Summarising Game Segments

Dietmar Berwanger¹ Loïg Jezequel²

¹LSV, CNRS & ENS Cachan

²IFSIC, Université de Rennes 1

Udine, September 17, 2009

Motivations

Algorithmic

- huge state spaces
- too much non-relevant details
- most algorithms target zero-sum aspect

Analytic

• conceptual simplification tool

< ∃ >

Motivations

Algorithmic

- huge state spaces
- too much non-relevant details
- most algorithms target zero-sum aspect

Analytic

• conceptual simplification tool

Abstraction

→ Ξ →

Summarisation of game segments

Procedure summary

- well know method
- control-flow graphs
- avoiding state-space explosion

Our work

Summarization for games

- \bullet game/control flow graph + interactivity between players
- segment/procedure

Segment

Directed graph, nodes $V, X \subset V$. In(X): nodes of X having predecessor outside of X. Out(X): nodes of X having successor outside of X.

In(X) and Out(X): interface

Segment

Directed graph, nodes $V, X \subset V$.

In(X): nodes of X having predecessor outside of X.

Out(X): nodes of X having successor outside of X.

In(X) and Out(X): interface

Segment

Directed graph, nodes $V, X \subset V$.

In(X): nodes of X having predecessor outside of X.

Out(X): nodes of X having successor outside of X.

In(X) and Out(X): interface

Negociating power of a player.

	Bach	Stravinsky	TV
Bach	Bach	None	τv
Stravinsky	None	Stravinsky	τv

Effectivity of player *i*

$$\Phi^{i} = \{F \subseteq \Omega | \{\gamma(s^{i}, s^{-i}) | s^{-i} \in S^{-i}\} \subseteq F, \text{ for some } s^{i} \in S^{i}\}$$

-

► < ∃ ►</p>

Negociating power of a player.

	Bach	Stravinsky	TV
Bach	Bach	None	τv
Stravinsky	None	Stravinsky	τv
?	ΤV	None	Bach

Effectivity of player *i*

$$\Phi^i = \{F \subseteq \Omega | \{\gamma(s^i, s^{-i}) | s^{-i} \in S^{-i}\} \subseteq F, \text{ for some } s^i \in S^i\}$$

Negociating power of a player.

	Bach	Stravinsky	TV
Bach	Bach	None	τv
Stravinsky	None	Stravinsky	TV
?	ΤV	None	Bach

Effectivity of player *i*

$$\Phi^i = \{F \subseteq \Omega | \{\gamma(s^i, s^{-i}) | s^{-i} \in S^{-i}\} \subseteq F, \text{ for some } s^i \in S^i\}$$

▲ 伊 ▶ ▲ 王 ▶

Negociating power of a player.

	$\{Bach, TV\}$	$\{Stravinsky, None\}$
{Bach, TV, None}	{Bach, TV}	$\{None\}$
$\{Stravinsky, None, TV\}$	$\{TV\}$	$\{Stravinsky\}$

Effectivity of player *i*

$$\Phi^{i} = \{F \subseteq \Omega | \{\gamma(s^{i}, s^{-i}) | s^{-i} \in S^{-i}\} \subseteq F, \text{ for some } s^{i} \in S^{i}\}$$

-

ም. ► < ∃ ►</p>

Negociating power of a player.

	$\{Bach, TV\}$	$\{Stravinsky, None\}$
{Bach, TV, None}	{Bach, TV}	$\{None\}$
$\{Stravinsky, None, TV\}$	{TV}	$\{Stravinsky\}$

Effectivity of player *i* $\Phi^{i} = \{F \subseteq \Omega | \{\gamma(s^{i}, s^{-i}) | s^{-i} \in S^{-i}\} \subseteq F, \text{ for some } s^{i} \in S^{i}\}$

- 4 同 6 4 日 6 4 日 6

Negociating power of a player.

	Bach	Stravinsky	TV
Bach	Bach	None	τv
Stravinsky	None	Stravinsky	TV
?	ΤV	None	Bach

Effectivity of player *i*

$$\Phi^i = \{F \subseteq \Omega | \{\gamma(s^i, s^{-i}) | s^{-i} \in S^{-i}\} \subseteq F, \text{ for some } s^i \in S^i\}$$

▲ □ ► < □ ►</p>

Segment (extensive form)

L. Jezequel, D. Berwanger (ENS Cachan)

- Segment (extensive form)
- Strategies (normal form)

- Segment (extensive form)
- Strategies (normal form)
- Simplify (effectivity)

- Segment (extensive form)
- Strategies (normal form)
- Simplify (effectivity)

Outcomes in summarized segments

Outcomes in summarized segments

Outcome: intersection of effectivities (contained).

L. Jezequel, D. Berwanger (ENS Cachan)

Summarising Game Segments

GAMES 2009 7 / 11

Outcomes in summarized segments

Outcome: intersection of effectivities (contained).

Effectivity game form

How to play:

- at position v
- choose $a^i \in A^i(v)$
- next position is taken (non-deterministicaly) in $\gamma(v, a)$.

Remark on effectivity games

• Extensive games can be represented as effectivity games:

• Concurence games also.

Security level

When payoffs come...

Utility function (worst payoff for some strategy profile)

$$u^i(\mathcal{G},s) = \min\{u^i(\pi)|\pi\in\Omega(\mathcal{G},s)\}$$

Security level of player *i* (what he can guarantee)

$$\mu^i(\mathcal{G}) = \max_{s^i \in S^i} \min_{s^{-i} \in S^{-i}} u^i(\mathcal{G},s)$$

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

u-faithful projections

$$h: V \to U \subseteq V$$
 is u-faithful if, $\forall \pi \in \Omega(\mathcal{G}), u^i(h(\pi)) = u^i(\pi)$

Theorem

L. Jezequel, D. Berwanger (ENS Cachan)

3

(日) (同) (三) (三)

u-faithful projections

 $h: V \to U \subseteq V$ is u-faithful if, $\forall \pi \in \Omega(\mathcal{G}), \ u^i(h(\pi)) = u^i(\pi)$

Theorem

 ${\mathcal G}$ an effectivity game, X a segment

• • = • • = •

u-faithful projections

 $h: V \to U \subseteq V$ is u-faithful if, $\forall \pi \in \Omega(\mathcal{G}), \ u^i(h(\pi)) = u^i(\pi)$

Theorem

 \mathcal{G} an effectivity game, X a segment if $h: V \to V \setminus (X \setminus (In(X) \cup Out(X)))$ u-faithful

★聞▶ ★ 国▶ ★ 国▶

u-faithful projections

 $h: V \to U \subseteq V$ is u-faithful if, $\forall \pi \in \Omega(\mathcal{G}), \ u^i(h(\pi)) = u^i(\pi)$

Theorem

 \mathcal{G} an effectivity game, X a segment if $h: V \to V \setminus (X \setminus (In(X) \cup Out(X)))$ u-faithful then security level is preserved under summary of X

$$\mu^i(\mathcal{G}) = \mu^i(\mathcal{G}/X)$$

• • = • • = •

Conclusion and further works

Main result

Preservation of security level under summary.

Further work

- build security strategies from a summarized game
- algorithm for summarizing effectivity games in practice (e.g. composition of effectivities)
- other kind of games (parity...)