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Overview of the problem

Distributed systems

I Components
I Communications
I Clocks (can be shared, with invariants) ⇒ Time-non blocking!

Reachability

I Component by component
I For a subset of components
I First step towards model checking

Solution
I Modular/compositional (component by component analysis)
I Lazy (use only components and clocks needed for the analysis)



The formalism

Components
Timed automata

I guards: x ∼ k with k ∈ N and ∼∈ {<,≤,=,≥, >}
I invariants: ∼∈ {<,≤}

(extendable as long as reachability analysis is possible)

Communication
Synchronous product, union for guards, invariants, and resets

Reachability
Marked states



Overview of our algorithm
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I. General principle of the algorithm



Initialization

Partition
Choose a partition of the TAs involved in the reachability objective
B Invariants on marked states

Initial paths
For each element of the partition

I initialize a set of paths with only the empty path in it
I initialize an empty set of clocks

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅



Initialization continued

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅

Finished?
Does this set of set of paths contains a solution?
Yes: we are done
No: add paths, clocks, or merge sets



Completeness
Idea
A set P of paths is complete if p ∈ P reaches the objective and:

I p uses only private actions
I all clocks needed for p are in the set of clocks
I no action in p is in conflict with an invariant not in P

I no clock in the set of clocks is reset from outside of P

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or
I add clocks to the set of clocks, or
I add new automata to the set of automata

A1 ∅ A3 ∅ A6,A7 ∅ A9 ∅
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Completeness continued

A1 ∅ A3,A6 {x} A6,A7 {y} A9 ∅

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths, clocks, or merge sets



Consistency

Idea
A set of sets of paths is not consistent if two different sets of paths
share at least one automaton

Solution to inconsistency: merging

I Select two sets of paths breaking consistency
I merge them (i.e. change the initial partition of the LTSs)

A1 ∅ A3,A6 {x} A6,A7 {y} A9 ∅



Consistency

Idea
A set of sets of paths is not consistent if two different sets of paths
share at least one automaton

Solution to inconsistency: merging

I Select two sets of paths breaking consistency
I merge them (i.e. change the initial partition of the LTSs)

A1 ∅ A3,A6,A7 {x , y} A9 ∅



Consistency continued

A1 ∅ A3,A6,A7 {x , y} A9 ∅

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths or merge sets



Backtracking

Concretisation: limiting exploration when adding paths to a set
In practice:

I only actions from the automata added at the very last
concretisation step can be added,

I adding actions from other automata requires to backtrack (go
back before previous concretisation steps),

I hence we record an history of concretisation steps

Link with merging
Do not merge sets of paths but histories of sets of paths

A1 ∅
A3 ∅
A3,A6 {x}

A6,A7 ∅
A6,A7 {y} A9 ∅



Backtracking

Concretisation: limiting exploration when adding paths to a set
In practice:

I only actions from the automata added at the very last
concretisation step can be added,

I adding actions from other automata requires to backtrack (go
back before previous concretisation steps),

I hence we record an history of concretisation steps

Link with merging
Do not merge sets of paths but histories of sets of paths

A1 ∅
A3,A6,A7 ∅
A3,A6,A7 {x , y} A9 ∅



Laziness

Early finding of a solution
When completeness and consistency are achieved together

I not (necessarily) all automata involved
I not (necessarily) all clocks from involved automata considered

Early detection of absence of solution
When no path can be added at the beginning of an history

I not (necessarily) all automata involved
I not (necessarily) all clocks from involved automata considered
I not (necessarily) all merging done
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II. Experimental results



LaRA-T: Lazy Reachability Analyzer

About LaRA-T
I About 2000 lines of Haskell code,
I built over the previous LaRA tool

Implementation choices

I Immediately take full sets of paths (products of TAs)
I Reachability with DBM-based symbolic state exploration
I Add only one automaton/clock at a time
I No shared clocks

Try it!
lara.rts-software.org



Experimental setting

I Runtime comparison with Uppaal
I 24 Core computer with 128GB of memory
I 20 minutes time limit for each instance of each problem

Problems
I CritReg: critical region protocol from PAT benchmarks
I Fddi: token/ring protocol from KRONOS benchmarks
I Fischer: fischer protocol as modeled in Uppaal papers
I Fischer2: broken fischer protocol
I Trains1: train model from Uppaal
I Trains2: same model but with a set of trains instead of a queue
I Trains3: railway crossing road from Berthomieu and Vernadat



Experimental results

Largest instance solved within 20 minutes

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3
LaRA-T ≥ 1500 ≥ 5000 7 ≥ 500 8 13 7

LaRA-T Full 4 15 6 5 8 13 5
Uppaal 46 13 13 65 10 16 6

Automata and clocks considered for solving instances of size n

CritReg Fddi Fischer Fischer2 Trains1 Trains2 Trains3
A C A C A C A C A C A C A C

LaRA-T 3 1 4 5 n + 1 n 3 2 3 3 3 3 n + 2 3
total 2n + 1 n n + 1 3n + 1 n + 1 n n + 1 n n + 1 n n + 1 n n + 2 n + 2



To conclude



Conclusion and future work

What we have done
I An “as generic as possible” algorithm for lazy reachability

analysis in distributed timed systems
I An early prototype giving promising results

What we are doing now

I Compute incomplete partial products in our prototype

What we plan to do next

I Parametric timed systems
I Parallel implementation
I Non-synchronous clocks?
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