in presence of read arcs: example

$$A_1 \xleftarrow{M_{2,1} = \prod_{A_2} (A_2 \times M_{3,2})} A_2 \xleftarrow{M_{3,2} = A_3} A_3$$

 $A_1' = \Pi_{A_1}(A_1 \times M_{2,1})$

Motivation	Solving distributed pla	anning

Outline

Motivation

- The problem considered: planning
- Interest of distributed planning
- Necessity for read arcs
- Solving distributed planning (CDC2009)
 Problem statement
 Problem solving
 - Problem solving
- Solving distributed planning using read arcs
 - Adding read arcs to networks of automata
 - Consequences for languages
 - Main theorem

Motivation	Solving	distributed	planning	(CDC2

Results

- Extension to our CDC2009 work;
- reduces the space of possible plans to explore when solving planning problems thanks to:
 - plans represented and computed as partial orders of actions;
 - read arcs mechanism.

Future work

- add costs to automata with read arcs (straightforward) to perform optimal distributed planning;
- perform approximate search rather than exhaustive search of all distributed plans.