
Factored Planning: From Automata to Petri Nets

Loïg Jezequel1, Eric Fabre2, Victor Khomenko3

ACSD, July 9, 2013

1ENS Cachan Bretagne
2INRIA Rennes
3Newcastle University

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Goal

Find a plan: a sequence of actions (with minimal cost) moving the
system from its initial state to one of its goal states

2 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Each component is a planning
problem with its own resources and
actions

The components interact by
resources and/or actions

Goal

Find a set of compatible local plans: they can be interleaved into a
global plan

3 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Each component is a planning
problem with its own resources and
actions

The components interact by
resources and/or actions

Goal

Find a set of compatible local plans: they can be interleaved into a
global plan

3 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Components ⇒ Automata
Plans ⇒ Words
Interaction ⇒ Synchronous product

New goal

Given A = A1|| . . . ||An, �nd a word

in A by local computations

A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

Why?

1 any word w of A can be projected into a word wi of ΠΣi
(A)

2 any word wi of ΠΣi
(A) is the projection of a word w of A

⇒ Easy extraction of a word from A by local searches

4 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Components ⇒ Automata
Plans ⇒ Words
Interaction ⇒ Synchronous product

New goal

Given A = A1|| . . . ||An, �nd a word

in A by local computations

A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

Why?

1 any word w of A can be projected into a word wi of ΠΣi
(A)

2 any word wi of ΠΣi
(A) is the projection of a word w of A

⇒ Easy extraction of a word from A by local searches

4 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

How? Conditional independence like property

ΠΣ1∩Σ2(A1 ×A2) ≡L ΠΣ1∩Σ2(A1)× ΠΣ1∩Σ2(A2)

Application:

A1 A2 A3
Σ1 ∩ Σ2 Σ2 ∩ Σ3

ΠΣ2∩Σ3

×
ΠΣ1∩Σ2

×

ΠΣ1(A) = ΠΣ1(A1 ×A2 ×A3)

≡L ΠΣ1(A1)× ΠΣ1(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 × ΠΣ2∩Σ3(A3))

5 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

How? Conditional independence like property

ΠΣ1∩Σ2(A1 ×A2) ≡L ΠΣ1∩Σ2(A1)× ΠΣ1∩Σ2(A2)

Application:

A1 A2 A3
Σ1 ∩ Σ2 Σ2 ∩ Σ3

ΠΣ2∩Σ3

×
ΠΣ1∩Σ2

×

ΠΣ1(A) = ΠΣ1(A1 ×A2 ×A3)

≡L ΠΣ1(A1)× ΠΣ1(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 × ΠΣ2∩Σ3(A3))

5 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

How? Generalization

Message passing algorithms : proceed by successive re�nements

A1

A2

A3 A4

A5

ΠΣ3

×

ΠΣ2

×
ΠΣ2

×

ΠΣ1

m
es
sa
g
es

fr
o
m

le
a
ve

s
to

ro
o
t

A1

A2

A3 A4

A5

ΠΣ5

×

ΠΣ4

×

ΠΣ3

×

ΠΣ2
m
essa

g
es

fro
m

ro
o
t
to

lea
ves

6 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Remark: local concurrency is not anecdotal

p1

f4

p4

f3

p3

f2

p2

f1

p1, f4

f1, p4

p2, f3

f2, p3

7 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Concurrency in networks of automata

Global concurrency: taken into account

Local concurrency: ignored!

Networks of Petri nets

Global concurrency: taken into account

Local concurrency: taken into account

7 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Planning
Factored planning
Previous results
Why Petri nets?

Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Concurrency in networks of automata

Global concurrency: taken into account

Local concurrency: ignored!

Networks of Petri nets

Global concurrency: taken into account

Local concurrency: taken into account

7 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

The real purpose of automata

Implementation of product and projection of regular languages with
�nite objects

Our goal

More e�cient implementation by taking local concurrency into
account:

product of languages ⇒ product of Petri nets

projection of languages ⇒ projection of Petri nets

8 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

N1

p1

a

p2

a

N2

q1

a

q2

b

N1 × N2

p1

a

p2

q1

q2

ba

9 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

ΠΣ(N): a two step procedure

1 Replace the transitions with label not in Σ by silent transitions

2 Remove silent transitions (optimisation purpose)

How to remove silent transitions

Use the reachability graph: no more concurrency

Preservation of concurrency: for restricted class of nets only
[Wimmel 04]

Transition contraction: e�cient in practice
[André 82] [Vogler and Kangsah 07]

10 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

ΠΣ(N): a two step procedure

1 Replace the transitions with label not in Σ by silent transitions

2 Remove silent transitions (optimisation purpose)

How to remove silent transitions

Use the reachability graph: no more concurrency

Preservation of concurrency: for restricted class of nets only
[Wimmel 04]

Transition contraction: e�cient in practice
[André 82] [Vogler and Kangsah 07]

10 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

Contraction of a silent transition t, only when •t ∩ t• = ∅

p1

ε

p2

q1

q2

b

(p1, p2)

b

(p1, q1)

(q2, p2)

(q2, q1)

Language and safeness preserving contraction of t

|t•| = 1, •(t•) = {t} and M0(p) = 0 with t• = {p}
or |•t| = 1, •(t•) = {t} and ∀p ∈ t•,M0(p) = 0

or |•t| = 1 and (•t)• = {t}

11 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

Contraction of a silent transition t, only when •t ∩ t• = ∅

p1

ε

p2

q1

q2

b

(p1, p2)

b

(p1, q1)

(q2, p2)

(q2, q1)

Language and safeness preserving contraction of t

|t•| = 1, •(t•) = {t} and M0(p) = 0 with t• = {p}
or |•t| = 1, •(t•) = {t} and ∀p ∈ t•,M0(p) = 0

or |•t| = 1 and (•t)• = {t}

11 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Experimental setting
Negative results
Positive results

Benchmark selection

From Corbett96

Scale well (number of components vs. size of components)

Tree shape (manually obtained)

Benchmark set

Dining philosophers

Dining philosophers with a dictionary

Divide and conquer

Milner's cyclic scheduler

Token-ring mutual exclusion protocol

What we compare

Times spent to compute updated automata/Petri nets

12 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Experimental setting
Negative results
Positive results

Divide and conquer Dining philosophers

0.01

0.1

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

ti
m
e
(s
)

number of tasks

Automata
Petri nets

0.01

0.1

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200
ti
m
e
(s
)

number of philosophers

Automata
Petri nets

13 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Experimental setting
Negative results
Positive results

Token-ring mutual exclusion protocol

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ti
m
e
(s
)

number of users

Automata
Petri nets

0.01

0.1

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

ti
m
e
(s
)

number of users

Petri nets

14 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Experimental setting
Negative results
Positive results

Dining philosophers with a dictionary

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ti
m
e
(s
)

number of philosophers

Automata
Petri nets

0.01

0.1

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

ti
m
e
(s
)

number of philosophers

Petri nets

Milner's cyclic scheduler

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

ti
m
e
(s
)

number of schedulers

Automata
Petri nets

0.01

0.1

1

10

100

1000

10000

20 40 60 80 100 120 140 160 180 200

ti
m
e
(s
)

number of schedulers

Petri nets

15 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Contribution

Networks of automata ⇒ networks of Petri nets for planning

Experimental comparison: Petri nets can bring an important
e�ciency gain by handling local concurrency

Extension to weighted systems (in the paper)

Possible future work

Compare transition contraction without and with weights

Relax the conditions for transition contraction with weights

16 / 16

Introduction
From automata to Petri nets

Experimental results
Conclusions

Contribution

Networks of automata ⇒ networks of Petri nets for planning

Experimental comparison: Petri nets can bring an important
e�ciency gain by handling local concurrency

Extension to weighted systems (in the paper)

Possible future work

Compare transition contraction without and with weights

Relax the conditions for transition contraction with weights

16 / 16

	Introduction
	Planning
	Factored planning
	Previous results
	Why Petri nets?

	From automata to Petri nets
	Languages, automata, Petri nets
	Product of Petri nets
	Projection of Petri nets

	Experimental results
	Experimental setting
	Negative results
	Positive results

	Conclusions

