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Goal

Find a plan: a sequence of actions (with minimal cost) moving the
system from its initial state to one of its goal states
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Components ⇒ Automata
Plans ⇒ Words
Interaction ⇒ Synchronous product

New goal

Given A = A1|| . . . ||An, �nd a word

in A by local computations

A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

Why?

1 any word w of A can be projected into a word wi of ΠΣi
(A)

2 any word wi of ΠΣi
(A) is the projection of a word w of A

⇒ Easy extraction of a word from A by local searches
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A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

How? Conditional independence like property

ΠΣ1∩Σ2(A1 ×A2) ≡L ΠΣ1∩Σ2(A1)× ΠΣ1∩Σ2(A2)

Application:

A1 A2 A3
Σ1 ∩ Σ2 Σ2 ∩ Σ3

ΠΣ2∩Σ3

×
ΠΣ1∩Σ2

×

ΠΣ1(A) = ΠΣ1(A1 ×A2 ×A3)

≡L ΠΣ1(A1)× ΠΣ1(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 × ΠΣ2∩Σ3(A3))
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A possibility [Fabre et al. 10]

Compute A′
i

= ΠΣi
(A) for each i without computing A

How? Generalization

Message passing algorithms : proceed by successive re�nements
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Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Remark: local concurrency is not anecdotal
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p2, f3
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Concurrency in networks of automata

Global concurrency: taken into account
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Languages, automata, Petri nets
Product of Petri nets
Projection of Petri nets

The real purpose of automata

Implementation of product and projection of regular languages with
�nite objects

Our goal

More e�cient implementation by taking local concurrency into
account:

product of languages ⇒ product of Petri nets

projection of languages ⇒ projection of Petri nets
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ΠΣ(N): a two step procedure

1 Replace the transitions with label not in Σ by silent transitions

2 Remove silent transitions (optimisation purpose)

How to remove silent transitions

Use the reachability graph: no more concurrency

Preservation of concurrency: for restricted class of nets only
[Wimmel 04]

Transition contraction: e�cient in practice
[André 82] [Vogler and Kangsah 07]
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Contraction of a silent transition t, only when •t ∩ t• = ∅
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Language and safeness preserving contraction of t

|t•| = 1, •(t•) = {t} and M0(p) = 0 with t• = {p}
or |•t| = 1, •(t•) = {t} and ∀p ∈ t•,M0(p) = 0

or |•t| = 1 and (•t)• = {t}
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Benchmark selection

From Corbett96

Scale well (number of components vs. size of components)

Tree shape (manually obtained)

Benchmark set

Dining philosophers

Dining philosophers with a dictionary

Divide and conquer

Milner's cyclic scheduler

Token-ring mutual exclusion protocol

What we compare

Times spent to compute updated automata/Petri nets
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Dining philosophers with a dictionary
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Experimental comparison: Petri nets can bring an important
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Extension to weighted systems (in the paper)

Possible future work

Compare transition contraction without and with weights

Relax the conditions for transition contraction with weights
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