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Abstract: This paper revisits the notions of observer and diagnoser, and adapts them
to probabilistic automata, in a setting of weighted automata computations. In the non
stochastic case, observers and diagnosers are obtained by standard elementary steps, as state
augmentation, epsilon-reduction and determinization. It is shown that these steps can be
adapted to probabilistic automata, and algorithms to perform them efficiently are provided.
In particular, the determinization is related to a standard filtering equation that recursively
computes the conditional distribution of the current state given past observations. New notions
of probabilistic observers and diagnosers are provided and compared to previous constructions,
and simpler derivations of the latter are proposed.

1. INTRODUCTION

Consider a plant modeled as a finite state machine (FSM)
or automaton A, with action alphabet Σ. As usual, we
assume that the plant is partially observed, i.e. the actions
in Σo ⊆ Σ are observed when they fire, while those in
Σu = Σ \ Σo fire silently. When A runs, it produces the
visible word w ∈ Σ∗

o formed by concatenating the visible
actions that were fired in this run. An observer of A is
a deterministic FSM O on alphabet Σo, and a labelling
function φ on its states, satisfying the following property:
given any w ∈ Σ∗

o produced by A, let q be the unique
state of O reached by following w, then the label φ(q) ⊆ S
gives all possible states where A could be given that w has
been observed. In other words, (O, φ) is a state estimator
of A under the form of a FSM. A diagnoser is a slightly
more subtle notion. Assuming that some transitions of
A are faulty and the others are safe, the diagnoser D is
another deterministic FSM on alphabet Σo, with labelling
function ψ on its states. On the unique state q of D reached
by w ∈ Σ∗

o, the label ψ(q) now gives a diagnosis value:
“fault” if all trajectories of A that could have produced w
contain a faulty transition, “safe” if none of them contain a
faulty transition, and “uncertain” in the remaining cases.
The diagnoser was initially proposed in Sampath et al.
(1995) as a simple way to test diagnosability, i.e. the fact
that a fault occurrence can be detected with a bounded
number of observations after it has occurred. More efficient
(polynomial) techniques were later proposed for this test
in Yoo and Lafortune (2002), based on the so-called twin-
machine, and avoiding the expensive construction of a
diagnoser (exponential).

This paper examines the extension of the notions of ob-
server and diagnoser to probabilistic automata: the ob-
jective is thus to build a deterministic FSM that outputs
⋆ This work was partly supported by the European Community’s 7th
Framework Programme under project DISC (DIstributed Supervi-
sory Control of large plants), Grant Agreement INFSO-ICT-224498.

the probability distribution on states, or on the diagnosis
value, given any observed sequence w ∈ Σ∗

o. Of course,
for a given w, one could (and should) rather use recursive
algorithms to compute these conditional distributions, for
example the discrete event system version of the Kalman
filter. Nevertheless, as “precompiled” versions of these
filters, the probabilistic observers and diagnosers have
some theoretical interest. At least for defining notions
like probabilistic observability/diagnosability. Their con-
struction sheds some light on techniques for performing
elementary transforms on weighted automata, that in turn
clarify previous contributions to the topic and allow their
generalization to more complex settings.

Previous constructions of probabilistic diagnosers were
proposed in Thorsley and Teneketzis (2005); Thorsley
et al. (2008). They proceed by attaching transition prob-
ability matrices to a classical diagnoser. This is a half
way to a true probabilistic diagnoser, since conditional
distributions still have to be computed for a given w ∈ Σ∗

o

(while in a classical diagnoser, one just reads out the
desired value). Our objective here is to show that the
elementary steps in the derivation of an ordinary diagnoser
can be recast in the setting of probabilistic automata, with
minor and meaningful adaptations. In passing, this will
clarify previous constructions, and will take us further by
precomputing as well the conditional probabilities that can
be reached. The probabilistic diagnoser proposed here is
thus a standard probabilistic automaton, with transition
weights taken in a well defined semiring, and of the same
nature as A, at the expense of not always being a finite
state machine.

The paper first recalls basic steps on the construction of
observers and diagnosers (Section 2), then studies their
counterpart for weighted (probabilistic) automata, show-
ing that they lead to the desired conditional distributions
(Section 3). The relation to previous works is then detailed
in Section 4.



2. AUTOMATA, OBSERVERS, DIAGNOSERS

This section decomposes the construction of a diagnoser
into three elementary steps, and shows that diagnosers and
observers are similar objects.

2.1 Automata

Our starting point is a non-deterministic automaton A =
(S,Σ, I, δ), with S the state set, I ⊆ S possible initial
states, action alphabet Σ and transition function δ : S ×
Σ → 2S. The latter extends naturally into δ : 2S ×
Σ∗ → 2S by union on the first variable and by iteration on
the second. As usual, the action alphabet is partitioned
into Σ = Σo ⊎ Σu, observable and unobservable (or
silent, or invisible) labels, resp. The transition set of A
is denoted as T = {(s, α, s′) ∈ S × Σ × S : s′ ∈
δ(s, α)}, and for a transition t = (s, α, s′), we denote
s−(t) = s, s+(t) = s′, σ(t) = α . A path or trajectory
π of A is a sequence of transitions π = t1 . . . tn such
that s−(t1) ∈ I and s+(ti) = s−(ti+1), for 1 ≤ i < n.
We adopt notation s−(π) = s−(t1), s

+(π) = s+(tn),
σ(π) = σ(t1) . . . σ(tn) and σo(π) = ΠΣo

(σ(π)) where ΠΣo

is the natural projection of Σ∗ on Σ∗
o. The language of A is

L(A) = {σ(π) : π path of A}, and its observable language
is Lo(A) = ΠΣo

(L(A)).

2.2 Observer

Given Σ = Σo ⊎ Σu, an observer of A is obtained by
first performing an ǫ-reduction, and then determinizing
the result: Obs(A) = Det(Red(A)).

ǫ-reduction. The ǫ-reductionA′ = Red(A) = (S,Σo, I
′, δ′)

amounts to bypassing all transitions of A labeled by Σu

(or equivalently the generic silent label ǫ). It can be per-
formed either to the left (of visible events), or to the
right. Without loss of generality, we present the latter
here (see Fig. 1). It is defined by δ′(s, α) = δ(s, αΣ∗

u) ,

∪w∈αΣ∗

u
δ(s, w) where δ(s, w) is the extension by iteration

of δ to the sequence of actions w : δ(s, wv) = δ(δ(s, w), v).

For the initial states, one has I ′ = δ(I,Σ∗
u) , ∪s∈Iδ(s,Σ

∗
u).

Observe that the resulting automaton A′ has the same
states as A, operates on the reduced alphabet Σo, but
is generally non-deterministic. By construction, one has
L(A′) = Lo(A).

The ǫ-reduction to the right accounts for the fact that
after some visible label, system A may evolve silently and
thus change state. It is thus suited for state estimation.
For diagnosis purposes, the reduction to the left is often
preferred, to account for properties of trajectories stopped
immediately after the last observable event (see discussion
below). Technically, this is a minor difference that does
not impact the constructions below.
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Figure 1. Epsilon-reduction to the right. Dashed arrows
represent silent (epsilon) transitions.

Determinization. The determinization A′′ = Det(A′) =
(Q,Σo, q0, δ

′′) of A′ is obtained by the standard subset
construction. One has Q = 2S , q0 = I ′, and the unique
new state q′ = δ′′(q, α) is defined as q′ = δ′(q, α) ,

∪s∈qδ
′(s, α). Not all states in 2S are reachable, so one often

directly takes for Q the reachable part of 2S , starting from
q0 = I ′ and exploring recursively the δ′(q, α) for all α ∈ Σo

until no new q is found (Fig. 2). This step is known to
have an exponential space complexity, in the worst case.
Automaton A′′ directly yields a state estimator, or an
observer of A, by taking φ(q) = q.

α
α
α

α

q q q’

Figure 2. Determinization. The dashed arrow represents a
transition not labeled by α.

2.3 Diagnoser

For diagnosers, one first associates types to the transitions
of A. This is done simply by setting T = T1 ∪ ... ∪ TK ,
where each Tk gathers transitions of “type k”. Notice that
the Tk need not be disjoint, although the literature gen-
erally makes this assumption (Cassandras and Lafortune
(1999); Sampath et al. (1995)): transition types are usually
interpreted as distinct failure modes.

To build a diagnoser, the fisrt step consists in augmenting
the states of A with some memory µ ⊆ {1, ...,K} to keep
track of transition types that have been fired along the
trajectory. This yields Ā = (S̄ = S×2{1,...,K},Σ, I×{∅}, δ̄)
where

(s′, µ′) ∈ δ̄((s, µ), α) ⇔

{

s′ ∈ δ(s, α)
µ′ = µ ∪ {k : (s, α, s′) ∈ Tk}

(1)

Equivalently, this can be seen as computing the syn-
chronous product of A with K elementary memory au-
tomata. The memory automaton for Tk only has two states
0 and 1, and {1, ...,K} as label set. It is deterministic and
complete, and the only transition from 0 to 1 is labeled by
k. Transitions of A must of course be relabeled by their
type before the synchronous product can be computed,
using types as labels. Details are left to the reader.

The second step simply consists in computing an observer
for the augmented automaton Ā. Given w ∈ Lo(A) ⊆ Σ∗

o

and the unique state q reached by w in Obs(Ā), the K
diagnosis functions ψk, 1 ≤ k ≤ K, are defined by

ψk(q) =

{

Tk seen if ∀(s, µ) ∈ q, k ∈ µ
Tk not seen if ∀(s, µ) ∈ q, k 6∈ µ
Tk uncertain otherwise

(2)

Remarks

(1) This construction reveals that building a diagnoser
boils down to building an observer. Without loss of
generality, one can directly assume that states of A
are partitioned into S = S1 ⊎ ... ⊎ SL with L =
2K , corresponding to the 2K possible values of the
memory in Ā. The diagnosis then reduces to checking



whether all final states compatible with observation
w ∈ Lo(A) lie into the union of some selected Sl.

(2) If one is only interested in diagnosing independently
the occurrence of each Tk, it is simpler to build K
diagnosers, one for each Tk, by augmenting A with
a simpler binary memory. In terms of complexity,
this saves an exponential in K. The diagnoser derived
above is much more powerful, since it can also test for
the simultaneous presence of several transition types
in the trajectories explaining an observed word w.

(3) The ǫ-reduction to the left is often preferred to derive
a diagnoser, since one is generally interested in the
occurrence or not of some transition type before the
last observation of w (and not necessarily in the silent
moves that follow w). This is simply a matter of
interpretation, since all silent transitions following w
may impose that type Tk is fired at some point.

(4) Some contributions introduced so-called “observation
filters” (Thorsley and Teneketzis (2005); Thorsley
et al. (2008)): rather than a partition Σ = Σo ⊎ Σu,
one gives a filter λ : S × Σ × S → Λ ∪ {ǫ}, and when
t = (s, α, s′) is fired, one label β ∈ λ(t) is observed
(possibly none if β = ǫ). This does not change the
expressive power of the model, that can be recoded in
the classical setting by replacing (s, α, s′) by (s, β, s′)
for every β ∈ λ(t). The only difficulty introduced by
such a recoding is that two versions of (s, β, s′) may
co-exist, one faulty and the other not. But this is
captured by the possibility that a transition belong
to several Tk.

3. PROBABILISTIC OBSERVERS

Given Remark (1) above, we limit ourselves to building
probabilistic observers, assuming a partition S = S1 ⊎
... ⊎ SL on states of the probabilistic automaton A. The
goal is to derive another probabilistic automaton able to
compute the probability that A reaches state type Sl,
given some observed word w ∈ Lo(A). We show that this
can be achieved as above, by extending ǫ-reduction and
determinization to probabilistic automata.

3.1 Probabilistic automaton

We define it as A = (S,Σ,P0,P) where P0 : S → [0, 1]
is an initial probability on states, with initial states I =
supp(P0)

1 , and P : S×Σ×S → [0, 1] a transition probabil-
ity, i.e. ∀s ∈ S, P(s, ·, ·) is a probability distribution (over
labels and next states, given the current state s). Transi-
tions are given by T = supp(P), and the transition function
by δ(s, α) = supp(P(s, α, ·)). Notice that this definition as-
sumes that A is live, for simplicity. One can generalize the
setting to halting systems, by means of a special stopping
label in Σ leading to a trap state st from which no more
transition is allowed (P(st, ·, ·) = 0). For a path π = t1...tn
one has P(π) = P(t1)...P(tn). And the language of A is de-
fined as the formal power series L(A) =

∑

w∈Σ∗ L(A, w)·w
where L(A, w) =

∑

π, σ(π)=w P0(s
−(π))P(π).

3.2 Probabilistic observer

Given partitions Σ = Σo ⊎ Σu and S = S1 ⊎ ... ⊎ SL,
the objective is to derive a deterministic probabilistic
1

supp = support of

automaton O = (Q,Σo,P
O
0 ,P

O), and a labeling φ : Q →
P(L) of its states, where P(L) is the set of probability
distributions over {1, ..., L}. Given w ∈ Σ∗

o produced by
A, and q ∈ Q the unique state reached by w in O, we
want φ(q, l) = P(A stops in Sl |w was observed).

To specify the meaning of “stops,” one needs an appropri-
ate definition of stopping time. We adopt the following :
A stops immediately before the production of the next
observation, assuming A is Σo-live i.e. can produce a new
observation with positive probability from any reachable
state. Specifically, to make this sound as a true stopping
time, A stops when it has been decided that the next step
would produce an observation, but it is not yet decided
which one 2 . This definition allows one to consume all
silent steps after each observation. It contrasts with the
usual choice of stopping immediately after an observable
transition, which is slightly easier to handle and thus
has often been chosen. It corresponds to the “optimistic”
assumption that the system does not evolve silently by
itself. Or at least that this evolution is ignored until there
is evidence of it. Technically, the only impact is on the ǫ-
reduction below, performed to the right (our case) instead
of to the left.

We define the stopped language of A as follows: for a
path π we take P

s(π) = P0(s
−(π))P(π)P(s+(π),Σo, S),

where P(s+(π),Σo, S) is the probability of firing an ob-
servable transition from state s+(π). Then Ls(A, w) =
∑

π, σ(π)=w P
s(π) and the stopped language of A is

Ls(A) =
∑

w∈Σ∗ Ls(A, w) · w. The observable language
of A is given by Lo(A) =

∑

w∈Σ∗

o

Lo(A, w) · w where

Lo(A, w) =
∑

v∈Σ∗,ΠΣo
(v)=w

Ls(A, v). (3)

3.3 ǫ-reduction

We look for a probabilistic automaton A′ = Red(A) =
(S,Σo,P

′
0,P

′) such that L(A′) = Lo(A′) = Lo(A). Struc-
turally, the automaton will be the same as in the non
probabilistic case, and obtained by ǫ-reduction to the
right. The difficulty lies in the computation of transition
probabilities, since an unbounded number of silent steps
may be performed until A decides to stop (and then fire a
visible transition). This requires to integrate probabilities
over a possibly infinite set of silent paths. Equivalently,
the sum appearing in Eq. (3) above may contain infinitely
many terms. This difficulty can be circumvented in at least
two simple manners.

Method 1. The first one is through a set of three graph
rewriting rules, depicted in Fig. 3. The first and main
one (top) removes at once all M silent transitions going
out of a given state (b). To an incoming transition tk =
(ak, αk, pk, b) one adds direct jumps to states c1, ..., cM
with respective probabilities pkq1, ..., pkqM , all of them
carrying the same label αk (possibly ǫ). Then the prob-
ability of tk is updated into p′k = pk ∗ (1 − q) where

2 For systems that have final states and stopping probabilities, one
can choose to assimilate (or not) the choice to terminate in some
state to the production of an observation, for the definition of the
stopping time.
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Figure 3. Rewriting rules that perform the ǫ-reduction.
Dashed lines represent silent transitions.

q = q1 + ... + qM is the probability to fire an ǫ-transition
from b. One may have p′k = 0, and in that case tk vanishes.
The probabilities of the N non-silent transitions going out
of b, if there are any, are renormalized by r′n = rn/(1 − q)
(notice that N = 0 when q = 1). The semantics of Rule 1
assumes that all transitions connected to b are processed
at once; all transitions in the figure are distinct, but the
states ak, b, cm, and dn need not be different. Rule 1
also applies to update the initial probability, assuming for
example that a1 is a dummy initial node assigning to b its
initial probability. The second rule (center) simply gathers
two transitions that carry the same label into a single
one, by summing their probabilities. This situation may
occur after the application of Rule 1, and allows one to
recover a graph depicting a true probabilistic automaton
(technically, our definition does not capture duplicate tran-
sitions). Rule 2 applies also to silent transitions, to initial
probabilities, and captures the case where a and b are the
same state. Finally, Rule 3 (bottom) removes a silent loop
of probability pK at some state a, and renormalizes all
the outgoing transitions of a, including silent ones, by
p′i = pi/(1 − pK). The Σo liveness of A guarantees that
pK < 1. Again, all outgoing transitions are distinct in the
picture, but states b1, ..., bK−1 need not.

Theorem 1. Let automaton A+ be obtained from A by
applying some rules of Fig. 3 (and such that Rule 2 is not
applicable anymore). Then Lo(A+) = Lo(A).

Proof. For this proof, we slightly enlarge the definition
of a probabilistic automaton and allow the existence of
several transitions with the same label between two given
states. Denoting by A the initial automaton and by A+

the result obtained by firing one of the rules, the objective
is to prove the preservation of the stopped language:
Lo(A) = Lo(A+).

Clearly, Rule 2 does not change the stopped language of
A: for some w ∈ Σ∗

o, if Lo(A, w) needs a path π of A using
once the upper arrow (a, α, p1, b), it needs as well path π′

obtained by replacing this transition by (a, α, p2, b), and
conversely. The overall contribution to Lo(A, w) of these
two paths will be the same as if the two transitions are

merged into (a, α, p1 + p2, b). The same reasoning holds
for several consecutive uses of these transitions in a given
path π.

We now examine Rule 3. Assume some path π0 con-
tributing to Lo(A, w) crosses state a once and does
not use transition tK = (a, ǫ, pK , a): so π0 = π′π′′,
s+(π′) = a = s−(π′′), where π′′ contains at least
one transition. Then all paths πn = π′(tK)nπ′′ con-
tribute as well to Lo(A, w), and their total contribu-
tion is P0(s

−(π′))P(π′) 1
1−pK

P(π′′)P(s+(π′′),Σo, S), which

is what one would obtain after Rule 3 has been applied,
since π′′ is not empty: the coefficient 1

1−pK

is incorpo-

rated into the probability of the first transition of π′′.
If π0 terminates in state a, that is if π′′ is empty and
π0 = π′, let us assume that there exist visible transitions
rooted at a (otherwise the contribution of π0 to Lo(A, w)
vanishes). Then P

s(π0) = P0(s
−(π0))P(π0)P(a,Σo, S).

Again, the total contribution of the πn = π0(tK)n will be
P0(s

−(π0))P(π0)
1

1−pK
P(a,Σo, S), which is the same before

and after the application of Rule 3, since the coefficient
1

1−pK

is introduced in the cost of the visible transitions

rooted at state a. Again, the same reasoning holds if π0

crosses several times state a.

Regarding Rule 1, the same reasonings can again be
applied to paths crossing state b, and either stopping there
or continuing their way. 2

Corollary 2. Starting from A, the rules in Fig. 3 have a
unique stationary point A′ = Red(A), which is the ǫ-
reduction of A.

Proof. When no more rule is applicable, one has the graph
of a true probabilistic automaton (Rule 2 does not apply),
where no node has silent outgoing transitions. Ignoring
probabilities, Rules 1,2,3 clearly compute the ǫ-reduction
(to the right) of the non-stochastic case, which gives
uniqueness of A′. From Theorem 1 one has Lo(A′) =
Lo(A), but since A′ has no silent transition, one has
Lo(A

′) = L(A). 2

The ǫ-reduction by this method has complexity O(|S|3).

Method 2. An alternate method to perform the ǫ-
reduction consists in computing the probabilities P

ǫ(s, s′)
for any s, s′ ∈ S, probabilities to reach s′ from s in A
through silent trantisions:

P
ǫ(s, s′) =

∑

π, σ(π) ∈ Σ∗

u

s
−(π) = s, s

+(π) = s
′

P(π) (4)

This is actually the difficult step where infinite sums may
appear. Automaton A′ is then obtained by P

′(s, α, s′) =
∑

s′′∈S P(s, α, s′′)Pǫ(s′′, s′)P(s′,Σo, S), and with a similar
equation for the initial probability P

′
0.

The transition matrix P
ǫ can be obtained easily through

a Floyd-Warshall procedure. The latter is usually applied
to compute minimum distances between all pairs of nodes
in a graph. By replacing the (min,+) setting by the (+, ∗)
setting, one obtains a simple way to integrate probabilities
over all paths relating two nodes (Mohri (2002); Cortes
et al. (2006)). Specifically, denoting S = {s1, ..., sN},
one defines P

ǫ
n(s, s′) as in (4), excepted that the sum is



limited to paths that go through states in {s1, ..., sn}. So
P

ǫ
1(s, s

′) = P(s,Σu, s
′). One then has

P
ǫ
n+1(s, s

′) = P
ǫ
n(s, sn+1)P

ǫ
n(sn+1, sn+1)

∗
P

ǫ
n(sn+1, s

′) (5)

P
ǫ
n(sn+1, sn+1)

∗ =
1

1 − Pǫ
n(sn+1, sn+1)

(6)

where (6) represents the probability of performing an
arbitrary number of loops at sn+1. Again, the complexity
of the ǫ-reduction by this method is O(|S|3).

3.4 Determinization

The determinization of a probabilistic automaton A′ =
(S,Σo,P

′
0,P

′) can be derived from the standard deter-
minization procedure of weighted automata, that adapts
the recursive subset construction given in the previous sec-
tion (Mohri (2009); Kirsten and Murer (2005); Buchsbaum
et al. (1998)). One has A′′ = Det(A′) = (Q,Σo,P

′′
0 ,P

′′)
where Q ⊂ 2S×[0,1] and can be infinite. P

′′
0 assigns prob-

ability 1 to the unique state q0 = {(s,P′
0(s)) : s ∈

supp(P′
0)}. Successive states are obtained recursively as

follows. Let q = {(s1, p1), ..., (sM , pM )} ∈ Q and α ∈
Σo, one has δ′′(q, α) = q′ = {(s′1, p

′
1), ..., (s

′
N , p

′
N )} iff

{s′1, ..., s
′
N} = δ′({s1, ..., sM}, α) 6= ∅, and for 1 ≤ n ≤ N

p′′n =
∑

1≤m≤M

pm · P′(sm, α, s
′
n) (7)

p′n = p′′n/C where C =
∑

1≤k≤N

p′′k (8)

P
′′(q, α, q′) = C (9)

Proposition 3. Let δ′′(q0, w) = q = {(s1, p1), ..., (sM , pM )} ∈
Q in A′′ for some w ∈ Σ∗

o, then

pm = P(A′ is in state sm|w was observed) (10)

Proof. This is obviously true at qo for w = ǫ. Assume it
is true at q = δ′′(qo, w) and let q′ = δ′′(q, α). Eq. (7) is
a standard filtering equation for A′ (based on Bayes rule
and the Markov property), so p′′n is the probability that
A′ produces α ∈ Σo and reaches state sn ∈ S given that
w was observed. Consequently, C is the probability to fire
α given w was observed, and the p′n give the conditional
probability of the current state of A′ given the observed
sequence wα. 2

As a corollary, if A′ = Red(A), pm is also the probability
that A stops in sm given that w was observed, which
almost makes A′′ an observer. Since one reads in q the
conditional distribution on S given some observation w ∈
Σ∗

o, one easily derives the conditional distribution over the
indexes {1, ..., L} corresponding to the partition S = S1 ⊎
... ⊎ SL. Notice also that L(A′′) = L(A′) = Lo(A).

Example. Figure 4 illustrates the determinization proce-
dure. This simple example seems to suggest that the con-
ditional probabilities appear as extra information attached
to a standard (i.e. non-probabilistic) observer. This is not
the case, and the determinization procedure may very
well not terminate, as revealed by the counter-example
in Fig. 5. While for weighted automata taking values in
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Figure 4. A probabilistic automaton (left) and its deter-
minized version (right).

the (R+,min,+) semiring there exist sufficient conditions
to guarantee termination (see the twin property in Mohri
(1997)), to our knowledge it is still not clear what these
conditions could be for probabilistic automata.
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Figure 5. Determinization may not terminate.

3.5 Probabilistic diagnoser

Using the same technique as in the previous section,
a probabilistic diagnoser for A is nothing else than a
probabilistic observer on an augmented automaton Ā, that
keeps track of which transitions types have been crossed
along the run of A :

P̄((s, µ), α, (s′, µ′)) = P(s, α, s′) · 1Iµ′=µ∪{i:(s,α,s′)∈Ti} (11)

From the conditional distribution on states of Ā given
some observation w ∈ Σ∗

o, one then easily derives the
conditional distribution on memory values µ, and further
on transition classes Tk that were crossed by A.

Remark. The case of “observation filters,” that ran-
domly modify the labels of Σ produced by transitions
of A, can be processed in a similar manner as in Re-
mark 4 of Section 2.3. The slight difference here is that
a given observed label β ∈ Λ ∪ {ǫ} may correspond to
several underlying transition types Tk, that have different
probabilities. This case is captured simply as follows: one
replaces the deterministic memory represented by the 1I
term in (11) by a “randomized” memory. Specifically,
given T = T1 ∪ ... ∪ TK and for µ′ = µ ⊎ µ”, (11)
becomes P̄((s, µ), β, (s′, µ′)) = P(s, β, s′) · P(

∧

k∈µ” Tk ∧
∧

k 6∈µ′ T̄k |(s, β, s′)). The first term is the probability to

move from s to s′ and produce label β, the second one
is the (conditional) probability that this move crosses a
transition lying in all Tk for k ∈ µ”, and in none of the Tk

for k 6∈ µ′.

4. RELATION TO PREVIOUS WORK

Alternate probabilistic diagnosers were proposed by Thors-
ley and Teneketzis (2005), as a way to extend the def-
inition of diagnosability to the stochastic case. The lat-
ter expresses that, after some failure has occurred, the
probability that it is not detected tends to zero as the
number of observations increases. The authors also as-
sumed noisy observations, i.e. random observation masks,



that randomly turn the label of a transition into some
observed one (possibly ǫ, to account for a loss). As we have
shown, both random observations and the specific aspects
of diagnosis introduce no extra difficulty: the problem is
essentially that of building a probabilistic observer, and
the diagnosability issue can be expressed as an observ-
ability issue. Reformulated as such, the contruction pro-
posed in Thorsley and Teneketzis (2005) corresponds to
a standard (non-stochastic) observer, enriched with tran-
sition probability matrices. Specifically, between states
q = {s1, ..., sM} and q′ = {s′1, ..., s

′
N} of the observer,

and for a transition (q, α, q′), the authors compute the
M ×N transition matrix containing elements P(s′n, α|sm).
The latter corresponds to the probability of jumping from
sm to sn in A by first crossing some ǫ-transitions and
then a visible transition producing α. So this corresponds
to an ǫ-reduction to the left, or equivalently to taking as
stopping time the firing of a visible transition. Technically,
the probabilistic observer obtained in that way can be con-
sidered as a weighted automaton where the weight of each
transition lies in a semiring of matrices. The advantage
of this probabilistic observer is of course its finiteness.
The drawback is that processings at this stage are not
finished, and the diagnosability/observability test then
amounts to exploring the recurrent components of Markov
chains defined with the above transition probabilities. By
contrast, the definition of probabilistic observer provided
here is based on standard constructions for the ǫ-reduction
and for the determinization of weighted automata. And
we have simply emphasized that the recursion computing
the determinization was exactly the stochastic filtering
equation that one needs in order to compute posterior
probabilities on states given observations. The drawback
is of course that the construction may not yield a finite
structure. It is not clear which definition of a probabilistic
observer is best to check observability. Probably a mixture
of both. Unless smarter (i.e. less complex) strategies can
be found, as it is the case in the non-probabilistic setting.

For technical reasons, Thorsley and Teneketzis (2005) was
limited to stochastic automata without unobservable cy-
cles (and deterministic once ǫ-transitions are removed).
These limitations were relaxed in Thorsley et al. (2008),
although the construction is still hard to follow. The es-
sential difficulty lies in the computation of the ǫ-reduction.
The latter is classical for weighted automata. See for exam-
ple Mohri (2002) for a generic form in the case of k−closed
semirings, which unfortunately do not capture the case of
probabilistic automata. More precise complexity bounds
can also be found there. The idea of recycling minimum-
length algorithms, that explore all paths, into integration
algorithms, that sum quantities over all paths, is however
present in Cortes et al. (2006), and adapts well to prob-
abilistic automata. We have also proposed here a some-
how simpler graphical way to perform this reduction. The
determinization was proposed in Mohri (1997, 2009), see
also Buchsbaum et al. (1998); Kirsten and Murer (2005).
The finiteness of the resulting automaton, that is the “de-
terminizability,” depends very much on the nature of the
underlying semiring. In the much studied tropical semiring
(R+,min,+), sufficient conditions like the twin property
guarantee that the algorithm terminates. However, to our
knowledge, sufficient conditions that would be permissive
enough are still missing for probabilistic automata.

5. CONCLUSION

We have shown that the construction of a diagnoser could
be split into elementary steps, as the removal of obser-
vation filters, the introduction of memory, and then the
construction of an observer. The latter being obtained
by performing an ǫ-reduction, followed by a determiniza-
tion. These operations translate almost immediately to the
stochastic case, by considering probabilistic automata as
weighted automata taking values in a specific semiring.
We have shown that the ǫ-reduction could be performed in
two ways, and proposed the less frequent reduction to the
right, that allows the system to evolve silently after each
observation, which was not the case in existing settings.
We have proposed an alternate solution to compute the
ǫ-reduction, and shown that the standard determinization
procedure for weighted automata actually implements a
filtering equation. Hopefully, this decomposition will allow
one to get a clearer view on where the true difficulties lie in
such constructions, and on what extensions can be reached
simply. For example, by changing the (R,+,×) semiring
for (R,max,+), one can easily derive another notion of
diagnoser that would provide the maximum probability
diagnosis given some observed string.
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