
Introduction	Definitions	Solution overview	Cut-off definitions	Conclusion

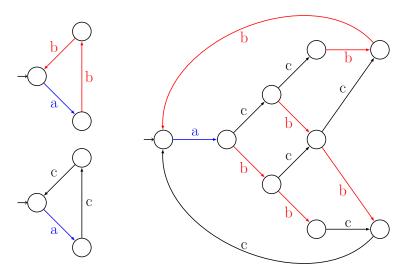
Computation of Summaries Using Net Unfoldings

Loïg Jezequel joint work with Javier Esparza and Stefan Schwoon

FSTTCS December 12-24, 2013 Introduction Cut-off definitions

The summary problem

Introduction	Definitions 00	Solution overview	Cut-off definitions	Conclusion
The sum	mary probler	m		



Introduction	Definitions	Solution overview	Cut-off definitions	Conclusion

Some definitions

O 0000000 000000	Droblom			
Introduction Definitions Solution overview Cut off definitions Conclusion	Introduction	Solution overview 0000000	Cut-off definitions	Conclusion

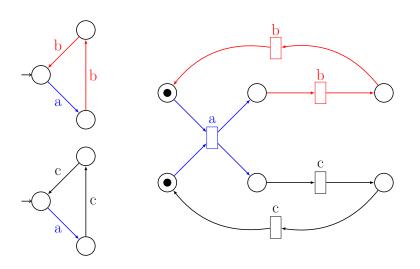
Problem representation: LTSs, parallel composition

Introduction Definitions		Solution overview	Cut-off definitions	Conclusion
The sum	mary proble	m in terms of I	ΤSc	

Summary with interface A_i

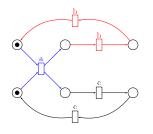
Given A_1, A_2, \ldots, A_n , LTSs Given A_i , distinguished LTS with set of labels Σ_i Find an LTS S_i such that:

$$S_i \equiv (A_1 || \dots || A_n) \setminus \overline{\Sigma_i}$$

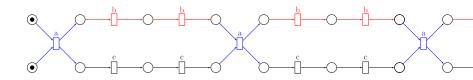

 $\begin{array}{l} || \text{ parallel composition} \\ \underline{\setminus} \text{ hiding} \\ \overline{\Sigma} \text{ complement} \end{array}$

Introduction	Definitions	Solution overview	Cut-off definitions	Conclusion

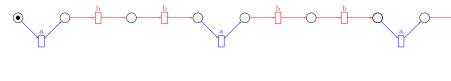
Solution overview



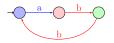
Use concurrency: parallel composition as a Petri net

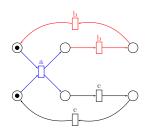

Use concurrency: unfolding

Unfolding algorithm


input: a (safe) Petri net *P* output: its unfolding *N*

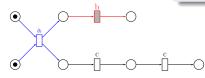
initialize N from the marked places of P while $Ext(N, P) \neq \emptyset$ choose $e \in Ext(N, P)$ extend N with e





Equivalence classes

Will be defined using information from the unfolding


Use concurrency: cut-off events

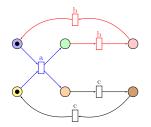
Unfolding algorithm

input: a (safe) Petri net P
output: a prefix of its unfolding N

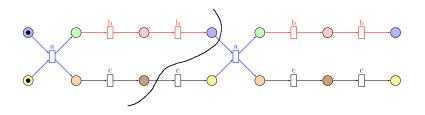
initialize N from the marked places of P initialize co as an empty set while $Ext(N, P, co) \neq \emptyset$ choose $e \in Ext(N, P)$ extend N with e if e is cut-off then $co \leftarrow co \cup \{e\}$

Goal

- Finite prefix
- Preserves relevant properties

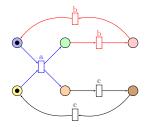

Find a definition of cut-offs and a definition of equivalence relation so that given A_1, A_2, \ldots, A_n , given A_i with set of labels Σ_i ,

 $S_i = Folding(Interface(Unfolding(A_1||...||A_n)))$

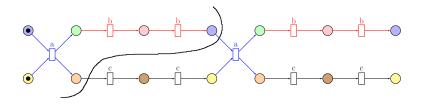

is a solution to the summary problem with interface A_i :

 $S_i \equiv (A_1 || \dots || A_n) \setminus \overline{\Sigma_i}$

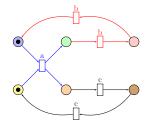
Introduction	Definitions 00	Solution overview 000000●	Cut-off definitions	Conclusion
Equivalence	e relation			



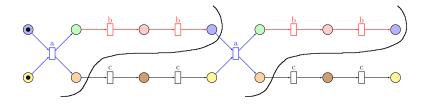
Configuration



Introduction	Definitions 00	Solution overview	Cut-off definitions	Conclusion
Fauivaler	nce relation			



Minimal configuration, global state


Introduction	Definitions 00	Solution overview 000000●	Cut-off definitions	Conclusion
Equivalen	ce relation			

Configuration

Minimal configuration, global state

Equivalent places

Introduction	Definitions	Solution overview	Cut-off definitions	Conclusion


Cut-off definitions

Introduction	Definitions 00		ion overview 2000	Cut-off definitions ●0000	Conclusion	
Cut-off definition for non-divergent systems						
			Unfolding a	algorithm		
Cut-off defin	ition		input: a (s	afe) Petri net <i>P</i>		
An event <i>e</i> i	s cut-off if:		•	prefix of its unfoldir	ng N	
	interface event,		initialize A	/ from the marked p	laces of P	
	kists an interfac		initialize c	o as an empty set		

while $Ext(N, P, co) \neq \emptyset$

extend N with e

choose $e \in Ext(N, P)$

event e' in N such that e'

and e' correspond to the

same global state.

Introduction	Definitions 00	Solution overview	Cut-off definitions •0000	Conclusion
	C tot C	12		

Cut-off definition for non-divergent systems

Cut-off definition

An event e is cut-off if:

- it is an interface event, and
- there exists an interface event e' in N such that e and e' correspond to the same global state.

Non-divergent system

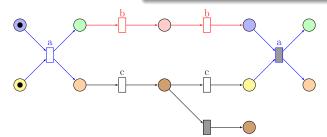
Any infinite execution involves an infinite number of transitions from A_i .

Theorem

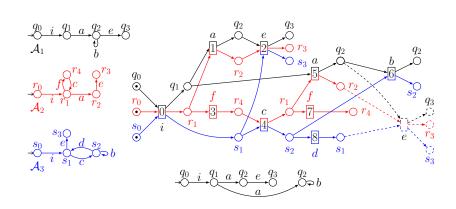
- If $A_1 || \dots || A_n$ is non-divergent then
 - N is finite, and
 - Folding(Interface(N)) is a solution to the summary problem.

Cut-off definition for divergent systems

Cut-off definition


An event *e* is cut-off if:

- it is an interface event, and
- there exists an interface event e' in N such that e and e' correspond to the same global state.


Addition to the cut-off definition

An event *e* is cut-off if:

- it is not an interface event, and
- there exists an event e' < e in N such that
 - *e* and *e'* correspond to the same global state, and
 - *e* and *e'* correspond to the same interface condition.

Introduction	Definitions 00	Solution overview	Cut-off definitions	Conclusion
Counter e	example			

Introduction	Definitions 00	Solution overview	Cut-off definitions	Conclusion
Cut-off c	andidates			

Idea

Non-interface events will not be proper cut-offs but temporary cut-offs:

- stops unfolding as cut-off events,
- can be freed (i.e. stop to be cut-off).

Introduction	Definitions 00	Solution overview 0000000	Cut-off definitions 0000●	Conclusion
Cut-off d	efinition for	divergent syste	ems	

Cut-offs

An event e is cut-off if:

- it is an interface event, and
- there exists an interface event e' in N such that e and e' correspond to the same global state.

Introduction		Solution overview	Cut-off definitions 0000●	Conclusion		
Cut-off de	Cut-off definition for divergent systems					
Cut-offs		Cut-off candida	ates			
An event <i>e</i> is	s cut-off if:	An event <i>e</i> is a	a cut-off candidate i	f:		
• it is an i	nterface event, and	• it is not a	n interface event, a	nd		
event e' and e' co	ists an interface in N such that e orrespond to the obal state.	such that • e and global • e and interfa • if e is event	is an event $e' \ll e$ in e' correspond to the state, e' correspond to the ace condition, and concurrent with an i e'' (not cut-off), the oncurrent with e'' .	same same nterface		
e						

Introduction	Definitions 00	Solution overview 0000000	Cut-off definitions	Conclusion	
Cut-off definition for divergent systems					
Cut-offs		Cut-off candic	lates		
An event <i>e</i> is	cut-off if:	An event <i>e</i> is	a cut-off candidate	if:	
• it is an i	nterface event, and	d 🔹 it is not a	an interface event,	and	
 It is an interface event, and there exists an interface event e' in N such that e and e' correspond to the same global state. 		such that • e an globa • e an inter • if e i even	 there exists an event e'≪e in N such that e and e' correspond to the same global state, e and e' correspond to the same interface condition, and if e is concurrent with an interface event e'' (not cut-off), then e' is also concurrent with e''. 		
		Free candidat	es		
e			ees a cut-off candidate a cut-off candidate with <i>e</i> .		

Introduction	Definitions 00	Solution overview	Cut-off definitions	Conclusion

To conclude

Introduction	Definitions	Solution overview	Cut-off definitions	Conclusior

To conclude

Contributions

- Unfoldings for computing summaries:
 - for traces (experimental analysis in the paper)
 - for weighted traces (in the paper)
 - for divergences (in the paper)
- Notion of cut-off candidates

Future work

- Strong causality
- Other semantics:
 - deadlocks
 - timed traces

Paper with proofs available on arXiv.org arXiv:1310.2143