
Let’s Be Lazy, We Have Time
or, Lazy Reachability Analysis for Timed Automata

Loïg Jezequel1,3 and Didier Lime2,3

1Université de Nantes

2École Centrale de Nantes

3LS2N, UMR CNRS 6004

FORMATS, September 6, 2017



Overview of the problem

Distributed systems

I Components
I Communications
I Clocks (can be shared, with invariants) ⇒ Time-non blocking!

Reachability

I Component by component
I For a subset of components
I First step towards model checking

Solution
I Modular/compositional (component by component analysis)
I Lazy (use only components and clocks needed for the analysis)



The formalism

Components
Timed automata

I guards: x ∼ k with k ∈ N and ∼∈ {<,≤,=,≥, >}
I invariants: ∼∈ {<,≤}

(extendable as long as reachability analysis is possible)

Communication
Synchronous product, union for guards, invariants, and resets

Reachability
Marked states



Overview of our algorithm

A1

x ≤ 0

α a, {x}

A2

α y ≥ 2, b

y ≥ 2, b z ≤ 1, b

A3

β

A4

c , {z} t ≤ 4, β



I. General principle of the algorithm



Initialization

Partition
Choose a partition of the TAs involved in the reachability objective
B Invariants on marked states

Initial paths
For each element of the partition

I initialize a set of paths with only the empty path in it
I initialize an empty set of clocks

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅



Initialization continued

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅

Finished?
Does this set of set of paths contains a solution?
Yes: we are done
No: add paths, clocks, or merge sets



Completeness
Idea
A set P of paths is complete if p ∈ P reaches the objective and:

I p uses only private actions
I all clocks needed for p are in the set of clocks
I no action in p is in conflict with an invariant not in P

I no clock in the set of clocks is reset from outside of P

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or
I add clocks to the set of clocks, or
I add new automata to the set of automata

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅



Completeness
Idea
A set P of paths is complete if p ∈ P reaches the objective and:

I p uses only private actions
I all clocks needed for p are in the set of clocks
I no action in p is in conflict with an invariant not in P

I no clock in the set of clocks is reset from outside of P

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or

I add clocks to the set of clocks, or
I add new automata to the set of automata

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅



Completeness
Idea
A set P of paths is complete if p ∈ P reaches the objective and:

I p uses only private actions
I all clocks needed for p are in the set of clocks
I no action in p is in conflict with an invariant not in P

I no clock in the set of clocks is reset from outside of P

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or
I add clocks to the set of clocks, or

I add new automata to the set of automata

A1 ∅ A3 {x} A6,A7 {y} A9 ∅



Completeness
Idea
A set P of paths is complete if p ∈ P reaches the objective and:

I p uses only private actions
I all clocks needed for p are in the set of clocks
I no action in p is in conflict with an invariant not in P

I no clock in the set of clocks is reset from outside of P

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or
I add clocks to the set of clocks, or
I add new automata to the set of automata

A1 ∅ A3,A6 {x} A6,A7 {y} A9 ∅



Completeness continued

A1 ∅ A3,A6 {x} A6,A7 {y} A9 ∅

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths, clocks, or merge sets



Consistency

Idea
A set of sets of paths is not consistent if two different sets of paths
share at least one automaton

Solution to inconsistency: merging

I Select two sets of paths breaking consistency
I merge them (i.e. change the initial partition of the LTSs)

A1 ∅ A3,A6 {x} A6,A7 {y} A9 ∅



Consistency

Idea
A set of sets of paths is not consistent if two different sets of paths
share at least one automaton

Solution to inconsistency: merging

I Select two sets of paths breaking consistency
I merge them (i.e. change the initial partition of the LTSs)

A1 ∅ A3,A6,A7 {x , y} A9 ∅



Consistency continued

A1 ∅ A3,A6,A7 {x , y} A9 ∅

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths or merge sets



Backtracking

Concretisation: limiting exploration when adding paths to a set
In practice:

I only actions from the automata added at the very last
concretisation step can be added,

I adding actions from other automata requires to backtrack (go
back before previous concretisation steps),

I hence we record an history of concretisation steps

Link with merging
Do not merge sets of paths but histories of sets of paths

A1 ∅
A3 ∅
A3,A6 {x}

A6,A7 ∅
A6,A7 {y} A9 ∅



Backtracking

Concretisation: limiting exploration when adding paths to a set
In practice:

I only actions from the automata added at the very last
concretisation step can be added,

I adding actions from other automata requires to backtrack (go
back before previous concretisation steps),

I hence we record an history of concretisation steps

Link with merging
Do not merge sets of paths but histories of sets of paths

A1 ∅
A3,A6,A7 ∅
A3,A6,A7 {x , y} A9 ∅



Laziness

Early finding of a solution
When completeness and consistency are achieved together

I not (necessarily) all automata involved
I not (necessarily) all clocks from involved automata considered

Early detection of absence of solution
When no path can be added at the beginning of an history

I not (necessarily) all automata involved
I not (necessarily) all clocks from involved automata considered
I not (necessarily) all merging done



Laziness

Early finding of a solution
When completeness and consistency are achieved together

I not (necessarily) all automata involved
I not (necessarily) all clocks from involved automata considered

Early detection of absence of solution
When no path can be added at the beginning of an history

I not (necessarily) all automata involved
I not (necessarily) all clocks from involved automata considered
I not (necessarily) all merging done



II. Experimental results



LaRA-T: Lazy Reachability Analyzer

About LaRA-T
I About 2000 lines of Haskell code,
I built over the previous LaRA tool

Implementation choices

I Immediately take full sets of paths (products of TAs)
I Reachability with DBM-based symbolic state exploration
I Add only one automaton/clock at a time
I No shared clocks

Try it!
lara.rts-software.org



Experimental setting

I Runtime comparison with Uppaal
I 24 Core computer with 128GB of memory
I 20 minutes time limit for each instance of each problem

Problems
I CritReg: critical region protocol from PAT benchmarks
I Fddi: token/ring protocol from KRONOS benchmarks
I Fischer: fischer protocol as modeled in Uppaal papers
I Fischer2: broken fischer protocol
I Trains1: train model from Uppaal
I Trains2: same model but with a set of trains instead of a queue
I Trains3: railway crossing road from Berthomieu and Vernadat



Experimental results

Largest instance solved within 20 minutes

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3
LaRA-T ≥ 1500 ≥ 5000 7 ≥ 500 8 13 7

LaRA-T Full 4 15 6 5 8 13 5
Uppaal 46 13 13 65 10 16 6

Automata and clocks considered for solving instances of size n

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3
A C A C A C A C A C A C A C

LaRA-T 3 1 4 5 n + 1 n 3 2 3 3 3 3 n + 2 3
total 2n + 1 n n + 1 3n + 1 n + 1 n n + 1 n n + 1 n n + 1 n n + 2 n + 2



To conclude



Conclusion and future work

What we have done
I An “as generic as possible” algorithm for lazy reachability

analysis in distributed timed systems
I An early prototype giving promising results

What we are doing now

I Compute incomplete partial products in our prototype

What we plan to do next

I Parametric timed systems
I Parallel implementation
I Non-synchronous clocks?


	Introduction
	General principle
	Experimental analysis
	Conclusion

