
Lazy Reachability Analysis in Distributed Systems

Loïg Jezequel1,3 and Didier Lime2,3

1Université de Nantes

2École Centrale de Nantes

3IRCCyN, UMR CNRS 6597

CONCUR
August 24, 2016

Québec

Overview of the problem

Distributed systems

I Components
I Communications

Reachability

I Component by component
I For a subset of components
I First step towards model checking

Solution
I Modular/compositional (component by component analysis)
I Lazy (add only the components needed along the analysis)

The formalism

Components
Automata

Communication
Synchronous product

Reachability
Marked states

a

b

b

a

c

c

a

b

c

b

c

b

c

c

b

c

b

c

b

I. General principle of the algorithm

Initialization

Partition
Choose a partition of the LTSs involved in the reachability objective

Initial paths
For each element of the partition initialize a set of paths with only
the empty path in it

Finished?
Does this set of set of paths contains a solution?
Yes: we are done
No: add paths or merge sets

Initialization

Partition
Choose a partition of the LTSs involved in the reachability objective

Initial paths
For each element of the partition initialize a set of paths with only
the empty path in it

Finished?
Does this set of set of paths contains a solution?
Yes: we are done
No: add paths or merge sets

Completeness

Idea
A set of paths is not complete if no path reaches the (local)
objective using only private actions

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or
I add new automata to the set of automata

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths or merge sets

Completeness

Idea
A set of paths is not complete if no path reaches the (local)
objective using only private actions

Solution to incompleteness: concretisation

I Add new paths to the incomplete set, or
I add new automata to the set of automata

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths or merge sets

Consistency

Idea
A set of sets of paths is not consistent if two paths from different
sets share actions

Solution to inconsistency: merging

I Select two sets of paths breaking consistency
I merge them (i.e. change the initial partition of the LTSs)

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths or merge sets

Consistency

Idea
A set of sets of paths is not consistent if two paths from different
sets share actions

Solution to inconsistency: merging

I Select two sets of paths breaking consistency
I merge them (i.e. change the initial partition of the LTSs)

Finished?
Is this set of set of paths giving a solution?
Yes: we are done
No: add paths or merge sets

Backtracking

Concretisation: limiting exploration when adding paths to a set
In practice:

I only actions from the automata added at the very last
concretisation step can be added,

I adding actions from other automata requires to backtrack (go
back before previous concretisation steps),

I hence we record an history of concretisation steps

Link with merging
Do not merge sets of paths but histories of sets of paths

Backtracking

Concretisation: limiting exploration when adding paths to a set
In practice:

I only actions from the automata added at the very last
concretisation step can be added,

I adding actions from other automata requires to backtrack (go
back before previous concretisation steps),

I hence we record an history of concretisation steps

Link with merging
Do not merge sets of paths but histories of sets of paths

Laziness

Early finding of a solution
When completeness and consistency are achieved together

I not (necessarily) all automata involved

Early detection of absence of solution
When no path can be added at the beginning of an history

I not (necessarily) all automata involved
I not (necessarily) all merging done

Laziness

Early finding of a solution
When completeness and consistency are achieved together

I not (necessarily) all automata involved

Early detection of absence of solution
When no path can be added at the beginning of an history

I not (necessarily) all automata involved
I not (necessarily) all merging done

II. Overview on an example

A distributed system and two problems

s0

L1

s2

s1

s3

α

a

β

b

δ

s4

L2

s6s5
α

β
γ

s7

L3

s9s8

γ δ

γ

s10

L4

s11

γγ

RP1
{(s3, s9)}

RP2
{(s9, s11)}

Lazily solving a first problem (with a solution)

(s0, s7)

L1||L3

(s2, s7)

(s1, s7)

(s3, s7) (s3, s9)

α

a

β

b

δ

(s2, s8)

(s0, s8)

(s1, s8)

(s3, s8)

α

a

β

b

(s2, s9)

(s0, s9)

(s1, s9)

(s3, s9)

α

a

β

b

γγ

γγ

γγ

γγ

(s0, s7)

π1

(s1, s7)

(s3, s7)

(s3, s9)

α

β

δ

Lazily solving a first problem (with a solution)

s0

L1

s2

s1

s3

α

a

β

b

δ

s4

L2

s6s5
α

β
γ

s7

L3

s9s8

γ δ

γ

s10

L4

s11

γγ

RP1
{(s3, s9)}

RP2
{(s9, s11)}

(s0, s7)

π2

(s2, s7) (s1, s7) (s3, s7) (s3, s9)
a b β δ

Lazily solving a second problem (with no solution)

s0

L1

s2

s1

s3

α

a

β

b

δ

s4

L2

s6s5
α

β
γ

s7

L3

s9s8

γ δ

γ

s10

L4

s11

γγ

RP1
{(s3, s9)}

RP2
{(s9, s11)}

III. Experimental results

LaRA: Lazy Reachability Analyzer

About LaRA
I About 500 lines of Haskell code

Implementation choices

I Immediately take full sets of paths
I Add only one automaton at a time

Try it!
lara.rts-software.org

The rivals

Three tools
I PMC: Partial model checking1

I On the fly model checking with CADP2

I LoLA: Model checking Petri nets3

Preliminary results
LoLA clearly outperforms the other tools on the particular problems
we consider

1Lang and Mateescu. Partial Model Checking Using Networks of Labelled
Transition Systems and Boolean Equation Systems. LMCS, 2013.

2http://cadp.inria.fr/
3http://service-technology.org/lola/

http://cadp.inria.fr/
http://service-technology.org/lola/

Benchmarks

Selected from a standard set of benchmarks4.

Model Description Size Property Verified?
Cyclic Milner’s cyclic

scheduler.
Number of
tasks.

One task in two
in waiting state to-
gether.

Yes.

DAC Divide and con-
quer computa-
tion.

Maximal
number of
processes.

A process can fin-
ish the task alone.

Yes.

Philo Dinning
philosophers.

Number of
philosophers.

One philosopher in
two can eat to-
gether.

Yes for even sizes.
No for odd sizes.

PhiloDico Variation of
Philo.

idem. idem. idem.

PhiloSync Variation of
Philo.

idem. idem. idem.

4Corbett. Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Trans. Software Eng. 1996.

Test setting

I Runtime comparison
I Problems from size 5 to 50000
I 24 Core computer with 128GB of memory
I 20 minutes time limit for each instance of each problem

Promising results

Size
Cyclic DAC Philo PhiloDico PhiloSync

LaRA LoLA LaRA LoLA LaRA LoLA LaRA LoLA LaRA LoLA
15 0.01s <0.01s 0.01s <0.01s 0.04s 28.47s 0.10s 30.92s 0.02s <0.01s
16 0.01s <0.01s 0.01s <0.01s 0.04s <0.01s 0.05s <0.01s 0.02s <0.01s
17 0.01s <0.01s 0.01s <0.01s 0.05s 327.55s 0.10s 349.38s 0.02s 0.02s
18 0.01s <0.01s 0.02s <0.01s 0.04s <0.01s 0.06s <0.01s 0.03s <0.01s
19 0.01s <0.01s 0.01s <0.01s 0.05s Timeout 0.10s Timeout 0.02s 0.05s
24 0.02s <0.01s 0.01s <0.01s 0.05s <0.01s 0.08s <0.01s 0.03s <0.01s
25 0.02s <0.01s 0.01s <0.01s 0.06s 0.13s 0.03s 0.97s
35 0.03s <0.01s 0.02s <0.01s 0.08s 0.15s 0.04s 182.54s
45 0.03s <0.01s 0.02s <0.01s 0.11s 0.17s 0.06s Timeout
1000 0.57s 2.55s 0.35s 0.56s 1.90s 2.44s 2.34s 2.50s 1.11s 2.38s
3000 2.68s 64.32s 1.08s 1.15s 6.87s 64.84s 8.56s 64.55s 4.82s 64.31s
6000 8.07s 514.89s 2.25s 1.62s 17.86s 520.86s 21.32s 523.54s 13.83s 519.21s
8000 13.37s Timeout 2.97s 2.79s 27.63s Timeout 32.21s Timeout 22.15s Timeout
10000 20.86s 3.72s 3.14s 39.73s 44.69s 33.10s
30000 234.97s 11.24s 9.46s 334.79s 346.36s 319.15s
50000 687.68s 19.10s 19.75s 1063.69s 1072.71s 946.86s

To conclude

Conclusion and future work

What we have done
I An “as generic as possible” algorithm for lazy reachability

analysis in distributed systems
I An early prototype giving promising results

What we are doing now

I Distributed systems with time (i.e. networks of timed
automata)

I Compute incomplete partial products in our prototype

What we plan to do next

I Parametric timed systems
I Parallel implementation

	Introduction
	General principle
	An example
	Experimental analysis
	Conclusion

