Cost-Optimal Factored Planning: Promises and Pitfalls

Éric Fabre¹, Patrik Haslum², Loïg Jezequel³, Sylvie Thiébaux²

¹INRIA Rennes - Bretagne Atlantique

²Australian National University & NICTA

³ENS Cachan Bretagne

Toronto, May 15, 2010

Introduction

Our goal: cost-optimal factored planning cost-optimal: find the best plan factored: find it quickly

Idea

- Split a planning problem P in several subproblems P_k ;
- Update valid plans and their costs in P_k in order to ensure that locally optimal plans are part of globally optimal plans (in P);

Our approach

- Represent planning problems as weighted automata;
- use a message passing algorithm in networks of automata to find solutions.

Outline

1 Introductory example: philosophers from IPC4

2 Cost-optimal factored planning in networks of weighted automata

3 Experimental results and remarks on complexity

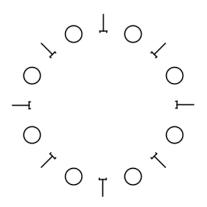
Outline

1 Introductory example: philosophers from IPC4

2 Cost-optimal factored planning in networks of weighted automata

3 Experimental results and remarks on complexity

Philosophers: the problem (re-encoding of IPC4's)



Configuration

an alternating cycle of philosophers and forks

Actions availables for philosophers

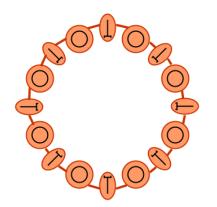
only in this order:

- take left fork
- 2 take right fork
- release left fork
- release right fork

Goal

find deadlock

Philosophers: factored approach



Components

philosophers and forks

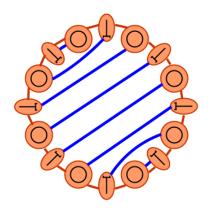
Interactions

shared actions

Needed

interaction graph which is a tree

Philosophers: from cycle to tree



Idea

merge components

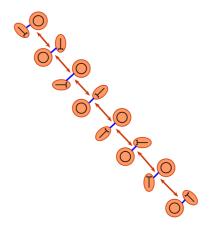
In this case

philosopher with opposed fork

Result

the new interaction graph is a tree (actually a line)

Philosophers: from cycle to tree



Idea

merge components

In this case

philosopher with opposed fork

Result

the new interaction graph is a tree (actually a line)

 P_0

 P_2

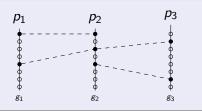
 P_3

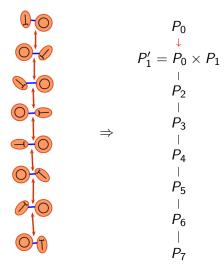
 P_5

 P_6

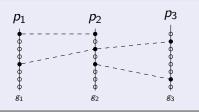
 P_7

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



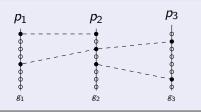


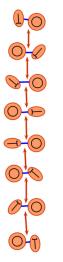
- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



 P_0 $P_1' = P_0 \times P_1$ $P_2' = P_1' \times P_2$ P₄ P_5 P_6 P_7

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.





$$P_{0}$$

$$P_{1}' = P_{0} \times P_{1}$$

$$P_{2}' = P_{1}' \times P_{2}$$

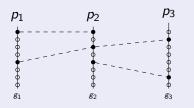
$$P_{3}' = P_{2}' \times P_{3}$$

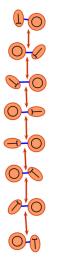
$$P_{4}$$

$$P_{5}$$

 P_6

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.





$$P_{0}$$

$$P'_{1} = P_{0} \times P_{1}$$

$$P'_{2} = P'_{1} \times P_{2}$$

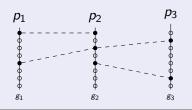
$$P'_{3} = P'_{2} \times P_{3}$$

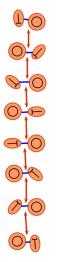
$$P'_{4} = P'_{3} \times P_{4}$$

$$P'_{5}$$

 P_6

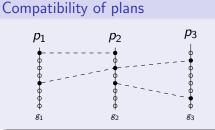
- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.





$$P_{0} \\ P_{1}' = P_{0} \times P_{1} \\ P_{2}' = P_{1}' \times P_{2} \\ P_{3}' = P_{2}' \times P_{3} \\ P_{4}' = P_{3}' \times P_{4} \\ P_{5}' = P_{4}' \times P_{5} \\ P_{6}'$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



$$P_{0} \\ P_{1}' = P_{0} \times P_{1} \\ P_{2}' = P_{1}' \times P_{2} \\ P_{3}' = P_{2}' \times P_{3} \\ P_{4}' = P_{3}' \times P_{4} \\ P_{5}' = P_{4}' \times P_{5} \\ P_{6}' = P_{5}' \times P_{6}$$

Principle

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.

 p_3

$$P_{0}$$

$$P_{1} = P_{0} \times P_{1}$$

$$P_{2}' = P_{1}' \times P_{2}$$

$$P_{3}' = P_{2}' \times P_{3}$$

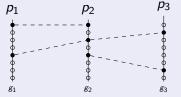
$$P_{4}' = P_{3}' \times P_{4}$$

$$P_{5}' = P_{4}' \times P_{5}$$

$$P_{6}' = P_{5}' \times P_{6}$$

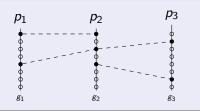
$$P_{1}' = P_{2}' \times P_{5}$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



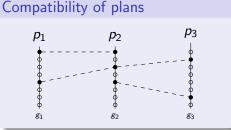
 P_0 P'_1 P'_2 P'_3 $P_6'' = P_7' \times P_6'$ P'_7

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



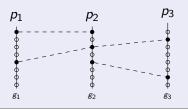
$$\begin{array}{c} P_{0} \\ & | \\ P'_{1} \\ P'_{2} \\ & | \\ P'_{3} \\ & | \\ P'_{3} \\ & | \\ P'_{4} \\ P'_{5} = P''_{6} \times P'_{5} \\ P''_{6} = P'_{7} \times P'_{6} \\ & | \\ P''_{7} \end{array}$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



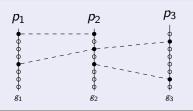
$$\Rightarrow \begin{array}{c} P_{0} \\ P'_{1} \\ P'_{2} \\ P'_{3} \\ P'_{4} = P''_{5} \times P'_{4} \\ P''_{5} = P''_{6} \times P'_{5} \\ P''_{6} = P'_{7} \times P'_{6} \\ P''_{7} \end{array}$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



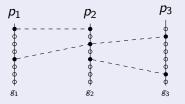
$$P_{0} \\ P'_{1} \\ P'_{2} \\ P'_{3} = P''_{4} \times P'_{3} \\ P''_{4} = P''_{5} \times P'_{4} \\ P''_{5} = P''_{6} \times P'_{5} \\ P''_{6} = P'_{7} \times P'_{6} \\ P''_{7}$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



$$P_{0} \\ P'_{1} \\ P''_{2} = P''_{3} \times P'_{2} \\ \uparrow \\ P''_{3} = P''_{4} \times P'_{3} \\ P''_{4} = P''_{5} \times P'_{4} \\ P''_{5} = P''_{5} \times P'_{4} \\ P''_{5} = P''_{7} \times P'_{6} \\ P''_{7} \\ P''_{7}$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



$$P_{0}$$

$$P_{1}'' = P_{2}'' \times P_{1}'$$

$$P_{2}'' = P_{3}'' \times P_{2}'$$

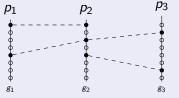
$$P_{3}'' = P_{4}'' \times P_{3}'$$

$$P_{4}'' = P_{5}'' \times P_{4}'$$

$$P_{5}'' = P_{6}'' \times P_{5}'$$

$$P_{6}'' = P_{7}' \times P_{6}'$$

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



$$P'_{0} = P''_{1} \times P_{0}$$

$$P''_{1} = P''_{2} \times P'_{1}$$

$$P''_{2} = P''_{3} \times P'_{2}$$

$$P''_{3} = P''_{4} \times P'_{3}$$

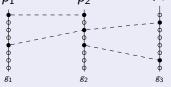
$$P''_{4} = P''_{5} \times P'_{4}$$

$$P''_{5} = P''_{6} \times P'_{5}$$

$$P''_{6} = P'_{7} \times P'_{6}$$

Principle

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



 p_3

 P'_0

 P_1''

 P_2''

 P_3''

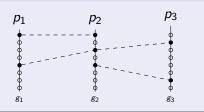
 P_4''

 P_5''

 P_6''

 P'_7

- Each component is replaced by a representation of its local plans (to a local goal),
- using knowledge from neighbors these sets of local plans are updated in order to be compatible with the other sets.



The algorithm: previous works

Constraint satisfaction [Dechter03]

- Product to ensure constraint satisfaction between neighbours
- Projection to limit size of objects

Factored planning [Brafman&Domshlak06] [Brafman&Domshlak08]

- Message = set of plans;
- not polynomially bounded in general (different from constraint satisfaction)
- Restriction of message size (enforced bound)
- Does not allow cost-optimal planning

Outline

Introductory example: philosophers from IPC4

2 Cost-optimal factored planning in networks of weighted automata

3 Experimental results and remarks on complexity

The algorithm: our approach

Theorem: generalization

Any representation of plans (with notion of product/projection) may be used in the MPA if the following holds:

$$\mathcal{P}_{\nu}(S_1 imes S_2) = \mathcal{P}_{\nu}(S_1) imes \mathcal{P}_{\nu}(S_2)$$

set of plans with costs as weighted automata

- Automata allow to represent all plans with finite objects;
- representing all plans allows to perform cost-optimal planning;
- finite weighted automata represent all plans with their costs.

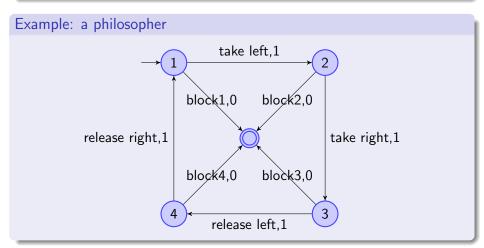
Overview of the approach

Product: responsible for compatibility of local plans

Projection: reduce size of objects and responsible for cost-optimization

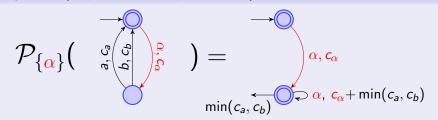
The algorithm: component representation

Think of domain transition graph.

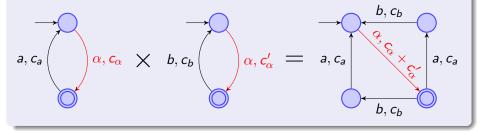


The algorithm: operations

Projection (responsible for optimization)



Product (responsible for synchronization of local plans)



The algorithm: guarantees

After the MPA, if the interaction graph was a tree, some properties are ensured on updated components:

local plans are part of a global plan:

any local plan can be extended into a global plan and the projection of any global plan on a component is present in it as one of its local plans.

cost-optimal local plans are part of a cost-optimal global plan:

- any cost-optimal local plan can be extended into a cost-optimal global plan;
- the projection of any cost-optimal global plan on a component is a cost-optimal local plan in this component.

Outline

Introductory example: philosophers from IPC4

2 Cost-optimal factored planning in networks of weighted automata

3 Experimental results and remarks on complexity

Benchmarks

Chosen problems

Taken from IPCs, but:

- a lot of problems were not well suited to factored planning (huge tree width);
- others needed re-encoding (they were centralized encoding of distributed problems).

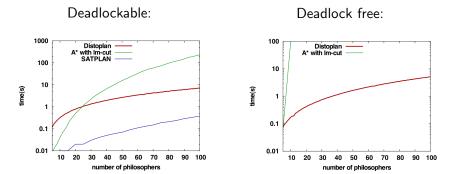
Call:

we are still looking for other benchmarks!

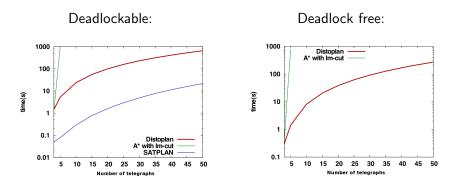
Factoring

"by hand"

Philosophers (IPC4, alternative encoding)



Optical telegraph (IPC4, alternative encoding)



Time complexity

- MPA sends a polynomial (in number of components) number of messages;
- each one is processed in polynomial time (in the size of the message and the receiving component);
- without additional restrictions, the size of messages can grow beyond polynomial.

Under similar condition as [Brafman&Domshlak08] we ensure polynomial time complexity (in number of components)

Sufficient condition for polynomial size of messages

Number of shared operators in any locally valid plan is bounded by a constant.

This condition is not necessary: there is problems where it does not hold, but message sizes are polynomially bounded (philosophers for example)

Conclusion

Conclusion

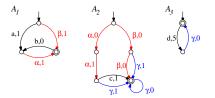
We presented an algorithm for cost-optimal factored planning, which:

- computes partially ordered plans;
- computes all the plans (more general than previous approaches);
- has polynomial time-complexity (under similar restrictions as previous approaches).

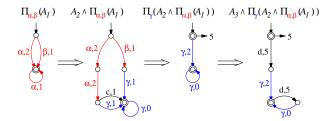
We implemented it and tested it on some benchmarks:

- results comparable to other up to date planners on solvable instances of problems;
- capability to detect non-solvability;
- however only on few problems: our results depend strongly of problems structure.

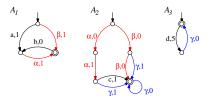
Sample execution of the MPA



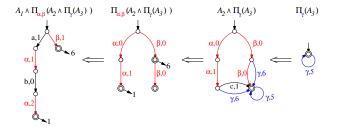
Messages from left to right:



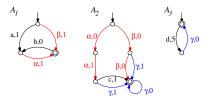
Sample execution of the MPA



Messages from right to left:



Sample execution of the MPA



Reduced components and optimal plans:

