Factored Planning: From Automata to Petri Nets

Loïg Jezequel¹, Eric Fabre², Victor Khomenko³

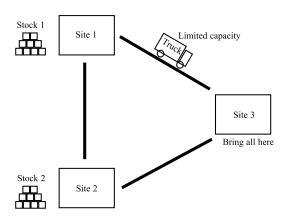
ACSD, July 9, 2013

¹ENS Cachan Bretagne

²INRIA Rennes

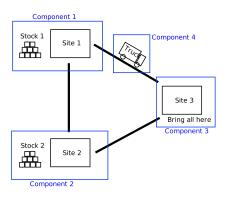
³Newcastle University

Introduction
From automata to Petri nets
Experimental results
Conclusions



Goal

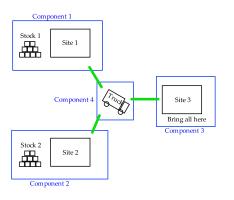
Find a *plan*: a sequence of actions (with minimal cost) moving the system from its initial state to one of its goal states



Each component is a planning problem with its own resources and actions

Goal

Find a set of *compatible* local plans: they can be *interleaved* into a global plan



Each component is a planning problem with its own resources and actions

The components interact by resources and/or actions

Goal

Find a set of *compatible* local plans: they can be *interleaved* into a global plan

Introduction
From automata to Petri nets
Experimental results
Conclusions

Planning Factored planning Previous results Why Petri nets?

 $\begin{array}{l} \mathsf{Components} \Rightarrow \mathsf{Automata} \\ \mathsf{Plans} \Rightarrow \mathsf{Words} \\ \mathsf{Interaction} \Rightarrow \mathsf{Synchronous} \ \mathsf{product} \end{array}$

New goal

Given $\mathcal{A}=\mathcal{A}_1||\dots||\mathcal{A}_n$, find a word in \mathcal{A} by local computations

 $\begin{array}{l} \mathsf{Components} \Rightarrow \mathsf{Automata} \\ \mathsf{Plans} \Rightarrow \mathsf{Words} \\ \mathsf{Interaction} \Rightarrow \mathsf{Synchronous} \ \mathsf{product} \end{array}$

New goal

Given $\mathcal{A}=\mathcal{A}_1||\dots||\mathcal{A}_n$, find a word in \mathcal{A} by local computations

A possibility [Fabre et al. 10]

Compute $\mathcal{A}_i' = \Pi_{\Sigma_i}(\mathcal{A})$ for each i without computing \mathcal{A}

Why?

- **1** any word w of A can be projected into a word w_i of $\Pi_{\Sigma_i}(A)$
- ② any word w_i of $\Pi_{\Sigma_i}(\mathcal{A})$ is the projection of a word w of \mathcal{A}
- \Rightarrow Easy extraction of a word from ${\mathcal A}$ by local searches

A possibility [Fabre et al. 10]

Compute $\mathcal{A}_i' = \Pi_{\Sigma_i}(\mathcal{A})$ for each i without computing \mathcal{A}

How? Conditional independence like property

$$\Pi_{\Sigma_1\cap\Sigma_2}(\mathcal{A}_1\times\mathcal{A}_2)\equiv_{\mathcal{L}}\Pi_{\Sigma_1\cap\Sigma_2}(\mathcal{A}_1)\times\Pi_{\Sigma_1\cap\Sigma_2}(\mathcal{A}_2)$$

Application:

$$\mathcal{A}_1$$
 $\qquad \qquad \mathcal{A}_2$ $\qquad \qquad \qquad \qquad \qquad \qquad \mathcal{A}_3$

$$\Pi_{\Sigma_{1}}(\mathcal{A}) = \Pi_{\Sigma_{1}}(\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3})
\equiv_{\mathcal{L}} \Pi_{\Sigma_{1}}(\mathcal{A}_{1}) \times \Pi_{\Sigma_{1}}(\mathcal{A}_{2} \times \mathcal{A}_{3})
\equiv_{\mathcal{L}} \mathcal{A}_{1} \times \Pi_{\Sigma_{1} \cap \Sigma_{2}}(\mathcal{A}_{2} \times \mathcal{A}_{3})
\equiv_{\mathcal{L}} \mathcal{A}_{1} \times \Pi_{\Sigma_{1} \cap \Sigma_{2}}(\mathcal{A}_{2} \times \Pi_{\Sigma_{2} \cap \Sigma_{2}}(\mathcal{A}_{3}))$$

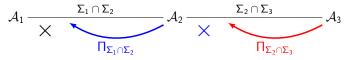
A possibility [Fabre et al. 10]

Compute $\mathcal{A}_i' = \Pi_{\Sigma_i}(\mathcal{A})$ for each i without computing \mathcal{A}

How? Conditional independence like property

$$\Pi_{\Sigma_1\cap\Sigma_2}(\mathcal{A}_1\times\mathcal{A}_2)\equiv_{\mathcal{L}}\Pi_{\Sigma_1\cap\Sigma_2}(\mathcal{A}_1)\times\Pi_{\Sigma_1\cap\Sigma_2}(\mathcal{A}_2)$$

Application:



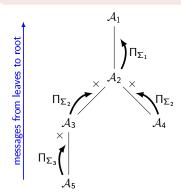
$$\begin{array}{ll} \Pi_{\Sigma_{1}}(\mathcal{A}) & = & \Pi_{\Sigma_{1}}(\mathcal{A}_{1} \times \mathcal{A}_{2} \times \mathcal{A}_{3}) \\ & \equiv_{\mathcal{L}} & \Pi_{\Sigma_{1}}(\mathcal{A}_{1}) \times \Pi_{\Sigma_{1}}(\mathcal{A}_{2} \times \mathcal{A}_{3}) \\ & \equiv_{\mathcal{L}} & \mathcal{A}_{1} \times \Pi_{\Sigma_{1} \cap \Sigma_{2}}(\mathcal{A}_{2} \times \mathcal{A}_{3}) \\ & \equiv_{\mathcal{L}} & \mathcal{A}_{1} \times \Pi_{\Sigma_{1} \cap \Sigma_{2}}(\mathcal{A}_{2} \times \Pi_{\Sigma_{2} \cap \Sigma_{3}}(\mathcal{A}_{3})) \end{array}$$

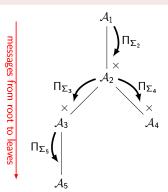
A possibility [Fabre et al. 10]

Compute $\mathcal{A}'_i = \Pi_{\Sigma_i}(\mathcal{A})$ for each i without computing \mathcal{A}

How? Generalization

Message passing algorithms: proceed by successive refinements



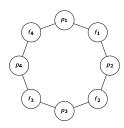


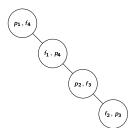
Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Remark: local concurrency is not anecdotal





Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Concurrency in networks of automata

Global concurrency: taken into account

Local concurrency: ignored!

Concurrency in factored planning problems

Global concurrency: between components (private actions)

Local concurrency: internal to a component

Concurrency in networks of automata

Global concurrency: taken into account

Local concurrency: ignored!

Networks of Petri nets

 ${\bf Global\ concurrency};\ {\bf taken\ into\ account}$

Local concurrency: taken into account

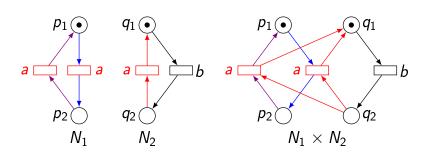
The real purpose of automata

Implementation of product and projection of regular languages with finite objects

Our goal

More efficient implementation by taking local concurrency into account:

- product of languages ⇒ product of Petri nets
- projection of languages ⇒ projection of Petri nets



$\Pi_{\Sigma}(N)$: a two step procedure

- lacktriangle Replace the transitions with label not in Σ by silent transitions
- @ Remove silent transitions (optimisation purpose)

Languages, automata, Petri nets Product of Petri nets Projection of Petri nets

$\Pi_{\Sigma}(N)$: a two step procedure

- **Q** Replace the transitions with label not in Σ by silent transitions
- Remove silent transitions (optimisation purpose)

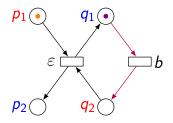
How to remove silent transitions

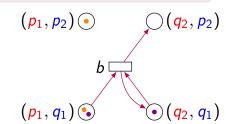
Use the reachability graph: no more concurrency

Preservation of concurrency: for restricted class of nets only [Wimmel 04]

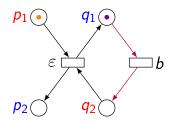
Transition contraction: efficient in practice
[André 82] [Vogler and Kangsah 07]

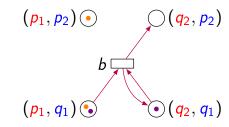
Contraction of a silent transition t, only when ${}^{ullet}t \cap t^{ullet} = \emptyset$





Contraction of a silent transition t, only when ${}^{\bullet}t \cap t^{\bullet} = \emptyset$





Language and safeness preserving contraction of t

$$\begin{split} |t^\bullet| &= 1, \ ^\bullet\!(t^\bullet) = \{t\} \text{ and } M^0(\rho) = 0 \text{ with } t^\bullet = \{\rho\} \\ \text{or } |^\bullet\!t| &= 1, \ ^\bullet\!(t^\bullet) = \{t\} \text{ and } \forall \rho \in t^\bullet, M^0(\rho) = 0 \\ \text{or } |^\bullet\!t| &= 1 \text{ and } (^\bullet\!t)^\bullet = \{t\} \end{split}$$

Benchmark selection

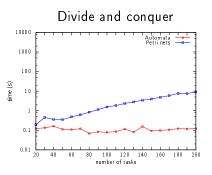
- From Corbett96
- Scale well (number of components vs. size of components)
- Tree shape (manually obtained)

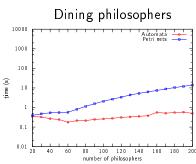
Benchmark set

- Dining philosophers
- Dining philosophers with a dictionary
- Divide and conquer
- Milner's cyclic scheduler
- Token-ring mutual exclusion protocol

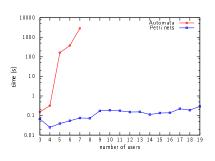
What we compare

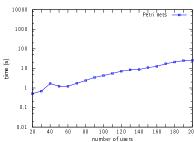
Times spent to compute updated automata/Petri nets



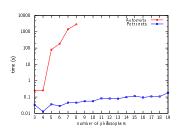


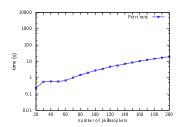
Token-ring mutual exclusion protocol



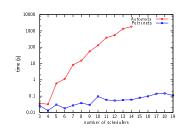


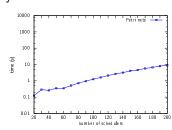
Dining philosophers with a dictionary





Milner's cyclic scheduler





Introduction From automata to Petri nets Experimental results Conclusions

Contribution

- Networks of automata ⇒ networks of Petri nets for planning
- Experimental comparison: Petri nets can bring an important efficiency gain by handling local concurrency
- Extension to weighted systems (in the paper)

Introduction From automata to Petri nets Experimental results Conclusions

Contribution

- Networks of automata ⇒ networks of Petri nets for planning
- Experimental comparison: Petri nets can bring an important efficiency gain by handling local concurrency
- Extension to weighted systems (in the paper)

Possible future work

- Compare transition contraction without and with weights
- Relax the conditions for transition contraction with weights