Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives

Distributed Optimal Planning : an Approach by Weighted Automata Calculus

Loïg Jezequel¹, Éric Fabre²

AlgoGT 2011

¹ENS Cachan Bretagne ²INRIA Rennes Bretagne Atlantique

Motivation 00	Problem statement	Weighted language calculus	Implementation 00	Conclusion 00	Perspectives 0000
Outline					

- Weighted language calculus
- Implementation into WA calculus
- **5** Conclusion

Motivation ●0	Problem statement 0000	Weighted language calculus	Implementation	Conclusion 00	Perspectives 0000

Motivation: optimal planning

Objective: find an action strategy of *minimal cost* to go from system state $(v_n)_{1 \le n \le N}$ to one state in the target $G = \times_n G_n$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
0•	0000	000000	00	00	0000

A distributed optimal planning problem

Desired features: a distributed resolution

- each component looks for a local plan
- ensure that local plans are *compatible*
- and that their merging yields an optimal global plan
- distributed constraint solving + distributed optimization

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
0•	0000	000000	00	00	0000

A distributed optimal planning problem

Desired features: a distributed resolution

- each component looks for a local plan
- ensure that local plans are *compatible*
- and that their merging yields an optimal global plan
- distributed constraint solving + distributed optimization

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	●000	000000	00	00	
Outlin	۵				

1 Motivation

- 2 Problem statement
- 3 Weighted language calculus
- Implementation into WA calculus
- 5 Conclusion
- 6 Perpectives: relations to game theory?

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	0000				

Components = weighted automata

Weighted automaton: $A = (S, \Sigma, I, F, c, c_i, c_f)$

- S=states, Σ =actions, I=initial states, F=final states
- cost function on transitions: $c : S \times \Sigma \times S \to \mathbb{K}$ $t = (s, \sigma, s') \Rightarrow c(t)$ is the cost for firing t
- semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1}) = (\mathbb{R}^+ \cup \{+\infty\}, \min, +, +\infty, 0)$
- $c_i: I \to \mathbb{K} \setminus \{\overline{0}\}$ and $c_f: F \to \mathbb{K} \setminus \{\overline{0}\}$ are state costs

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	0000				

Interactions = product of weighted automata

Synchronous product: $\mathcal{A} = \mathcal{A}_1 \times \mathcal{A}_2$

- \bullet transitions synchronize on common action labels $\Sigma_1\cap\Sigma_2$
- costs of synchronized actions are added
- transitions carrying a private action label remain private

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	0000				

Problem formulation

Language of a WA (= all weighted plans):

$$\mathcal{L}(\mathcal{A}) = \sum_{u \in \Sigma^*} \mathcal{L}(\mathcal{A}, u) \cdot u$$

$$\mathcal{L}(\mathcal{A}, u) = \min_{\substack{t_1 t_2 \dots t_n \models \mathcal{A} \\ u = \sigma(t_1 \dots t_n)}} c_i({}^{\bullet}t_1) + c(t_1) + \dots + c(t_n) + c_f(t_n^{\bullet})$$

Problem:

given the network of weighted automata $\mathcal{A} = \mathcal{A}_1 \times ... \times \mathcal{A}_N$ determine the run(s) u^* of \mathcal{A} with minimal weight:

$$u^* = \arg\min_{u\in\Sigma^*} \mathcal{L}(\mathcal{A}, u)$$

Challenge:

find these runs with a distributed procedure, without computing ${\mathcal A}$ nor ${\mathcal L}({\mathcal A})...$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	0000				

Problem formulation

Language of a WA (= all weighted plans):

$$\mathcal{L}(\mathcal{A}) = \sum_{u \in \Sigma^*} \mathcal{L}(\mathcal{A}, u) \cdot u$$

$$\mathcal{L}(\mathcal{A}, u) = \min_{\substack{t_1 t_2 \dots t_n \models \mathcal{A} \\ u = \sigma(t_1 \dots t_n)}} c_i({}^{\bullet}t_1) + c(t_1) + \dots + c(t_n) + c_f(t_n^{\bullet})$$

Problem:

given the network of weighted automata $\mathcal{A} = \mathcal{A}_1 \times ... \times \mathcal{A}_N$ determine the run(s) u^* of \mathcal{A} with minimal weight:

$$u^* = \arg\min_{u \in \Sigma^*} \mathcal{L}(\mathcal{A}, u)$$

Challenge:

find these runs with a distributed procedure, without computing ${\mathcal A}$ nor ${\mathcal L}({\mathcal A})...$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	0000				

Problem formulation

Language of a WA (= all weighted plans):

$$\mathcal{L}(\mathcal{A}) = \sum_{u \in \Sigma^*} \mathcal{L}(\mathcal{A}, u) \cdot u$$

$$\mathcal{L}(\mathcal{A}, u) = \min_{\substack{t_1 t_2 \dots t_n \models \mathcal{A} \\ u = \sigma(t_1 \dots t_n)}} c_i({}^{\bullet}t_1) + c(t_1) + \dots + c(t_n) + c_f(t_n^{\bullet})$$

Problem:

given the network of weighted automata $\mathcal{A} = \mathcal{A}_1 \times ... \times \mathcal{A}_N$ determine the run(s) u^* of \mathcal{A} with minimal weight:

$$u^* = \arg\min_{u \in \Sigma^*} \mathcal{L}(\mathcal{A}, u)$$

Challenge:

find these runs with a distributed procedure, without computing ${\mathcal A}$ nor ${\mathcal L}({\mathcal A})...$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	0000	●00000	00	00	0000
Outline					

1 Motivation

- Problem statement
- Weighted language calculus
- Implementation into WA calculus
- 5 Conclusion
- 6 Perpectives: relations to game theory?

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	0000	00000	00	00	0000

Assembling local plans = product of weighted languages

Product:

- $\mathcal{L}_1, \mathcal{L}_2$ weighted languages on Σ_1 and Σ_2 resp.
- $\mathcal{L}_1 \times_L \mathcal{L}_2$ is a weighted language on $\Sigma_1 \cup \Sigma_2$

$$(\mathcal{L}_1 imes_L \mathcal{L}_2)(u) = \mathcal{L}_1(u_{|\Sigma_1}) + \mathcal{L}_2(u_{|\Sigma_2})$$

Theorem 1

$$\mathcal{L}(\mathcal{A}_1 \times \ldots \times \mathcal{A}_N) = \mathcal{L}(\mathcal{A}_1) \times_L \ldots \times_L \mathcal{L}(\mathcal{A}_N)$$

Consequence: Global plans have a factorized representation.

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	0000	00000	00	00	0000

Assembling local plans = product of weighted languages

Product:

- $\mathcal{L}_1, \mathcal{L}_2$ weighted languages on Σ_1 and Σ_2 resp.
- $\mathcal{L}_1 \times_L \mathcal{L}_2$ is a weighted language on $\Sigma_1 \cup \Sigma_2$

$$(\mathcal{L}_1 imes_L \mathcal{L}_2)(u) = \mathcal{L}_1(u_{|\Sigma_1}) + \mathcal{L}_2(u_{|\Sigma_2})$$

Theorem 1

$$\mathcal{L}(\mathcal{A}_1 imes ... imes \mathcal{A}_N) = \mathcal{L}(\mathcal{A}_1) imes_L ... imes_L \mathcal{L}(\mathcal{A}_N)$$

Consequence: Global plans have a factorized representation.

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
		00000			

Local view of global plans = projection of a WL

Projection:

- $\bullet \ \mathcal{L}$ weighted language on $\Sigma,$ and $\Sigma' \subseteq \Sigma$
- $\Pi_{\Sigma'}(\mathcal{L})$ is the weighted language on Σ'

$$[\Pi_{\Sigma'}(\mathcal{L})](v) = \min_{\substack{u \in \Sigma^* \\ u_{|\Sigma'} = v}} \mathcal{L}(u)$$

• \Rightarrow weight minimization over words *u* with same projection *v*

00 0000 000000 00 000 0000	Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	00	0000	000000	00	00	0000

Relating optimal planning to projection

Objective: for $\mathcal{A} = \times_{i \in I} \mathcal{A}_i$ compute the $\mathcal{L}'_i = \prod_{\Sigma_i} [\mathcal{L}(\mathcal{A})]$

 u^* optimal word/plan in $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}(\mathcal{A}, u^*) = w$ $\Rightarrow u_i^* = u_{|\Sigma_i}$ optimal word in $\mathcal{L}'_i = \prod_{\Sigma_i} [\mathcal{L}(\mathcal{A})]$, with $\mathcal{L}'_i(u_i^*) = w$ and conversely!

00 0000 000000 00 000 0000	Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
	00	0000	000000	00	00	0000

Relating optimal planning to projection

Objective: for $\mathcal{A} = \times_{i \in I} \mathcal{A}_i$ compute the $\mathcal{L}'_i = \prod_{\Sigma_i} [\mathcal{L}(\mathcal{A})]$

 u^* optimal word/plan in $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}(\mathcal{A}, u^*) = w$ $\Rightarrow u_i^* = u_{|\Sigma_i}$ optimal word in $\mathcal{L}'_i = \prod_{\Sigma_i} [\mathcal{L}(\mathcal{A})]$, with $\mathcal{L}'_i(u_i^*) = w$ and conversely!

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	0000	000000	00	00	0000

The key to distributed optimal planning

Theorem 2

Let $\mathcal{L}_1, \mathcal{L}_2$ be weighted languages on Σ_1, Σ_2 resp., and let $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma_3 \subseteq \Sigma_1 \cup \Sigma_2$, then

$$\Pi_{\Sigma_3}(\mathcal{L}_1 \times_L \mathcal{L}_2) = \Pi_{\Sigma_3}(\mathcal{L}_1) \times_L \Pi_{\Sigma_3}(\mathcal{L}_2)$$

- allows us to compute the projections Π_{Σi}(L) by local computations
- Example: with $\Sigma_3 = \Sigma_1$, one has

$$\Pi_{\Sigma_1}(\mathcal{L}_1 \times_L \mathcal{L}_2) = \mathcal{L}_1 \times_L \Pi_{\Sigma_1 \cap \Sigma_2}(\mathcal{L}_2)$$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	0000	000000	00	00	0000

The key to distributed optimal planning

Theorem 2

Let $\mathcal{L}_1, \mathcal{L}_2$ be weighted languages on Σ_1, Σ_2 resp., and let $\Sigma_1 \cap \Sigma_2 \subseteq \Sigma_3 \subseteq \Sigma_1 \cup \Sigma_2$, then

$$\Pi_{\Sigma_3}(\mathcal{L}_1 \times_L \mathcal{L}_2) = \Pi_{\Sigma_3}(\mathcal{L}_1) \times_L \Pi_{\Sigma_3}(\mathcal{L}_2)$$

- allows us to compute the projections Π_{Σi}(L) by local computations
- Example: with $\Sigma_3 = \Sigma_1$, one has

$$\Pi_{\Sigma_1}(\mathcal{L}_1 \times_L \mathcal{L}_2) = \mathcal{L}_1 \times_L \Pi_{\Sigma_1 \cap \Sigma_2}(\mathcal{L}_2)$$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		00000●	00	00	0000

Interaction graph of components: defined by shared actions Example: assume $\Sigma_1 \cap \Sigma_3 \subseteq \Sigma_2$

 $\begin{array}{cccc} A_1 & A_2 & A_3 \\ \circ & \circ & \circ & \circ \end{array}$

Important : we assume the interaction graph is a tree

Principles of a message passing algorithm: (example)

• By Thm 1 : $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)$

• By Thm 2:

- $\Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A})] = \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)]$
 - $= \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_1)] \times_L \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)]$
 - $= \mathcal{L}(\mathcal{A}_1) \times_L \Pi_{\Sigma_1} \circ \Pi_{\Sigma_2} [\mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)]$
 - $= \mathcal{L}(\mathcal{A}_1) \times_L \Pi_{\Sigma_1 \cap \Sigma_2} [\mathcal{L}(\mathcal{A}_2) \times_L \Pi_{\Sigma_2 \cap \Sigma_3} [\mathcal{L}(\mathcal{A}_3)]]$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		00000●	00	00	0000

Interaction graph of components: defined by shared actions Example: assume $\Sigma_1 \cap \Sigma_3 \subseteq \Sigma_2$

 $\begin{array}{cccc} A_1 & A_2 & A_3 \\ \circ & \circ & \circ \end{array}$

Important : we assume the interaction graph is a tree

Principles of a message passing algorithm: (example)

- By Thm 1 : $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)$
- By Thm 2:

 $\begin{aligned} \Pi_{\Sigma_{1}}[\mathcal{L}(\mathcal{A})] &= \Pi_{\Sigma_{1}}[\mathcal{L}(\mathcal{A}_{1}) \times_{L} \mathcal{L}(\mathcal{A}_{2}) \times_{L} \mathcal{L}(\mathcal{A}_{3})] \\ &= \Pi_{\Sigma_{1}}[\mathcal{L}(\mathcal{A}_{1})] \times_{L} \Pi_{\Sigma_{1}}[\mathcal{L}(\mathcal{A}_{2}) \times_{L} \mathcal{L}(\mathcal{A}_{3})] \\ &= \mathcal{L}(\mathcal{A}_{1}) \times_{L} \Pi_{\Sigma_{1}} \circ \Pi_{\Sigma_{2}}[\mathcal{L}(\mathcal{A}_{2}) \times_{L} \mathcal{L}(\mathcal{A}_{3})] \\ &= \mathcal{L}(\mathcal{A}_{1}) \times_{L} \Pi_{\Sigma_{1} \cap \Sigma_{2}}[\mathcal{L}(\mathcal{A}_{2}) \times_{L} \Pi_{\Sigma_{2} \cap \Sigma_{3}}[\mathcal{L}(\mathcal{A}_{3})]] \end{aligned}$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		00000●	00	00	0000

Interaction graph of components: defined by shared actions Example: assume $\Sigma_1 \cap \Sigma_3 \subseteq \Sigma_2$

 $A_1 \quad A_2 \quad A_3$

Important : we assume the interaction graph is a tree

Principles of a message passing algorithm: (example)

- By Thm 1 : $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)$
- By Thm 2: $(\Sigma_2 \cup \Sigma_3) \cap \Sigma_1 \subseteq \Sigma_1$

 $\Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A})] = \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)]$

 $= \Pi_{\Sigma_{1}}[\mathcal{L}(\mathcal{A}_{1})] \times_{L} \Pi_{\Sigma_{1}}[\mathcal{L}(\mathcal{A}_{2}) \times_{L} \mathcal{L}(\mathcal{A}_{3})]$ $= \mathcal{L}(\mathcal{A}_{1}) \times_{L} \Pi_{\Sigma_{1}} \circ \Pi_{\Sigma_{2}}[\mathcal{L}(\mathcal{A}_{2}) \times_{L} \mathcal{L}(\mathcal{A}_{3})]$ $= \mathcal{L}(\mathcal{A}_{1}) \times_{L} \Pi_{\Sigma_{1} \cap \Sigma_{2}}[\mathcal{L}(\mathcal{A}_{2}) \times_{L} \Pi_{\Sigma_{2} \cap \Sigma_{3}}[\mathcal{L}(\mathcal{A}_{3})]]$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		00000●	00	00	0000

Interaction graph of components: defined by shared actions Example: assume $\Sigma_1 \cap \Sigma_3 \subseteq \Sigma_2$

 $A_1 \quad A_2 \quad A_3$

Important : we assume the interaction graph is a tree

Principles of a message passing algorithm: (example)

- By Thm 1 : $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)$
- By Thm 2: $(\Sigma_2 \cup \Sigma_3) \cap \Sigma_1 = \Sigma_2 \cap \Sigma_1$

$$\Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A})] = \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)]$$

- $= \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_1)] \times_L \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)] \\ = \mathcal{L}(\mathcal{A}_1) \times_L \Pi_{\Sigma_1} \circ \Pi_{\Sigma_2}[\mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)]$
- $= \mathcal{L}(\mathcal{A}_1) \times_L \Pi_{\Sigma_1 \cap \Sigma_2} [\mathcal{L}(\mathcal{A}_2) \times_L \Pi_{\Sigma_2 \cap \Sigma_3} [\mathcal{L}(\mathcal{A}_3)]]$

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		00000●	00	00	0000

Interaction graph of components: defined by shared actions Example: assume $\Sigma_1 \cap \Sigma_3 \subseteq \Sigma_2$

 $\begin{array}{ccc} A_1 & A_2 & A_3 \\ \circ & & \circ & \circ \end{array}$

Important : we assume the interaction graph is a tree

Principles of a message passing algorithm: (example)

- By Thm 1 : $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3)$
- By Thm 2:

$$\begin{split} \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A})] &= & \Pi_{\Sigma_1}[\ \mathcal{L}(\mathcal{A}_1) \times_L \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3) \] \\ &= & \Pi_{\Sigma_1}[\mathcal{L}(\mathcal{A}_1)] \times_L \Pi_{\Sigma_1}[\ \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3) \] \\ &= & \mathcal{L}(\mathcal{A}_1) \times_L \Pi_{\Sigma_1} \circ \Pi_{\Sigma_2}[\ \mathcal{L}(\mathcal{A}_2) \times_L \mathcal{L}(\mathcal{A}_3) \] \\ &= & \mathcal{L}(\mathcal{A}_1) \times_L \Pi_{\Sigma_1 \cap \Sigma_2}[\ \mathcal{L}(\mathcal{A}_2) \times_L \Pi_{\Sigma_2 \cap \Sigma_3}[\mathcal{L}(\mathcal{A}_3)] \] \end{split}$$

Motivation 00	Problem statement 0000	Weighted language calculus	Implementation ●O	Conclusion 00	Perspectives
Outline					

1 Motivation

- 2 Problem statement
- 3 Weighted language calculus
- Implementation into WA calculus
- 5 Conclusion
- 6 Perpectives: relations to game theory?

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
			00		

Implementation is needed and possible

Languages are potentially infinite objects: languages are not usable in practice.

Solution:

- work directly with automata;
- projection: *ϵ*-reduction (+ determinization and minimization);
- product: synchronous product of weighted automata.

Motiva 00	tion Probler 0000	n statement	Weighte 000000	d language c	alculus Im oo	plementation	Conclusion 00	Perspectives 0000

Implementation is needed and possible

Languages are potentially infinite objects: languages are not usable in practice.

Solution:

- work directly with automata;
- projection: ϵ -reduction (+ determinization and minimization);
- product: synchronous product of weighted automata.

Motivation 00	Problem statement	Weighted language calculus	Implementation 00	Conclusion ●0	Perspectives 0000
Outline					

1 Motivation

- 2 Problem statement
- ③ Weighted language calculus
- Implementation into WA calculus

5 Conclusion

6 Perpectives: relations to game theory?

Motivation 00	Problem statement	Weighted language calculus 000000	Implementation 00	Conclusion ○●	Perspectives 0000
Conclus	ion				

Main features:

- unsupervised distributed search of an optimal plan
- all possible/optimal plans are computed
- global plans are computed as tuples of partially synchronized sequences, *i.e.* as *partial orders* of actions

Motivation 00	Problem statement	Weighted language calculus 000000	Implementation 00	Conclusion 00	Perspectives ●000
Outline					

1 Motivation

- 2 Problem statement
- 3 Weighted language calculus
- Implementation into WA calculus
- 5 Conclusion

Motivat	ion Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00	0000	000000	00	00	0000
Pla	nning as games	s: why?			

Improve fairness between agents:

- optimizing the sum may penalize some agent;
- is it possible to be fair?

Reduce communications:

- currently messages are potentially very large (contain all plans);
- in a truly distributed setting they may be numerous;
- is it possible to reduce it?

Game theory may help in solving these issues...

Motivation 00	Problem statement	Weighted language calculus	Implementation 00	Conclusion 00	Perspectives 0●00
Plannin	g as games:	why?			

Improve fairness between agents:

- optimizing the sum may penalize some agent;
- is it possible to be fair?

Reduce communications:

- currently messages are potentially very large (contain all plans);
- in a truly distributed setting they may be numerous;
- is it possible to reduce it?

Game theory may help in solving these issues...

Motiva 00	tion Problem 0000	statement Weig 0000	ited language calculus	Implementation 00	Conclusion 00	Perspectives 0●00
Pla	nning as	games: w	ıy?			

Improve fairness between agents:

- optimizing the sum may penalize some agent;
- is it possible to be fair?

Reduce communications:

- currently messages are potentially very large (contain all plans);
- in a truly distributed setting they may be numerous;
- is it possible to reduce it?

Game theory may help in solving these issues...

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		000000	00	00	00●0
D					

Planning as games: how?

"Static" games:

- use for fairness? look for equilibria?
- complete or incomplete information?

An example:

- one player per automaton;
- a local plan in automaton A_i is a strategy for player i;
- each player has to maximize her payoff (defined below).

 p_i is the strategy/local plan chosen by player *i*, and *p* is any global plan corresponding to all players choice (if exists).

Different possible payoffs:

- payoff for any player = 1/c(p) (or 0 if p does not exist);
- payoff for player $i = 1/c(p_i)$ (or 0 if p does not exist).

Motivation	Problem statement	Weighted language calculus	Implementation	Conclusion	Perspectives
00		000000	00	00	00●0
Planni	ng as games	: how?			

"Static" games:

- use for fairness? look for equilibria?
- complete or incomplete information?

An example:

- one player per automaton;
- a local plan in automaton A_i is a strategy for player i;
- each player has to maximize her payoff (defined below).

 p_i is the strategy/local plan chosen by player *i*, and *p* is any global plan corresponding to all players choice (if exists).

Different possible payoffs:

- payoff for any player = 1/c(p) (or 0 if p does not exist);
- payoff for player $i = 1/c(p_i)$ (or 0 if p does not exist).

Motivation 00	Problem statement	Weighted language calculus 000000	Implementation 00	Conclusion 00	Perspectives 0000
Plannin	g as games:	how?			

"Dynamic" games:

- dynamic construction of local plans;
- all agents have to agree on a synchronization word;
- to deal with message size/quantity?

