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Motivation: optimal planning
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Objective: find an action strategy of minimal cost to go from
system state (vn)1≤n≤N to one state in the target G = ×nGn
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A distributed optimal planning problem

interactions

comp. 1 comp. 2 comp. 3
v"3

G3

a’ 1

V4

v4

a 2

v’4

G4

a’ 2

V1 V2

v1

v’1

a 1

v2

v’2

a 3

G1 G2

v1 v’2

Variables :

initial state

actions

goal states

. . .

. . .

G. . .
N

VN

vN

V3

v3

v’3

Desired features: a distributed resolution

each component looks for a local plan

ensure that local plans are compatible

and that their merging yields an optimal global plan

distributed constraint solving + distributed optimization
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Components = weighted automata

Weighted automaton: A = (S ,Σ, I ,F , c , ci , cf )

S=states, Σ=actions, I=initial states, F=final states

cost function on transitions: c : S × Σ × S → K

t = (s, σ, s ′) ⇒ c(t) is the cost for firing t

semiring (K,⊕,⊗, 0̄, 1̄) = (R+ ∪ {+∞},min,+,+∞, 0)

ci : I → K \{0̄} and cf : F → K \{0̄} are state costs
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Interactions = product of weighted automata

Synchronous product: A = A1 ×A2

transitions synchronize on common action labels Σ1 ∩ Σ2

costs of synchronized actions are added

transitions carrying a private action label remain private
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Problem formulation

Language of a WA (= all weighted plans):

L(A) =
∑

u∈Σ∗

L(A, u) · u

L(A, u) = min
t1t2...tn |= A
u = σ(t1...tn)

ci (
•t1) + c(t1) + ... + c(tn) + cf (t

•
n)

Problem:

given the network of weighted automata A = A1 × ... ×AN

determine the run(s) u∗ of A with minimal weight:

u∗ = arg min
u∈Σ∗

L(A, u)

Challenge:

find these runs with a distributed procedure, without
computing A nor L(A)...
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Assembling local plans = product of weighted languages

Product:

L1,L2 weighted languages on Σ1 and Σ2 resp.

L1 ×L L2 is a weighted language on Σ1 ∪ Σ2

(L1 ×L L2)(u) = L1(u|Σ1
) + L2(u|Σ2

)

u

α βγ γ γ γ

α βδ δ δ δγ γ γ γ

α βδ δ δ δ

u1

u2

Σ1
Π

Σ2
Π

3.5

5.1

8.6

Theorem 1

L(A1 × ... ×AN) = L(A1) ×L ... ×L L(AN)

Consequence: Global plans have a factorized representation.
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Local view of global plans = projection of a WL

Projection:

L weighted language on Σ, and Σ′ ⊆ Σ

ΠΣ′(L) is the weighted language on Σ′

[ΠΣ′(L)](v) = min
u ∈ Σ∗

u|Σ′ = v

L(u)

2.2

βα γ δ δδ γ

α δδδ βγ γ

α βγ δ δ δ γ

βα
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v

Π Σ’

3.5
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2.2

⇒ weight minimization over words u with same projection v
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Relating optimal planning to projection

Objective: for A = ×i∈IAi compute the L′
i
= ΠΣi

[L(A)]
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L’2 [L(A)]= Π
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Σ

L(A)

1
[L(A)]= ΠL’1 Σ3

L’3 [L(A)]= Π

u∗ optimal word/plan in L(A), with L(A, u∗) = w

⇒ u∗
i

= u|Σi
optimal word in L′

i
= ΠΣi

[L(A)], with L′
i
(u∗

i
) = w

and conversely!
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The key to distributed optimal planning

Theorem 2

Let L1,L2 be weighted languages on Σ1,Σ2 resp.,
and let Σ1 ∩ Σ2 ⊆ Σ3 ⊆ Σ1 ∪ Σ2, then

ΠΣ3
(L1 ×L L2) = ΠΣ3

(L1) ×L ΠΣ3
(L2)

allows us to compute the projections ΠΣi
(L) by local

computations

Example: with Σ3 = Σ1, one has

ΠΣ1
(L1 ×L L2) = L1 ×L ΠΣ1∩Σ2

(L2)



Motivation Problem statement Weighted language calculus Implementation Conclusion Perspectives

The key to distributed optimal planning

Theorem 2

Let L1,L2 be weighted languages on Σ1,Σ2 resp.,
and let Σ1 ∩ Σ2 ⊆ Σ3 ⊆ Σ1 ∪ Σ2, then

ΠΣ3
(L1 ×L L2) = ΠΣ3

(L1) ×L ΠΣ3
(L2)

allows us to compute the projections ΠΣi
(L) by local

computations

Example: with Σ3 = Σ1, one has

ΠΣ1
(L1 ×L L2) = L1 ×L ΠΣ1∩Σ2

(L2)



Motivation Problem statement Weighted language calculus Implementation Conclusion Perspectives

Dynamic programming in space

Interaction graph of components : defined by shared actions
Example: assume Σ1 ∩ Σ3 ⊆ Σ2

1 A2 A3A

Important : we assume the interaction graph is a tree

Principles of a message passing algorithm: (example)

By Thm 1 : L(A) = L(A1) ×L L(A2) ×L L(A3)

By Thm 2:

ΠΣ1
[L(A)] = ΠΣ1

[ L(A1) ×L L(A2) ×L L(A3) ]

= ΠΣ1
[L(A1)] ×L ΠΣ1

[ L(A2) ×L L(A3) ]

= L(A1) ×L ΠΣ1
◦ ΠΣ2

[ L(A2) ×L L(A3) ]

= L(A1) ×L ΠΣ1∩Σ2
[ L(A2) ×L ΠΣ2∩Σ3

[L(A3)] ]
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Implementation is needed and possible

Languages are potentially infinite objects:
languages are not usable in practice.

Solution:

work directly with automata;

projection: ǫ-reduction (+ determinization and minimization);

product: synchronous product of weighted automata.
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Conclusion

Main features:

unsupervised distributed search of an optimal plan

all possible/optimal plans are computed

global plans are computed as tuples of partially synchronized
sequences, i.e. as partial orders of actions
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Planning as games: why?

Improve fairness between agents:

optimizing the sum may penalize some agent;

is it possible to be fair?

Reduce communications:

currently messages are potentially very large (contain all
plans);

in a truly distributed setting they may be numerous;

is it possible to reduce it?

Game theory may help in solving these issues. . .
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Planning as games: how?

”Static” games:

use for fairness? look for equilibria?

complete or incomplete information?

An example:

one player per automaton;

a local plan in automaton Ai is a strategy for player i ;

each player has to maximize her payoff (defined below).

pi is the strategy/local plan chosen by player i , and p is any global
plan corresponding to all players choice (if exists).

Different possible payoffs:

payoff for any player = 1/c(p) (or 0 if p does not exist);

payoff for player i = 1/c(pi ) (or 0 if p does not exist).
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Planning as games: how?

”Dynamic” games:

dynamic construction of local plans;

all agents have to agree on a synchronization word;

to deal with message size/quantity?
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