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Planning problems: overview

Goal

Find a plan: a sequence of actions (with minimal cost) moving the
system from its initial state to one of its goal states
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Planning problems: search in graphs

Initial state of the resources Goal state of the resources

Action

New state of the ressources
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Planning problems: resolution

Heuristic search

A*-like algorithms: Hart et al. 1968

Various heuristics: Bonet and Geffner 2001, Helmert et al.
2007, Karpas and Domshlak 2009, . . .

Parallelism of actions (concurrency)

GRAPHPLAN: Blum and Furst 1995

Petri net unfolding: Hickmott et al. 2007, Bonet et al. 2008

Split problems into subproblems (Factored planning)

Amir and Engelhardt 2003 , Brafman and Domshlak 2006, Brafman
and Domshlak 2008
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Factored planning: principles

Each component is a planning
problem with its own resources and
actions

The components interact by
resources and/or actions

Goal

Find a set of compatible local plans: they can be interleaved into a
global plan
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Factored planning: our contribution

Prior to this thesis, reasoning on the number of synchronizations:

Absence of solution can not be detected

Cost-optimality of plans can not be achieved

Our contribution

Two new approaches to factored planning , allowing to find
cost-optimal plans with distributed algorithms

Top-down approach

Successive restrictions of the sets of local plans

Bottom-up approach

Progressive construction of a local plan per component
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Top-down approach
Factored cost-optimal planning using message passing algorithms
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Centralized planning problem = weighted automaton

d,5

a,1

b,2

b,2
a,1 a,1 c,3

d,5

c,3

c,3

a,1

b,2

d,5

d,5

b,2

c,3

Set of actions Σ

The words are the plans

The words with minimal cost
are the cost-optimal plans

Goal

Find a minimal cost word in a weighted automaton
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Factored planning problem

Components are weighted automata

They interact by their shared actions:
formalization using the notion of
synchronous product

Goal

In A = A1 × · · · × An, find a tuple
(w1, . . . ,wn) of words which are all
compatible and minimize the sum of their
cost, without computing A
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s1

s′1
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s1, s2 s′1, s2
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Factored planning problem: example

A
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β,1 β,0α,0

α,1 β,0
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Centralized plans: βdγ and dβγ
Factored/distributed/concurrent plan: (β, βγ, dγ)
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Projection: from global plans to local plans

Projection reduces a global
plan to the actions of a
particular component

ΠΣ′ corresponds to:

1 Replace each action not in Σ′ by ε

2 Perform ε-reduction (to the left)

3 (Minimize)

A

s1 s2

s3 s4

a, 0

b, 1 b, 0

a, 0

α, 3

Πα(A)

s1 s2

s3 s4

α, 3

α, 4

α, 3

α, 3
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MPA: computing ΠΣi
(A) without computing A

Central properties of the projection of A = A1 × · · · × An

1 any cost-optimal word w of A can be projected into a
cost-optimal word wi of ΠΣi

(A), moreover c(w) = ci (wi )

2 any cost-optimal word wi of ΠΣi
(A) is the projection of a

cost-optimal word w of A, moreover ci (wi ) = c(w)

Consequence

Taking the minimal cost word in each ΠΣi
(A) gives a cost-optimal

global plan (hypothesis: it is unique)

Building the ΠΣi
(A) by local computations

Successive refinements of the Ai from the constraints imposed by
their neighbours
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How to get the ΠΣi
(A): the message passing algorithms

Fundamental property (conditional independence)

ΠΣ1∩Σ2(A1 ×A2) ≡L ΠΣ1∩Σ2(A1)× ΠΣ1∩Σ2(A2)

Application:

A1 A2 A3
Σ1 ∩ Σ2 Σ2 ∩ Σ3

ΠΣ2∩Σ3

×
ΠΣ1∩Σ2

×

ΠΣ1(A) = ΠΣ1(A1 ×A2 ×A3)

≡L ΠΣ1(A1)× ΠΣ1(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 ×A3)

≡L A1 × ΠΣ1∩Σ2(A2 × ΠΣ2∩Σ3(A3))
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Example
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γ,1

α,0

α,1 β,0

c,1

γ,1

γ,0

3
A

d,5 γ,0b,0
a,1

α,1

β,1

A
1

A
2

β,0

Updated components:

α,2

A
c d

A

a,1

γ,2

β,1
5

6
α,1

b,0

A

α,2

a,b

1

d,5

d,5

γ,0

α,2

γ,6 γ,5

γ,6
c,1

β,1

α,β,
Π          (   )

α,β,γ,
Π          (   ) γ,Π     (   )



Planning problems Message passing algorithms A#: a distributed A* Conclusion

Message passing algorithms: main results generalized1
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Theorem

If A = A1 × · · · × An has a tree shaped interaction graph, the
message passing algorithm converges and returns A′i ≡L ΠΣi

(A)
for each Ai

1Eric Fabre and Löıg Jezequel, Distributed Optimal Planning: An Approach
by Weighted Automata Calculus, CDC 2009
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Distoplan: presentation

Distoplan

C++ implementation of the message passing on weighted
automata, on top of openFST 2and the HSP*’s parser3

A benchmark: philosophers from IPC4

p1
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p3

f2

p2

f1

p1 ∪ f4

f1 ∪ p4

p2 ∪ f3

f2 ∪ p3

2http://www.openfst.org/
3Patrik Haslum, 4th IPC Booklet,2004
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Distoplan4
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Conclusions

Practical solving of planning problems

Can be more efficient than centralized search

Difficulty: find decompositions

4Eric Fabre, Löıg Jezequel, Patrik Haslum, and Sylvie Thiébaux,
Cost-Optimal Factored Planning: Promises and Pitfalls, ICAPS 2010
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Extension 1: read arcs in networks of automata5

truck positionstock gas

load

H

A

fill up

load fill up

Read arcs

Automata → automata with readings/writings on transitions

Theorem

The message passing algorithms extend to this setting with minor
modifications

5Löıg Jezequel and Eric Fabre, Networks of Automata with Read Arcs: A
Tool for Distributed Planning, IFAC World Congress 2011
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Extension 2: turbo planning6

Starting point

When interaction graphs contain cycles:

p1

f4

p4

f3

p3

f2

p2

f1

Existing solution

Tree decomposition of graphs:

Not all parameters taken
into account

Tree-width can be huge

p1 ∪ f4

f1 ∪ p4

p2 ∪ f3

f2 ∪ p3

6Löıg Jezequel and Eric Fabre, Turbo Planning, WODES 2012
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Extension 2: turbo planning6

Starting point

When interaction graphs contain cycles:

p1

f4

p4

f3

p3

f2

p2

f1

Turbo planning

Ignore cycles and perform approximate planning

Result: A′i such that L(ΠΣi
(A)) ⊆ L(A′i ) ⊆ L(Ai )

6Löıg Jezequel and Eric Fabre, Turbo Planning, WODES 2012
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Extension 2: convergence issues of turbo planning

As a constraint solving problem

Convergence in (possibly) infinite time

Convergence in finite time for words of small length

As an optimization problem

Costs diverge in general

Normalization:

Costs of optimal paths stabilize
Costs of other paths still diverge
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Extension 2: experiments on turbo planning

Problem shapes

A0

A1

A2A3

A4 A3

A0

A1

A2

Results

Fast convergence (always less than 5 iterations)

Promising quality of the solutions found (70% of solutions
cost less than 10% more than the optimal)

Open question

Theoretical explanation of this efficiency
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Bottom-up approach
Cost-optimal planning using a distributed version of A*
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A*: a best-first search algorithm

si

s1

s2

sf

g(s1)

g(s2)

h(s1)

h(s2)

past future

Rank of a node

Most promising node: s∗ = argmins(g(s) + h(s))
Always expand from s∗ first
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A*: a best-first search algorithm
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A#: intuition
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Agent ϕ

A* with information from ϕ
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Compatible final states

The problem

Two automata (not sharing actions)

A colouring function on final states

Goal: find a path in each automaton such that:

They both reach final states of the same colour

The sum of their costs is minimal among such paths
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Compatible final states: ranking
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One heuristic h per color

Externally

information H from ϕ

Rank(s)

g(s) + minc(h(s, c) + H(c))
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Compatible final states: termination
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Compatible final states: results7

Theorem

When executed by ϕ on any CFS problem:

A# terminates,

A# is sound,

A# is complete,

assuming that ϕ has access to G and H

Theorem

G and H can be computed by ϕ along its own execution of A#

7Löıg Jezequel and Eric Fabre, A#: A Distributed Version of A* for
Factored Planning, CDC 2012
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A#: from CFS to factored planning

CCP and factored planning with two components

Colour = sequence of (shared) actions

Number of colours cannot be bounded locally

Consequence: computation of h, H, and G more difficult
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ϕ

Theorem: termination

As soon as the considered factored planning problem has a
solution, A# terminates
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A#: extension to larger interaction graphs

From the point of view of agent ϕi , any factored planning problem
has two components:

Ai Πk 6=iAk

Theorem

If the interaction graph is a tree H and G can be constructed using
only information (messages) from the neighbours of ϕi

Ai

Ai1
. . . Ai`

. . .

Ti1 Ti`

Σi ∩ Σi1 Σi ∩ Σi`
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Conclusion and perspectives
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Conclusion

Main contribution

Two planning algorithms allowing: distributed planning and
cost-optimal planning

First approach

Message passing algorithms + weighted automata calculus

Implementation in Distoplan

Reading variables

Turbo planning (approximate methods for factored planning)

Second approach

Distributed version of A*

Proof of validity and implementability
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Perspectives

One needs benchmarks for factored planning

How to automatically decompose planning problems?

Is it possible to benefit from local concurrency?

When/why turbo planning works?
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