
Turbo Planning

Loig Jezequel ∗ Eric Fabre ∗∗

∗ ENS Cachan Bretagne, IRISA, Rennes, France (e-mail:
loig.jezequel@irisa.fr).

∗∗ INRIA Rennes Bretagne Atlantique, IRISA, Rennes, France (e-mail:
eric.fabre@irisa.fr)

Abstract: The complexity of planning problems comes from the size of the state graph of the
systems, which suggests to consider factored (or distributed) solutions. We previously proposed
a solution of this kind which revealed to be very efficient on problems where components have a
sparse interaction. This work explores a step further in this direction. The idea is to extend the
celebrated turbo algorithms, extremely successful to decode large-scale sparse error correcting
codes. The paper proposes an adaptation of this technique to the setting of cost-optimal factored
planning, and illustrates its behavior on large randomly generated systems.

Keywords: discrete event systems, planning, weighted automata, turbo algorithms, distributed
algorithms

1. INTRODUCTION

Planning consists of driving a system from an initial state
to a goal state by organizing a set of actions. It corre-
sponds, in fact, to control when all actions are controllable.
Traditionally, planning has been solved using “best first”
search algorithms such as A∗ (Hart et al. (1968)). However,
recently, the intrinsic concurrency of planning problems
has been exploited to represent plans (solutions) by partial
orders of actions rather than sequences of actions (Blum
and Furst (1995)). The interest of this approach is to signif-
icantly reduce the size of the space to explore for finding a
solution. Finally, in the last few years, solutions have been
proposed for finding these plans as partial orders of actions
in a modular way (Amir and Engelhardt (2003)). This
approach is called factored planning. It exploits the fact
that in many planning problems some variables are almost
independent. This allows one to solve these problems by
parts. In the worst case, factored planning has the same
complexity as planning. However, it can grant significant
efficiency gain: the parts (or components) of a problem are
in general exponentially smaller than the original problem.

In Fabre and Jezequel (2009) we proposed a new approach
to factored planning. This approach was based on weighted
automata calculus and on a message passing algorithm
in networks of such automata. An important innovation
of this approach with regards to previous results is that
it allows one to perform cost-optimal factored planning.
In other words it allows not only to find a plan but to
find the best one. In Fabre et al. (2010) we proposed an
implementation of our approach and tested it on classical
planning benchmarks, showing that this approach is of
interest in practice. However, this approach works only
for problems where the graph defined by the interactions
between components is a tree. This restriction, even if it
is natural for propagating constraints, is quite strong. It
significantly reduces the number of problems on which our
method can be used.

There exists, though, a family of algorithms which give as-
tonishingly good results when dealing with complex inter-
action graphs (containing cycles) with sparse interaction.
These algorithms are mostly known for their use in coding
theory (Berrou et al. (1993)). They are closely related
(McEliece et al. (1998)) to Pearl’s belief propagation algo-
rithm (Pearl (1982)), which is well-known in the artificial
intelligence community. Nowadays, turbo algorithms are
used with great success in many areas, but few results
exist explain their efficiency, in particular in our setting.

This paper is a study of turbo algorithms in the context
of factored planning. Our goal is to show that these
algorithms are of interest in the domains of planning
and of cost-optimal planning). We recall, however, that
planning has been proved to be a PSPACE-complete
problem (Bylander (1991)). So there will necessarily exist
cases where turbo algorithms will not be that efficient. We
first formally describe the problems we address (Section 2).
Then we consider the use of turbo algorithms for solving
factored planning problems (Section 3) and their cost-
optimal counterpart (Section 4). In each case experimental
results are provided that demonstrate the interest of
investigating the use of turbo algorithms in the domain
of planning.

2. MESSAGE PASSING ALGORITHMS FOR
COST-OPTIMAL FACTORED PLANNING

This section describes the problem we address in this
paper: factored planning. It also presents a previously-
explored way to solve this problem using an instance of
a message passing algorithm.

2.1 Factored planning problems

As its name suggests, a factored planning problem is a
planning problem represented by a set of subproblems
or factors. If planning problems are represented by finite

automata, factored planning problems are represented by
networks of automata (that are themselves a synchronous
product of automata).

Formally, a planning problem can be modeled as an
automaton A = (S,Σ, T, I, F) where S is a finite set of
states, Σ is a finite set of labels (or actions), T ⊆ S×Σ×S
is a transition relation, I ⊆ S is a set of initial states,
and F ⊆ S is a set of final states. The elements of T are
denoted by t = (t−, σ, t+). The goal in such a problem
is to find an accepted path in A. That is, a sequence of
transitions p = t1 . . . tn such that: ∀1 ≤ i < n, t+i = t−i+1

(it is a path), t−1 ∈ I, and t+n ∈ F (it is accepted). Such
an (accepted) path is associated with an (accepted) word
σ(p) = σ1 . . . σn. Notice that in the case of a deterministic
automaton, any accepted word corresponds to a single
accepted path. In the following, the language L(A) of an
automaton A is the set of its words.

It is possible to define a notion of composition of such
automata, called the synchronous product. Given two au-
tomata A1 and A2, their synchronous product A1 ×A2 is
the automaton A such that: S = S1 × S2, Σ = Σ1 ∪ Σ2,
T = TΣ1∩Σ2 ∪ TΣ1\Σ2

∪ TΣ2\Σ1
, I = I1× I2, and F = F1×

F2. Where TΣ1∩Σ2
= {((s1, s2), σ, (s′1, s

′
2)) : σ ∈ Σ1 ∩

Σ2 ∧ (s1, σ, s
′
1) ∈ T1 ∧ (s2, σ, s

′
2) ∈ T2} is a set of shared

transitions, and TΣ1\Σ2
= {((s1, s2), σ, (s′1, s2)) : σ ∈ Σ1 \

Σ2∧(s1, σ, s
′
1) ∈ T1∧s2 ∈ S2} (resp. TΣ2\Σ1

symmetrically
defined) is a set of private transitions from A1 (resp. A2).

A factored planning problem is then an automaton A =
A1 × . . .×An represented by its factors (or components)
A1 . . .An. The goal is to find a tuple of paths (p1, . . . , pn),
one for each component, such that there exists a path
p in A with the property that ∀1 ≤ i ≤ n, σ(p)|Σi

=
σi(pi) (where w|Σ represents w with all labels not in Σ
removed). If possible, this has clearly to be done without
computing A as it is in general exponentially larger than
its components.

Any factored planning problem is associated with its
interaction graph. This graph is defined as follows: its
vertices are the automata that constitute the problem and
its edges are such that there is an edge between Ai and
Aj if and only if j 6= i and Σi ∩ Σj 6= ∅ (in this case Ai

and Aj are said to be neighbors).

It is possible to consider planning problems with costs
associated with transitions by a cost function c : T → R+.
This allows one to associate costs to paths: the cost of
a path p = t1 . . . tn would be

∑
1≤i≤n c(ti). Synchronous

product is also well-defined for automata with costs: it is
sufficient to add costs of shared actions. The goal will be
to find paths with minimal cost or tuples of compatible
paths minimizing the sum of the costs of the elements
of the tuples. In this case, one speaks about cost-optimal
planning or cost-optimal factored planning.

2.2 Message passing algorithm

Previously (Fabre and Jezequel (2009)), we proposed a
modular method for solving factored planning problems
efficiently. This method, based on the use of message
passing algorithms in networks of automata, along with
its limitations, is briefly recalled in the following. The rest

of the paper aims at trying to handle these limitations.
For simplicity of presentation, from now on automata
are considered to be minimal (this allows one to identify
automata and languages). Notice that the message passing
algorithm exists for weighted automata as well, allowing
one to solve cost-optimal factored planning problems.
Issues pertaining to minimization of weighted automata
are discussed in Fabre et al. (2010).

The message passing algorithm relies on the synchronous
product and a second operation, called projection. This op-
eration is defined as follows: PΣ′(A) = MIN(REDΣ\Σ′(A)).
Here, MIN is a minimization operation. And REDΣ\Σ′ is
a Σ \ Σ′-reduction operation.

The interesting fact relating projection and factored plan-
ning is that for A = A1 × . . . × An, the projection
A′i = PΣi(A) contains exactly the paths of Ai which are
part of a solution to A:

• any path pi of A′i is such that a path p exists in A
verifying σ(p)|Σi

= σi(pi), and
• any path p of A is such that a path pi exists in A′i

verifying σi(pi) = σ(p)|Σi
.

Thus, computing A′i is of interest for solving a factored
planning problem.

Consider the following algorithm (Algorithm 1):

forall Ai do
forall j ∈ N (i) do
Mi,j ← PΣj

(Ai)
until stabilization do

select an Mi,j

Mi,j ← PΣj
(Ai ×Πk∈N (i),k 6=jMk,i)

forall Ai do
A′′i ← Ai ×Πj∈N (i)Mj,i

It takes as input a factored planning problem A given
as a set of automata {A1, . . . ,An}. When it converges,
Algorithm 1 returns a collection of A′′i which are such that
L(A′i) ⊆ L(A′′i) ⊆ L(Ai). The principle of Algorithm 1
is to propagate some messages (the Mi,j) between the
different automata. The message Mi,j (sent from i to j)
carries information about the constraints of the system on
Aj via Ai. The set N (i) is the set of neighbors of Ai:
j ∈ N (i) if and only if there is an edge between Ai and
Aj in the interaction graph of the problem.

The convergence of this message passing algorithm is
strongly related to the interaction graph of the problems
considered. As soon as the interaction graph of a factored
planning problem has a tree shape, the message passing
algorithm can be proven to converge. Moreover, it can be
shown that the A′′i computed by the algorithm are such
that A′′i = A′i ; however, when the interaction graph is not
a tree, nothing is ensured.

2.3 Solution extraction

If Algorithm 1 converges, one can extract a solution to
the factored planning from the A′′i . When the interaction
graph is a tree this is straightforward: it suffices to chose
a path pi in any A′′i = A′i. Then a path pj compatible
with pi is chosen in each A′′j such that j ∈ N (i). This
can be done by computing pi × A′′j . Then for each j a

path pk compatible with pj is chosen in each A′′k such that
k ∈ N (j) and k 6= i. This process continues until a path
has been found in each component. Recall that for all i,
A′′i = A′i and since the interaction graph is a tree, one can
ensure that the tuple of paths found is indeed a solution
of the factored planning problem under consideration.

When the interaction graph is not a tree, one can not
ensure that A′′i = A′i. And, even if this is the case, one can
not ensure that a solution will be found using the method
described above. Finding a solution may require the use of
backtracking. At some step of the extraction, one may be
unable to choose a path pj in an A′′j , compatible with the
paths pi1 , . . . , pik in its neighbors. This would require the
modification of at least one of the pi` (and potentially the
paths that where used for computing pi`).

In the remainder of the paper we (mostly experimentally)
examine turbo algorithms, which basically consists of ex-
ecuting Algorithm 1 on problems where the interaction
graph is not a tree.

3. TURBO ALGORITHMS FOR CONSTRAINT
SOLVING

The idea when using turbo algorithms for solving planning
problems is to abandon the quest for the exact A′i =
PΣi

(A) by applying Algorithm 1 on problems with cycles
of interaction. Rather, the objective is to compute a good
refinement (in the sense that it contains fewer plans) A′′i of
each Ai. Recall that, in all cases, this refinement will be an
over-approximation of A′i: it will always contain all local
plans that are part of a solution of the problem considered.
The interest of computing these refinements – rather than
directly searching for a solution from the Ai – is to reduce
the necessity for backtracking by removing paths that are
clearly not part of distributed solutions and by ensuring
local consistency. A path in A′′i will at least be compatible
with a path in each of its neighbors.

This section recalls some known results about turbo algo-
rithms for constraint solving, and shows how these results
relate to the specific case of planning. Finally our exper-
imental setting is presented and experimental results are
given.

3.1 Conditions for convergence

In Fabre (2003) turbo algorithms are studied in detail for
the case of “systems defined by local constraints”. Factored
planning problems belong to this class of systems. Hence,
if a partial order v exists on automata that verify the
following axioms:

∃I,∀A,A v I, (1)

∀A1,A2,A3,A1 v A2 ⇒ A1 ×A3 v A2 ×A3, (2)

∀A1,A2,∀Σ,A1 v A2 ⇒ PΣ(A1) v PΣ(A2), (3)

then existence of a unique stabilization point for Algo-
rithm 1 on any factored planning problem is ensured
(Lemma 7 of Fabre (2003)). Axiom 1 ensures the existence
of a least informative system, Axiom 2 ensures that syn-
chronous product adds the same amount of information
to all systems, and Axiom 3 ensures that projection does
not add information. The idea behind these axioms is that
applying Algorithm 1 to a factored planning problem will

result into messages having a decreasing evolution with
respect to v.

There is an obvious partial order on automata verifying
these axioms: A1 v A2 if and only if L(A1) ⊆ L(A2).

If, in addition to the existence of a partial order verifying
axioms 1, 2, and 3, the number of possible automata is
bounded, convergence of Algorithm 1 is ensured within a
finite number of steps on any factored planning problem.
Messages decrease for v and there is a bounded number
of possible messages (Theorem 3 of Fabre (2003)).

It is, however, not the case that the number of languages
(and thus of automata) over a given alphabet is bounded.
Thus, it is not possible to ensure convergence of Algo-
rithm 1 on any factored planning problem. In fact, there
are examples of such problems for which convergence is not
achieved. Consider, for example, the problem in Figure 1.
This problem has no solution: reaching the goal in A1

implies the firing of an α, which implies the firing of a
γ in A3 and thus a β in A2, which enforces the firing of a
second α in A1 and thus a second γ, and so on.

A1

αβ

A2

βγ

A3

γα

Fig. 1. A factored planning problem such that turbo
algorithms do not converge.

3.2 Ensuring convergence in all cases

One needs however to decide convergence in all cases.
This can be achieved by using a notion of distance d
between languages and decide convergence as soon as the
messages are stable up to some constant with respect to
this distance. In other words, Algorithm 1 will stop as soon
as the updating of each message Mi,j results in the new
messageM′i,j such that d(Mi,j ,M′i,j) ≤ ε, for some small
ε.

Denote by Ln(A) = {w ∈ L(A) : |w| = n} the set of
words of length n belonging to L(A). A distance which
seems reasonable is then the following:

d(A1,A2) =

∞∑
n=0

1

2n
1Ln(A1) 6=Ln(A2)

where 1L6=L′ = 1 as soon as L 6= L′ and 0 in other cases.
Using this distance almost corresponds to looking only at
words under a given length ` for checking convergence. As
for any alphabet, the set of words of length smaller than
` is finite, and any update of messages in Algorithm 1
can only remove words from the considered message,
convergence is granted using this distance. Moreover, in
any planning problem, there exists a bound (difficult to
compute in a modular way) such that if in a component
there exists no plan with length smaller than this bound,
the problem has no solution. This ensures that convergence
with respect to this distance (using a correct bound) is
sufficient for deciding the absence of a solution.

3.3 Experimental results

In this section we present experimental results obtained
by running Algorithm 1 on randomly generated factored
planning problems for which interaction graphs have cy-
cles. Our goal is to estimate if the over-approximations of
the A′i computed by the message passing algorithm are
of interest for planning. That is, if they allow us to find
solutions with few backtrackings.

In all our experiments we randomly generated some fac-
tored planning problems. This is done by choosing a shape
for the interaction graph of the problem, and then, for each
node of this graph, randomly generating an automaton.
These automata have up to 20 states and up to three time
as much transitions. Each automaton shares 2 different
labels with each of its neighbors in the interaction graph.
Once a problem is generated, we check if it is not triv-
ially solvable (that is no solution can be found without
backtracking). If it is not trivially solvable we check if it
is solvable by searching for a path in the full product A
of the component automata. Only problems which are not
trivially solvable but still have a solution are considered
for our experiments (doing this we select the 5-10% “most
complicated” problems among the ones we generate).

Experiment 1: automata on a circle. For our first exper-
iment we chose a configuration of problems know to be fa-
vorable for turbo methods: a circle. Its setting is as follows:
we consider a circle of n random automata A0, . . . ,An−1

such that ∀0 ≤ i < n one has Σi ∩ Σ(i+1)%n 6= ∅ (here %
stands for modulo) and ∀j, |i − j| > 1 it is the case that
Σi∩Σj = ∅. We call an iteration an update of all messages.
Iterations are performed following the circle, as depicted
in Figure 2 for five automata. Such iterations are repeated
until stabilization of the messages.As soon as stabilization
is reached an attempt to find a solution is initiated. It is
done using the method presented in Section 2.3 without
using backtracking. For this reason it is not always the case
that a solution will be found. Our goal using this method
is to get an idea of the quality of the computed A′′i : if in
many cases a solution is found, it is likely that in practice
few backtracking steps will be needed for finding solutions
from updated automata.

A0

A1

A2A3

A4

1:M0,1

2:M1,2

3:M2,3

4:M3,4

5:M4,0

6:M0,4

7:M4,3

8:M3,2

9:M2,1

10:M1,0

Fig. 2. Interaction graph and propagation of messages
during one iteration for 5 automata. Numbers on the
left of messages indicate the order of updates.

Figure 3 presents results obtained in this setting for
circles of 3 to 15 automata. In each case, 50 cycles were
considered. For each circle size the percentage of problems
for which convergence occurred in 1, 2, or 3 iterations is
represented, as well as the percentage of problems in which
a solution has been found.

 0

 20

 40

 60

 80

 100

3 4 5 6 7 8 9 10 11 12 13 14 15

number of componants

1iteration
2iterations
3iterations

found

Fig. 3. Experimental results for circles of 3 to 15 automata.

We limited our experiments to cycles of 15 automata
because of the time consuming method used for selecting
problems. We however performed some experiments with
larger circles, as Algorithm 1 is able to handle them. The
results are presented in Figure 4. For each value of n, 50
cycles were generated but no selection was done among
them. Due to the limitations presented above, we cannot
give the percentage of cases where a solution was found.

 0

 20

 40

 60

 80

 100

20 25 30 35 40 45 50

number of componants

1iteration
2iterations
3iterations

Fig. 4. Experimental results for large circles.

Experiment 2: automata on a tetrahedron. We consid-
ered problems with 4 automata (generated as described
above) for which the interaction graph is a tetrahedron.
An iteration is performed by updating each message ex-
actly once. These updates being done along a path in the
interaction graph which takes each edge only once in each
direction. This is shown on Figure 5.

A3

A0

A1

A2 12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1: A0 A1

A1 A2

A2 A3

A3 A0

A0 A2

A2 A1

A1 A3

A3 A2

A2 A0

A0 A3

A3 A1

A1 A0

Fig. 5. Automata on a tetrahedron (left) and order of
message updates during an iteration (right).

In this setting we obtained the following results for 50
“difficult” test cases (selected as described above): a quick
convergence in all cases (2% within 1 iteration, 52% within
2 iterations, 42% within 3 iterations, and 4% within 4
iterations), and a solution found with no backtracking in
85% of the cases. The slightly slower convergence could

come from the way iterations are performed, which may
be less efficient than in the circles of automata.

All these results lead us to believe that using the message
passing algorithm directly on problems for which the
interaction graph is not a tree may give good results
as soon as the interactions are sufficiently sparse. In
particular, searching for solutions in problems updated by
Algorithm 1 using backtracking may allow us to find a
solution with few backtracks: in our experiments a solution
was frequently found with no backtracking at all.

4. TURBO ALGORITHMS FOR COST-OPTIMAL
PLANNING

In this section we propose solutions for applying turbo
algorithms to systems with quantitative aspects.The main
issue to deal with is that cycles in the interaction graphs
usually make cost being counted several times along an
execution of Algorithm 1.

4.1 Necessity of a normalization

Consider the example in Figure 6. During the updates of
messages, the cost of α will grow unbounded. This example
shows that in any factored planning problem where costs
of solutions are not null, it is hopeless to expect to see
any stabilization of messages. This suggests the need for
a normalization procedure after any synchronous product,
in order to keep costs of a path within a reasonable scope.

A1

α, 1

β, 0

A2

β, 0

γ, 0

A3

α, 0

γ, 0

Fig. 6. An example where stabilization is not possible.

In our setting, one can imagine two ways for normalizing
an automaton: either (1) adding a constant to the cost
of each path, or (2) dividing the cost of each path by a
constant. The main default of (2) is that it changes the
difference of costs between paths. In our case where costs
are additive, it may result in choosing the wrong path.
For example, see Figure 7: originally the best solution
consisted of firing an α in each automaton, but after
dividing the costs of paths inA1 by c = 3, the best solution
is a firing of β in each automaton. By contrast (1) gives
small costs to local paths which already have the smallest
costs. It concentrates the smallest costs on the paths that
are potentially part of a cost-optimal solution. In this way,
constraint solving will be helped by costs (paths with very
high costs do not have to be considered) and solution
extraction should also be improved (the smallest cost path
in each automaton will likely be part of a solution, while
the random path considered in the previous case has no
particular reason of being part of a solution). For these
reasons we will use (1) rather than (2).

In the next part we describe concretely how to add a cost
to each path of a weighted automaton. We also suggest a
possible constant to use for normalization.

A1 α, 3

β, 6

A2 α, 3

β, 1

Fig. 7. Dividing costs is not acceptable.

4.2 Normalization procedure

The idea of our normalization procedure is to add a
constant to the cost of each path of the automaton that
is being normalized. A simple way to do this is to add the
constant as an cost to each initial state of the considered
automaton (a cost which will be added to any path starting
from this state). However, this may lead to automata
where there is a huge negative initial cost and a huge cost
for each path. Thus, we suggest that once the cost has
been added to the initial cost it is propagated throughout
the automaton, so that costs of transitions do not grow
too much. This can be done by pushing this cost towards
final states, using algorithms similar to the weight pushing
algorithm from Mohri (2009).

A possible normalization constant is the cost of a shortest
path minus one. Using this constant ensures that, after
each normalization, the cost of the shortest path(s) is one.
This has the interest of guaranteeing that a normalized
automaton with no negative costs on transitions always
exists.

Using this normalization it is very likely that no stabi-
lization will be reached when applying Algorithm 1 to
systems with costs. The fact is that normalization (as
expected) only stabilizes paths with smallest costs. To
decide when the execution of Algorithm 1 should stop on
a given problem, a distance, similar to the one proposed
in Section 3.2, can be used.

4.3 Experimental results

As in the case of factored planning, we generated cost-
optimal factored planning problems for our experiments.
The automata generated have the same characteristics as
before and random costs on transitions. We still consider
the “difficult” problems only by eliminating the ones with
no solutions or trivial solutions.

In all our experiments, the condition for stopping the
algorithm is now stability of the cost-optimal solution in
each component.In order to select a solution we proceed as
follows. First choose a locally cost-optimal solution p0 in
A0, and send it to its neighbors as before. Then a locally
cost-optimal solution compatible with p0 is chosen in each
neighbor, and propagated as well. This is done until a
solution is found in each component, or no compatible
solution can be found in a component. We still do not
perform backtracking. If a solution is found, one searches
for a cost-optimal solution using a centralized approach
and compares the costs of the two solutions, in order
to estimate the quality of that found with the turbo
approach.

Experiment 1: automata on a circle. We look at circles
of 3 to 7 components, trying 20 different circles in each
case. We do not test as many problems as for the no-costs
case because generating difficult problems requires much

more time in practice when there is costs (minimization of
weighted automata may not terminate, and not minimiz-
ing increases a lot the computation time in many cases).
We thus focus on the percentage of solution found, and
in the cases where a solution is found, on the quality of
this solution. Results for this experiment are presented in
Figure 8. Among solutions found with turbo methods are
represented the amount of solutions which are optimal or
of a given quality (x-y% means that the cost of the solution
found is between x% (exclusive) and y% greater than the
cost of a cost-optimal solution).

 0

 5

 10

 15

 20

3 4 5 6 7

number of componants

optimal
0-5%

5-10%
10-15%
15-20%
20-25%

>25%
notfound

Fig. 8. Results for circles of 3 to 7 weighted automata.

Experiment 2: automata on a tetrahedron. We also gen-
erated problems where automata are one a tetrahedron,
as in the case with no costs. The results obtained on 50
such problems are the following: quick convergence speed
in almost all cases (except in one experiment, stabilization
was always reached after 2 or 3 iterations), and a solution
found without backtracking in 68% of our experiments.
Among the 34 solutions found, 17 where optimal.

The experimental results obtained here by applying turbo
algorithms to factored cost-optimal planning problems for
which the interaction graph is not a tree led us to believe
that these algorithms are of interest. In particular, we fre-
quently obtained optimal or close-to-optimal solutions in
“difficult” problems. Moreover, these solutions were found
within times comparable to what we obtained in Fabre
et al. (2010) for factored cost-optimal planning problems
when the interaction graph was a tree.

5. CONCLUSION

In this paper we presented very encouraging experimental
results on the use of turbo algorithms for factored plan-
ning and cost-optimal factored planning. In the case of
constraint solving, the algorithms converged in very few
iterations on many test cases. Moreover, in almost all
cases, solutions have been obtained quickly on networks
of up to 50 small automata, which are hardly manageable
using a centralized approach. This corresponds to finding
a path in an automaton with up to 1050 states. In the case
of cost-optimal planning the algorithms converged in few
iterations as well. The solutions obtained were frequently
optimal, or close-to-optimal. This can be explained by
the fact that the costs of solutions which are not likely
to be optimal diverge along execution of the algorithm.
One should, however, consider these results carefully as
they were obtained using a random problem generator. It

may be the case that on real problems, turbo algorithms
converge slowly, or do not filter sufficiently many wrong
plans to ensure a quick isolation of a solution after conver-
gence. However, we believe that the experimental results
presented in this paper show that turbo algorithms may
render accessible problems that are otherwise intractable
with standard centralized approaches. This should, at
least, be a reason for considering these algorithms in the
context of planning.

Among possible future work, we would like to understand
more precisely the cases in which turbo algorithms are
efficient. In particular, it would be useful, given a factored
planning problem, to be able to decide whether or not
turbo algorithms may reasonably be applied. Interaction
graphs where the only cycles are very large are a known
example. However, in the case of planning other param-
eters than the shape of interaction have to be taken into
account. A way to measure the quantity of information
in an automaton, and, in particular, the quantity of in-
formation added to an automaton after having taken its
synchronous product with another automaton, would be
useful.

REFERENCES

Amir, E. and Engelhardt, B. (2003). Factored planning. In
Proceedings of the 18th International Joint Conference
on Artificial Intelligence, 929–935.

Berrou, C., Glavieux, A., and Thitimajshima, P. (1993).
Near shannon limit error-correcting coding and decod-
ing: Turbo-codes. In Proceedings of the IEEE Interna-
tional Conference on Communications, 1064–1070.

Blum, A. and Furst, M. (1995). Fast planning through
planning graph analysis. Artificial Intelligence, 90(1-2),
281–300.

Bylander, T. (1991). Complexity results for planning. In
Proceedings of the 12th International Joint Conference
on Artificial Intelligence, 274–279.

Fabre, E. (2003). Convergence of the turbo algorithm for
systems defined by local constraints. Technical Report
RR-4860, INRIA.

Fabre, E. and Jezequel, L. (2009). Distributed optimal
planning: an approach by weighted automata calculus.
In Proceedings of the 48th IEEE Conference on Decision
and Control, 211–216.

Fabre, E., Jezequel, L., Haslum, P., and Thiébaux, S.
(2010). Cost-optimal factored planning: Promises and
pitfalls. In Proceedings of the 20th International Con-
ference on Automated Planning and Scheduling, 65–72.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

McEliece, R., MacKay, D., and Cheng, J.F. (1998). Turbo
decoding as an instance of pearl’s belief propagation
algorithm. IEEE Journal on Selected Areas in Com-
munications, 16(2), 140–152.

Mohri, M. (2009). Handbook of Weighted Automata,
chapter 6. Springer.

Pearl, J. (1982). Reverend bayes on inference engines: A
distributed hierarchical approach. In Proceedings of the
2nd National Conference on Artificial Intelligence, 133–
136.

