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Factored planning mitigates the state explosion problem by avoiding the construction of the state space of
the whole system and instead working with the system’s components. Traditionally, finite automata have
been used to represent the components, with the overall system being represented as their product. In
this paper we change the representation of components to safe Petri nets. This allows one to use cheap
structural operations like transition contractions to reduce the size of the Petri net, before its state space is
generated, which often leads to substantial savings compared with automata. The proposed approach has
been implemented and proven efficient on several factored planning benchmarks.

This paper is an extended version of our ACSD 2013 paper [Jezequel et al. 2013], with the addition of the
proofs and the experimental results of Sections 6 and 7.
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1. INTRODUCTION
Planning consists in organising a set of actions in order to reach some predefined (set
of) goal state(s), where each action modifies some of the state variables of the consid-
ered system. In that sense, planning is very similar to reachability analysis in model
checking, or to path search in a graph, viz. the state graph of the system. A solution
to these problems is either an action plan reaching the goal, or an example of a run
proving the reachability, or a successful path in a graph. These problems have bene-
fited much from the introduction of true concurrency semantics [Esparza and Heljanko
2008] to describe plans or runs. Concurrency represents the possibility to execute si-
multaneously several actions that involve different subsets of resources. With such
semantics, a plan or a trajectory becomes a partial order of actions rather than a se-
quence, which can drastically reduce the number of trajectories to explore.

In the planning community, it was soon observed that concurrency could be turned
into an ally, as one can avoid the exploration of meaningless interleavings of actions.
The first attempt in that direction was GRAPHPLAN [Blum and Furst 1995], which
lays plans on a data structure representing explicitly the parallelism of actions. This
data structure has connections with merged processes [Khomenko et al. 2006] and
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trellis processes [Fabre 2007b], where the conflict relation is non-binary and can not
be checked locally. GRAPHPLAN did not notice specifically these facts, and chose to
connect actions with a loose and local check of the conflicts. Hence the validity of the
extracted plans had to be checked, and numerous backtrackings were necessary. A
more rigourous approach to concurrent planning was later proposed by [Hickmott et al.
2007] and improved in [Bonet et al. 2008]. The idea was to represent a planning prob-
lem as an accessibility problem for a safe Petri net (possibly with read arcs). One can
then represent concurrent runs of the net using unfoldings, and the famous A* search
algorithm was adapted to Petri net unfoldings.

An alternative and indirect way to take advantage of concurrency in planning prob-
lems is the so-called factored planning approach. It was first proposed in [Amir and
Engelhardt 2003], and variations on this idea were described in [Brafman and Domsh-
lak 2008; Fabre et al. 2010]. Factored planning consists in splitting a planning prob-
lem into simpler subproblems, involving fewer state variables. If these subproblems
are loosely coupled, they can be solved almost independently, provided one properly
manages the actions shared by several subproblems. In [Fabre et al. 2010], the prob-
lem was expressed under the form of a network (actually a product) of automata, that
must be driven optimally to a target state. A plan in this setting is a tuple of executions
(one per component) synchronised on shared actions. In this representation, a plan is
again a partial order on events, and the concurrency between components is maximally
exploited. This is what we call the global concurrency, the concurrency of actions be-
longing to different components. However, this approach fails to take advantage of a
local concurrency, that would be internal to each component or each subproblem. This
is specifically the point addressed by this paper: we replace the automaton encoding
a planning sub-problem (which we call a component) by a Petri net, which allows for
a natural representation of internal concurrency in this component. We therefore en-
code a planning problem as a product of Petri nets, and extend the distributed planning
techniques to this setting.

The contributions of this paper can be summarised in the following points. First, it
reconciles local and global concurrency in the factored planning approach. This means
taking advantage both of the concurrency between components of a large planning
problem, or equivalently of the loose coupling of planning subproblems, and of the con-
currency that is internal to each component. In other words, this paper demonstrates
that the planning approach proposed in [Hickmott et al. 2007] can be coupled with
distributed/factored planning ideas as developed in [Fabre et al. 2010]. The main move
consists in replacing modular calculations performed on automata by calculations per-
formed on Petri nets, which are often significantly faster.

Secondly, these ideas are experimentally evaluated on standard benchmarks
from [Corbett 1996], in order to demonstrate the gains obtained by exploiting the lo-
cal concurrency within each component. In particular, we compare the runtimes of the
distributed computations described in [Fabre et al. 2010] with those obtained when
automata are replaced by Petri nets.

Finally, we extend the results of [Vogler and Kangsah 2007] on the projection of Petri
nets to the case of Petri nets with costs attached to transitions, which allows one to
apply the developed techniques to the cost-optimal planning. We also experimentally
evaluate the efficiency of this projection.

2. PETRI NETS AND FACTORED PLANNING
This section recalls the standard STRIPS propositional formalism that is commonly
used to describe planning problems. It then explains how factored planning problems
can be recast into an accessibility problem (or more precisely a fireability problem for
a specific labelled transition) for a product of Petri nets.
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2.1. Planning problems
A planning problem is a tuple (A,O, i,G) where A is a set of atoms, O ⊆ 2A × 2A × 2A

is a set of operators or actions. A state of the planning problem is an element of 2A, or
equivalently a subset of atoms. i ⊆ A is the initial state, and G ⊆ A defines a set of goal
states as follows: s ⊆ A is a goal state iff G ⊆ s. An operator o ∈ O is defined as a triple
o = (pre, del, add) where pre is called the precondition of o, del is called its negative
effect, and add is called its positive effect. The operator o = (pre, del, add) is enabled
from a state s ⊆ A as soon as pre ⊆ s. In this case o can fire, which leads to the new
state o(s) = (s\del)∪add. The objective of a planning problem is to find a sequence p =
o1 . . . on of operators such that i enables o1, for any k ∈ [2..n], ok−1(. . . (o1(i))) enables
ok, and on(. . . (o1(i))) ⊇ G.

One can directly translate a planning problem into a directed graph, where the nodes
of the graph represent the states and the arcs are derived from the operators. Solutions
to the planning problem are then paths leading from i to goal states. Traditional plan-
ners thus take the form of path search algorithms in graphs: most of them derive from
the well-known A* algorithm [Hart et al. 1968] and provide plans as sequences of op-
erator firings. A more recent set of works tried to take advantage of the locality of
operators: they involve limited sets of atoms, which means that some operators can
fire concurrently. This leads to the idea of providing plans as partial orders of operator
firings rather than sequences. These approaches rely on the translation of planning
problems into safe Petri nets [Hickmott et al. 2007], and look for plans using unfolding
techniques [Esparza et al. 1996] in combination with an adapted version of A* [Bonet
et al. 2008].

2.2. Petri nets and planning problems
A net is a tuple (P, T, F ) where P is a set of places, T is a set of transitions, P ∩ T = ∅,
and F : (P × T ) ∪ (T × P ) → N is a flow function. For any node x ∈ P ∪ T , we denote
by •x the set {y : F (y, x) > 0} of predecessors of x, and by x• the set {y : F (x, y) > 0}
of successors of x. In a net, a marking is a function M : P → N associating a natural
number to each place. A marking M enables a transition t ∈ T if ∀p ∈ •t,M(p) ≥
F (p, t). In such a case, the firing of t from M leads to the new marking Mt such that
∀p ∈ P,Mt(p) = M(p) − F (p, t) + F (t, p). In the sequential semantics, an execution
from marking M is a sequence of transitions t1 . . . tn such that M enables t1, and for
any k ∈ [2..n],Mt1...tk−1

enables tk (where Mt1...ti is defined recursively as Mt1...ti =
(Mt1...ti−1

)ti ). We denote by 〈M〉 the set of executions from a marking M .
A Petri net is a tuple (P, T, F,M0) where (P, T, F ) is a net and M0 is the initial

marking. In a Petri net, a markingM is said to be reachable if there exists an execution
t1 . . . tn from M0 such that M = M0

t1...tn . A Petri net is said to be k-bounded if any
reachable marking M is such that ∀p ∈ P,M(p) ≤ k. It is said to be safe if it is 1-
bounded.

A labelled Petri net is a tuple (P, T, F,M0,Λ, λ) where (P, T, F,M0) is a Petri net, Λ is
an alphabet, and λ : T → Λ∪{ε} is a labelling function associating a label from Λ∪{ε}
to each transition. The special label ε is never an element of Λ and the transitions with
label ε are called silent transitions. In such a labelled Petri net, the word associated to
an execution o = t1 . . . tn is λ(o) = (λ(t1) . . . λ(tn))|Λ (so silent transitions are ignored).
The language of a labelled Petri net N = (P, T, F,M0,Λ, λ) is the set L(N) of all the
words corresponding to executions from M0 in N :

L(N) = {λ(o) : o ∈ 〈M0〉}.

[Hickmott et al. 2007] proposed a representation of planning problems as safe la-
belled Petri nets. Each atom was represented by a place, and for technical reasons –
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namely to guarantee the safeness of the Petri net – [Hickmott et al. 2007] also intro-
duced complementary places representing the negation of each atom. The initial state
i naturally gives rise to the initial marking M0. An operator o is then instantiated as
several transitions labelled by o, one per possible enabling of this operator. This dupli-
cation is due to the fact that an operator can delete an atom that it does not request as
an input, and thus that could either be present or not. The goal states, corresponding
to goal markings of the Petri net, are then captured using an additional transition that
consumes the tokens in the places representing the atoms G, which is thus enabled if
and only if a marking corresponding to some goal state has been reached.

From now on we consider that a planning problem is a pair (N, g) where N =
(P, T, F,M0,Λ, λ) is a safe labelled Petri net and g ∈ Λ is a particular goal label. In
such a problem one wants to find an execution o = t1 . . . tn from M0 such that for any
k ∈ [1..n − 1], λ(tk) 6= g and λ(tn) = g. We denote the set of all such executions by
Lg(N) = L(N) ∩ (Λ \ {g})∗g.

2.3. Petri nets and factored planning problems
A factored planning problem is defined by a set of interacting planning sub-
problems [Amir and Engelhardt 2003; Brafman and Domshlak 2008; Fabre et al. 2010].
These interactions can take the form of shared atoms or of shared actions, but one can
simply turn one model into its dual. So we choose here the synchronisation on shared
actions, which naturally fits with the notion of synchronous product. In the context of
Petri nets, a factored planning problem takes the form of a set of Petri nets synchro-
nised on shared transition labels: if two nets share a transition label σ, the transitions
of these nets labelled by σ have to be fired simultaneously. This synchronisation on
shared labels – which corresponds to the synchronisation on shared actions for plan-
ning problems – can be formalised as the product of labelled Petri nets.

The product of two labelled Petri nets N1 and N2 (with alphabets Λ1 and Λ2) is
a labelled Petri net N = N1||N2 (with alphabet Λ1 ∪ Λ2) representing the parallel
executions of N1 and N2 with synchronisations on common transition labels from Λ1 ∩
Λ2 (notice that ε is never a common label as, by definition, it never belongs to Λ1

nor Λ2). It is obtained from the disjoint union of N1 and N2 by fusing each σ-labelled
transition of N1 with each σ-labelled transition of N2, for each common action σ, and
then deleting the original transitions that participated in such fusions. An example is
given in Figure 1.

N1

p1

a

p2

a

N2

q1

a

q2

b

N1||N2

p1

a

p2

q1

q2

ba

Fig. 1. Two Petri nets and their product, here Λ1 ∩ Λ2 = {a}.

In the following definition, ? /∈ P1 ∪ T1 ∪ P2 ∪ T2 is an artificial element used for
convenience. Let N1 = (P1, T1, F1,M

0
1 ,Λ1, λ1) and N2 = (P2, T2, F2,M

0
2 ,Λ2, λ2), then

N = (P, T, F,M0,Λ, λ) with: P = P1 ∪ P2, T = {(t1, t2) : t1 ∈ T1, t2 ∈ T2, λ1(t1) =
λ2(t2) 6= ε}∪ {(t1, ?) : t1 ∈ T1, λ1(t1) /∈ Λ2}∪ {(?, t2) : t2 ∈ T2, λ2(t2) /∈ Λ1}, F (p, (t1, t2))
equals F1(p, t1) if p ∈ P1 and else equals F2(p, t2), F ((t1, t2), p) equals F1(t1, p) if p ∈ P1

and else equals F2(t2, p), M0(p) equals M0
1 (p) for p ∈ P1 and else equals M0

2 (p), Λ =
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Λ1 ∪ Λ2, and finally λ((t1, t2)) equals λ1(t1) if t1 6= ? and else equals λ2(t2)). Note that
if N1 and N2 are safe then their product N1||N2 is safe as well.

From that, a factored planning problem is defined as a tuple N = (N1, . . . , Nn) of
planning problems Ni = ((Pi, Ti, Fi,M

0
i ,Λi, λi), g) (all having the same goal label g).

The Nis are the components of N . Given such a tuple, one has to find a solution to the
planning problem (N1|| . . . ||Nn, g) without computing the full product of the compo-
nents (as the number of transitions in this product can be exponential in the number
of components). In other words, one would like to find this solution doing only local
computations for each component Ni (that is computations involving only Ni and its
neighbours, i.e. the components sharing labels with Ni).

3. MESSAGE PASSING ALGORITHMS
[Fabre and Jezequel 2009; Fabre et al. 2010] solved factored planning problems using
a particular instance of the message passing algorithms described in [Fabre 2007a].
This section recalls this algorithm in the context of languages and shows that it can be
instantiated for solving factored planning problems represented by synchronised Petri
nets.

3.1. A message passing algorithm for languages
The message passing algorithm that we present here is based on the notions of product
and projection of languages.

The projection of a language L over an alphabet Λ to an alphabet Λ′ is the language:

ΠΛ′(L) = {w|Λ′ : w ∈ L},

where w|Λ′ is the word obtained from w by removing all letters not from Λ′. The product
of two languages L1 and L2 over alphabets Λ1 and Λ2, respectively, is

L1||L2 = Π−1
Λ1∪Λ2

(L1) ∩Π−1
Λ1∪Λ2

(L2),

where the inverse projection Π−1
Λ′ (L) of a language L over an alphabet Λ ⊆ Λ′ is

Π−1
Λ′ (L) = {w ∈ Λ′

∗
: w|Λ ∈ L}.

Suppose a language (the global system) is specified as a product of languages
L1, . . . ,Ln (the components) defined respectively over the alphabets Λ1, . . . ,Λn. The
interaction graph between components (Li)i≤n is defined as the (non-directed) graph
G = (V,E) whose vertices V are these languages and such that there is an edge (Li,Lj)
in E if and only if i 6= j and Λi ∩ Λj 6= ∅. In such a graph an edge (Li,Lj) is said to
be redundant if and only if there exists a path LiLk1

. . .Lk`Lj between Li and Lj such
that: for any m ∈ [1..`] one has km 6= i, km 6= j, and Λkm ⊇ Λi ∩ Λj . By iteratively re-
moving redundant edges from the interaction graph until reaching stability (i.e. until
no more edge can be removed) one obtains a communication graph G between compo-
nents L1, . . . ,Ln. By N (i) we denote the set of indices of neighbours of Li in G, i.e. the
set of all j such that there is an edge between Li and Lj in G. Note that if any commu-
nication graph for these languages is a tree, then all their communication graphs are
trees [Fabre 2007a]. In this case the system is said to live on a tree.

PROPOSITION 3.1 ([FABRE AND JEZEQUEL 2009]). If the system lives on a tree,
Algorithm 1 computes for each Li some L′i, such that L′i = ΠΛi

(L1|| . . . ||Ln) ⊆ Li.
These reduced L′i still satisfy L = L′1|| . . . ||L′n, so they still form a valid (factored)

representation of the global system L. Moreover, they are the smallest sub-languages
of the Li that preserve this equality. Algorithm 1 runs on a communication graph G.
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Algorithm 1 Message passing algorithm for languages
1: M ← {(i, j), (j, i) | (Li,Lj) is an edge of G}
2: while M 6= ∅ do
3: extract (i, j) ∈M such that ∀k 6= j, (k, i) /∈M
4: setMi,j = ΠΛj

(Li||(||k∈N (i)\{j}Mk,i))
5: end while
6: for all Li in G do
7: set L′i = Li||(||k∈N (i)Mk,i)
8: end for

It first computes languagesMi,j (line 4, where ||k∈∅Mk,i is the neutral element of ||: a
language containing only an empty word and defined over the empty alphabet), called
messages, from each Li to each of its neighbours Lj in G. Intuitively, Mi,j represents
the knowledge that Li has of how L constraints Lj . These messages start propagating
from the leaves of G (recall that G is a tree) towards its internal nodes, and then back to
the leaves as soon as all edges have received a first message. Observe that, by starting
at the leaves, the messages necessary to computingMi,j have always been computed
before. Once all messages have been computed, that is two messages per edge, one in
each direction, then each component Li is combined with all its incoming messages
to yield its updated (or reduced) version L′i (line 7). This combination of Li with the
messages received can be seen as a refinement of Li, removing those words that some
of its neighbours knows to be not in L.

Intuitively, L′i = ΠΛi
(L) exactly describes the words of Li that are still possible when

Li is restricted by the environment given by the other languages in the product. The
fundamental properties of these updated languages L′i are: (1) any word w in L is such
that w|Λi

∈ L′i, and (2) for any word wi in L′i there exists w ∈ L such that w|Λi
= wi.

Thus, one can then find a w in L from the L′is (if they are non-empty, else it means that
L is empty) using Algorithm 2.

Algorithm 2 Construction of a word of L = L1|| . . . ||Ln from its updated components
L′1, . . . ,L′n obtained by Algorithm 1

1: nexts← {1}
2: W ← ∅
3: while nexts 6= ∅ do
4: extract i ∈ nexts
5: choose wi ∈ L′i||ΠΛi

(||j∈W∩N (i)wj)
6: add i to W
7: for all j ∈ N (i) \W do
8: add j to nexts
9: end for

10: end while
11: return any word w from ||i∈Wwi

In this algorithm, for wi a word in L′i and wj a word in L′j , we denote by wi||wj
the product of the languages {wi} and {wj} respectively defined over Λi and Λj . This
algorithm is in fact close to Algorithm 1: the wi propagate from an arbitrary root (here
L1) to the leaves of the communication graph considered. The tricky parts are to notice
that choosing wi in line 5 is always possible and that w always exists at line 11. Both
these facts are due to the fundamental properties of L′i explained above [Fabre and
Jezequel 2009].
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3.2. An example of message passing for languages
We do not provide a proof of Proposition 3.1 as it would require to introduce a more
general notion of message passing algorithms, not relevant to this paper. This proof
can be found in [Fabre and Jezequel 2009]. Instead, in order to give some intuition on
how and why Algorithms 1 and 2 actually work, we provide sample executions of them.

For that, consider three languages: L1 = {aaαaa, αaaα, aαa}, L2 =
{bαβb, bbαββ, αbβbαα, ααβbbβ}, and L3 = {ββcccβ, βccβ, ββcβ, ccβ}. As Λ1 ∩ Λ2 = {α},
Λ2 ∩ Λ3 = {β}, and Λ3 ∩ Λ1 = ∅, their interaction graph (thus their unique communi-
cation graph) is a line with L2 in the middle. So Algorithm 1 will converge.

The initialisation step of Algorithm 1 consists in setting M =
{(1, 2), (2, 1), (2, 3), (3, 2)}. Four messages have to be computed: M1,2, M2,1, M2,3,
and M3,2. M2,1 cannot be computed immediately because it requires M3,2 to be
computed first. Similarly M2,3 requires M1,2 to be computed first. Assume one
computesM1,2 first:M1,2 = ΠΛ2

(L1) = Π{α,b,β}(L1) = {α, αα}.
After that, M = {(2, 1), (2, 3), (3, 2)}. So, either M2,3 or M3,2 can be computed. As-

sume one chooses M2,3 first: M2,3 = ΠΛ3
(M1,2||L2). Applying the definition of the

product of languagesM1,2||L2 = {bαβb, bbαββ, ααβbbβ}, so L2 is refined to remove all
words containing no α or more than two α (the words that cannot possibly be compati-
ble with the ones in L1). From thatM2,3 = {β, ββ} by projection on Λ3 = {β, c}.

Now, M = {(2, 1), (3, 2)}. So, the next message computed can only be M3,2 =
ΠΛ2

(L3) = Π{α,b,β}(L3) = {βββ, ββ, β}. And then, M2,1 is finally computed: M2,1 =
ΠΛ1(M3,2||L2) = {α, ααα, αα}.

At that point all the messages were computed, and one can now compute L′1, L′2
and L′3: L′1 = L1||M2,1 = L1 (nothing can be filtered out of L1 from the information
that L2 has about the full system); similarly, L′3 = L3||M2,3 = {βccβ, ccβ} (the two
words with three occurrences of β are filtered out); and finally, L′2 = L2||M1,2||M3,2 =
{bαβb, bbαββ, ααβbbβ} (the word with three occurrences of α is filtered out, no word
had no occurrences of β or more than three occurrences of β so M3,2 filters no word
out). One can now check that Proposition 3.1 holds for these languages.

One can then apply Algorithm 2 to L′1, L′2, and L′3 in order to get a word of L1||L2||L3.
For that one just selects a word from L′1, for examplew1 = aαa. As the only neighbour of
L1 is L2 one then selects a word in L′2||ΠΛ2(w1) = {bαβb, bbαββ}, for example w2 = bαβb.
And finally one takes a word in L′3||ΠΛ3

(w2) = {ccβ}, the only possibility is w3 = ccβ.
It is clear that these three words can be interleaved in the last step of Algorithm 2, for
example as w = bacαcaβb. Checking that w ∈ L1||L2||L3 concludes this example.

In the rest of this section we explain how Petri nets can be used as an efficient
representation of languages in Algorithm 1, and make a link to factored planning.

3.3. Message passing algorithm for Petri nets
In our previous work on factored planning we represented languages by automata. In
this paper we use safe Petri nets instead, which are potentially exponentially more
compact. For that we use the well-known facts that: (i) the product of labelled Petri
nets implements the product of languages (see Proposition 3.2 below); and (ii) it is
straightforward to define a projection operation for Petri nets which implements the
projection of languages (Proposition 3.4). Notice that in practice only the fact that (i)
and (ii) hold for those words ending by the goal label g is used in planning (Corollar-
ies 3.3 and 3.5).

PROPOSITION 3.2 ([CHU 1987]). For any two labelled Petri nets N1 =
(P1, T1, F1,M

0
1 ,Λ1, λ1) and N2 = (P2, T2, F2,M

0
2 ,Λ2, λ2) one has L(N1||N2) =

L(N1)||L(N2).
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COROLLARY 3.3. In particular it holds that Lg(N1||N2) = Lg(N1)||Lg(N2).

PROOF. Notice that Lg(N1) = L(N1) ∩ (Λ1 \ {g})∗g = L(N1) ∩ ((Λ1 ∪ Λ2) \ {g})∗g
and similarly Lg(N2) = L(N2) ∩ ((Λ1 ∪ Λ2) \ {g})∗g. From that Lg(N1)||Lg(N2) =
L(N1)||L(N2) ∩ ((Λ1 ∪ Λ2) \ {g})∗g. Thus, by definition, Lg(N1||N2) = Lg(N1)||Lg(N2).

The projection operation for labelled Petri nets can be defined simply by relabelling
some of the transitions by ε (i.e. making them silent). Formally, the projection of a
labelled Petri net N = (P, T, F,M0,Λ, λ) to an alphabet Λ′ is the labelled Petri net
ΠΛ′(N) = (P, T, F,M0,Λ′, λ′) such that λ′(t) = λ(t) if λ(t) ∈ Λ′ and λ′(t) = ε other-
wise. Notice that the projection operation preserves safeness. An example is given in
Figure 2.

p1

a

p2

q1

q2

b

p1

ε

p2

q1

q2

b

Fig. 2. A Petri net (left) and its projection on the alphabet {b} (right).

PROPOSITION 3.4. For any Petri net N = (P, T, F,M0,Λ, λ), L(ΠΛ′(N)) =
ΠΛ′(L(N)).

COROLLARY 3.5. In particular, when g ∈ Λ′ it holds that Lg(ΠΛ′(N)) = ΠΛ′(Lg(N)).

PROOF. Notice that Lg(ΠΛ′(N)) = L(ΠΛ′(N)) ∩ (Λ′ \ {g})∗g. As the alphabet of
L(ΠΛ′(N)) is included in Λ′ it follows that: Lg(ΠΛ′(N)) = L(ΠΛ′(N)) ∩ (Λ′ ∪ Λ \ {g})∗g.
Then, by Proposition 3.4, Lg(ΠΛ′(N)) = ΠΛ′(L(N))∩ (Λ′∪Λ\{g})∗g = ΠΛ′(L(N)∩ (Λ′∪
Λ \ {g})∗g). Since the alphabet of L(N) is included in Λ, Lg(ΠΛ′(N)) = ΠΛ′(L(N) ∩ (Λ \
{g})∗g). Finally, by definition of Lg(N), Lg(ΠΛ′(N)) = Lg(N).

Propositions 3.2 and 3.4 allow one to directly apply Algorithm 1 using safe labelled
Petri nets to represent languages. That is, from a compound Petri net N = N1|| . . . ||Nn
such that N1, . . . , Nn lives on a tree one obtains – with local computations only – an
updated version N ′i of each component Ni of N with the following property:

L(N ′i) = ΠΛi
(L(N1)|| . . . ||L(Nn))

= ΠΛi
(L(N1|| . . . ||Nn))

= L(ΠΛi(N)).

So, as for languages in the previous section, this allows one to compute a word in N
by doing only local computations, i.e. computations that only involve some component
Ni and its neighbours in the considered communication graph of N . For that, one just
computes the N ′is using Algorithm 1, and then applies Algorithm 2 with Petri nets as
the representation of languages. This shows that an instance of Algorithm 1 can be
used for solving factored planning problems represented as products of Petri nets.

One may question the possibility of the communication graphs of factored planning
problems represented by Petri nets to be trees, especially because all the nets share a
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common goal label g. In fact a label shared by all the components of a problem does
not affect its communication graphs: if the interaction graph of N1, . . . , Nn is connected
then G = ({N1, . . . , Nn}, E) is a communication graph of N1, . . . , Nn if and only if Gg =
({Ng

1 , . . . , N
g
n}, Eg) with Eg = {(Ng

i , N
g
j ) : (Ni, Nj) ∈ E} is a communication graph of

any Ng
1 , . . . , N

g
n where ∀i,Λgi = Λi∪̇{g}. This is due to the definition of redundant edges:

all the edges (Ng
i , N

g
j ) such that Λgi ∩ Λgj = {g} can be first removed and then any edge

(Ng
i , N

g
j ) is redundant if and only if (Ni, Nj) is redundant. Non-connected interaction

graphs are not an issue as in this case the considered problem can be split into several
completely independent problems (one for each connected component of the interaction
graph) and should never be solved as a single problem.

3.4. An example of message passing for Petri nets
In order to show what exactly are components and messages in this context, we now
give an example of a part of a run of Algorithm 1 with languages directly represented
as Petri nets. For avoiding technicalities in the example we consider prefix-closed lan-
guages (so we have no goal transition in our nets). Figure 3 presents the problem we
consider. It is in fact the standard dining philosophers model with three philosophers.
The corresponding interaction graph is not a tree, but merging some of its nodes (i.e.
taking their product) solves this problem. Figure 4 shows the two first messages com-
puted, using the same order as in the previous example (with languages).

pi

pi.take(fi)

pi.take(f(i−1 mod i))

pi.release(fi)

pi.release(f(i−1 mod i))

fi

pi.take(fi)

p(i+1 mod i).take(fi)

pi.release(fi)

p(i+1 mod i).release(fi)

p1

f1 p2

f2

p3f3

p1||f3

f1||p3

p2||f2

Fig. 3. A philosopher (left), a fork (middle), the interaction graph for three philosophers (top right), and a
merging of nodes making it a tree (bottom right).

3.5. Efficiency of the projection
The method presented above for solving factored planning problems exploits both the
internal concurrency in each component (to represent local languages like Li,L′i and
the Mi,j by Petri nets) and the global concurrency between components (to repre-
sent global plans w as the interleaving of compatible local plans (w1, ..., wn)). How-
ever, due to the rather basic definition of the projection operation for Petri nets, the
size of the updated component N ′i is the same as the size of the full factored planning
problem N = N1|| . . . ||Nn. And similarly, the messages grow in size along the computa-
tions performed by Algorithm 1. This problem can be mitigated by applying language-
preserving structural reductions [Vogler and Kangsah 2007; Khomenko et al. 2008] to
the intermediate Petri nets computed by the algorithm. This subsection briefly recalls
one such method.
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p2 f2 p3f1 M1,2

M1,2 = ΠΛ2
(p2||f2)

p2.take(f1)

p2.release(f1)

p3.take(f2)

p3.release(f2)

p1.take(f1)

p1.release(f1)

M2,3 = ΠΛ3
((f1||p3)||M1,2)

p3.take(f3)

p3.release(f3)

Fig. 4. Message from N1 = p2||f2 to N2 = f1||p3 (left), and message from N2 to N3 = p1||f3 (right).
Transitions with no label are silent. In gray are indications about the origin of each part of the nets.

3.5.1. Contraction of silent transitions. The most important structural reduction we use
is transition contraction originally proposed in [André 1982] and further developed
in [Vogler and Kangsah 2007; Khomenko et al. 2008]. (Indeed, as can be seen in Fig-
ure 4, there are many silent transitions in the messages we compute.) We now recall
its definition (again, ? /∈ P ∪ T is an artificial element used for convenience). For a
labelled Petri net with silent transitions N = (P, T, F,M0,Λ, λ), consider a transition
t ∈ T such that λ(t) = ε and •t ∩ t• = ∅. The t-contraction N ′ = (P ′, T ′, F ′,M0′,Λ, λ′) of
N is defined by:

P ′ = {(p, ?) : p ∈ P \ (•t ∪ t•)}
∪{(p, p′) : p ∈ •t, p′ ∈ t•},

T ′ = T \ {t},
F ′((p, p′), t′) = F (p, t′) + F (p′, t′)

F ′(t′, (p, p′)) = F (t′, p) + F (t′, p′),

M0′((p, p′)) = M0(p) +M0(p′),

λ′ = λ|T ′ ,

where F (?, t′) = F (t′, ?) = 0 for any p and t′, and M0(?) = 0. It is clear that this
contraction operation does not necessarily preserve the language. For this reason it
cannot be used directly to build an efficient projection operation. There exist however
conditions ensuring language preservation: A t-contraction is said to be type-1 secure if
(•t)
• ⊆ {t} and it is said to be type-2 secure if •(t•) = {t} and M0(p) = 0 for some p ∈ t•.
PROPOSITION 3.6 ([VOGLER AND KANGSAH 2007]). Secure contractions preserve

the language of the Petri nets.

Figure 5 gives an example of a type-1 secure contraction. Notice that this contraction
is not type-2 secure because M0(q1) 6= 0.

p1

ε

p2

q1

q2

b

(p1, p2)

b

(p1, q1)

(q2, p2)

(q2, q1)

Fig. 5. A Petri net with a silent transition (left) and the same net after contraction of this transition (right).
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If N is a safe labelled Petri net then its t-contraction is 2-bounded, but not neces-
sarily safe. As we need to work with safe Petri nets (essentially because solutions to
planning problems are found using unfolding techniques [Hickmott et al. 2007]) we
are interested only in secure t-contractions preserving safeness. The proposition below
gives a cheap sufficiency test for a contraction to be secure and safeness-preserving (it
is obtained by combination of the definition of secure given above with the sufficient
conditions for safeness-preserving given in [Khomenko et al. 2009]).

PROPOSITION 3.7. A contraction of a transition t in a net N is secure and safeness-
preserving if either

(1) |t•| = 1, •(t•) = {t} and M0(p) = 0 with t• = {p}
(2) |•t| = 1, •(t•) = {t} and ∀p ∈ t•,M0(p) = 0; or
(3) |•t| = 1 and (•t)

•
= {t};

There exists a full characterisation of safeness-preserving contractions as a model
checking problem [Khomenko et al. 2009]. However, testing it is much more expensive,
so we do not consider it.

3.5.2. Redundant transitions and places. It may be the case (in particular after perform-
ing some silent transition contractions) that the Petri net contains redundant transi-
tions and/or places. Removing them reduces the size of the net, while preserving its
language and safeness [Khomenko et al. 2009].

A transition t in a labelled Petri net N = (P, T, F,M0,Λ, λ) is redundant if either

— it is a loop-only transition: an ε-transition such that F (p, t) = F (t, p) for each p ∈ P ;
or

— it is a duplicate transition: there is another transition t′ such that λ(t) = λ(t′), and
F (p, t) = F (p, t′) and F (t, p) = F (t′, p) for each p ∈ P .

Examples of such transitions are given in Figure 6.

ε a a

Fig. 6. A loop-only transition (left) and two duplicate transitions (right).

Redundant places of a Petri net can be characterised by a set of linear equa-
tions [Vogler and Kangsah 2007] that we do not describe here. Examples of redundant
places are:

— loop-only places: p is a loop-only place if F (t, p) = F (p, t) for all t and M0(p) > 0;
— duplicate places: p is a duplicate of q if M0(p) = M0(q), F (t, p) = F (t, q) and F (p, t) =
F (q, t) for all t.

Examples of such places are given in Figure 7.

3.5.3. Algorithmic description of the suggested projection operation. Using the reductions de-
scribed above we implement the projection operation as a re-labelling of the corre-
sponding transitions by ε as described in Section 3.3, followed by (secure, safeness
preserving) transition contractions and redundant places/transitions removing while
it is possible.
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Fig. 7. A loop-only place (left) and two duplicate places (right).

Note that there is no guarantee that all the silent transitions are removed from a
Petri net. Moreover, depending on the order of the transition contractions and on the
order of the redundant places and transitions removals, the resulting nets may be
different. Some guidelines about which silent transitions should be removed first are
given in [Khomenko et al. 2009].

4. EXPERIMENTAL EVALUATION
In order to show the practical interest of replacing automata by Petri nets in the mes-
sage passing algorithms we compared these two approaches on benchmarks. We fo-
cused on the analysis of Algorithm 1 because it has been previously shown to be, by
far, the bottleneck of the approach [Jezequel 2012]. For that we used Corbett’s bench-
marks [Corbett 1996] (they are not actual planning problems and we did not add par-
ticular goals to them, assuming that we were interested in finding words belonging
to their prefix-closed languages). Among these we selected the ones suitable to our al-
gorithm, that is the ones such that increasing the size of the problem increases the
number of components rather than their size. This gave us five problems. They are
not all living on trees so we had to merge some components (i.e. replace them by their
product) in order to come up with trees and be able to run our algorithm (we did it
by hand, but it could be automated using tree-decomposition techniques [Bodlaender
1993]). Notice that the necessity of merging some components is an argument in favour
of the use of Petri nets as there is usually local concurrency inside the new components
obtained after merging (consider e.g. p3||f1 in the example of Figure 3: there is no in-
teraction at all between p3 and f1, so any action of p3 is concurrent with any action of
f1). We first describe the five problems we considered and explain how we made each
of them live on a tree. After that we present and comment our experimental results.

4.1. Presentation of the problems
Milner’s cyclic scheduler. A set of n schedulers (numbered from 0 to n − 1) are or-

ganised in a circle. They have to activate tasks on a set of n customers (one for each
scheduler) in the cyclic order: customer i’s task must have started for the kth time be-
fore customer i + 1’s task starts for the kth time. Each customer is a component, as
well as each scheduler. Customer i interacts only with scheduler i while a scheduler
interacts with its two neighbour schedulers. The interaction graph of this system is
thus not a tree. We first make it a circle by merging each customer with its scheduler.
After that we make it a tree (in fact a line) by merging the component i (customer i
and scheduler i) with component n− i− 1.

Divide and conquer computation. A divide and conquer computation using a fork/join
principle. A bounded number n of possible tasks is assumed. Each task, when acti-
vated, chooses (nondeterministically) to ”divide” the problem by forking (i.e. by acti-
vating the next task) and then doing a small computation, or to ”conquer” it by doing
a bigger computation. Initially the first task is activated. The last task cannot fork.
Each task is a component and their interaction graph is a line: each task interacts (by
forking) with the next task and (by joining) with the previous task.
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Fig. 8. Runtimes of Algorithm 1.

Dining philosophers. The classical dining philosophers problem where n philoso-
phers are around a table with one fork between each two philosophers. Each philoso-
pher can perform four actions in a predetermined order: take the fork at its left, take
the fork at its right, release the left fork, release the right fork. The components are
the forks and the philosophers. Each philosopher shares actions with the two forks he
can take, so the interaction graph of this problem is a circle. To make a tree from it
we simply merge each philosopher with a fork as follows: philosopher 1 with fork n,
philosopher 2 with fork n− 1, and so on.

Dining philosophers with dictionary. The same problem as dining philosophers ex-
cept that the philosophers also pass a dictionary around the table, preventing the
philosopher holding it from taking forks. This changes the interaction graph as each
philosopher now interacts with his two neighbour philosophers. To make it a tree we
merge each philosopher with the corresponding fork (philosopher i with fork i) and
then merge these new components as in the case of Milner’s scheduler.

Mutual exclusion protocol (Token ring mutex). A standard mutual exclusion protocol
in which n users (each one associated with a different server) access a shared resource
without conflict by passing a token around a circle formed by the servers (the server
possessing the token enables access to the resource for its customer). Each user as
well as each server is a component. User i interacts with server i and each server
interacts with the server before it and the server after it on the circle (by passing the
token). The interaction graph of this system is not a tree. We merge each user with the
corresponding server (user i with server i), making the interaction graph a circle. Then
we use the same construction as in the case of Milner’s scheduler in order to make it a
tree.

4.2. Experimental results
We ran the message passing algorithm using a representation of the components as
automata and as Petri nets. All our experiments were run on the same computer (Intel
Core i5 processor, 8GB of memory) with a time limit of 50 minutes. Our objective was
to compare the runtimes of both versions of Algorithm 1, and in particular to see if they
scale up well as problem sizes increase (a comparison of the automata based version
with other planning tools can be found in [Jezequel 2012]).

The results obtained for the divide and conquer computation and for the dining
philosophers problem are presented in Figures 8a and 8b respectively. For these two
problems, the approach using automata scales up better than the approach using Petri
nets. In order to explain this difference we looked at the size of the automata and of
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Fig. 9. Philosophers with dictionary

 0.01

 0.1

 1

 10

 100

 1000

 10000

 3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19

ti
m

e
 (

s
)

number of users

automata
Petri nets

(a) Runtimes

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

n
u

m
b

e
r 

p
e

r 
u

s
e

rs

number of users

states(A)
transitions(A)

places(PN)
transitions(PN)

(b) Size of outputs

Fig. 10. Token ring mutex

the Petri nets involved in the computations. It appeared that the size of the automata
was not depending on the number of components. However, the size of the Petri nets
was growing with the size of the problems. Looking more closely to these Petri nets we
noticed that they were containing mostly silent transitions. Implementing more size
reduction operations, in particular the ones based on unfolding techniques, may solve
this issue.

The experimental results for the dining philosophers with a dictionary, the mutual
exclusion protocol on a ring, and Milner’s cyclic scheduler are shown in Figures 9a,
10a and 11a, respectively; see also Figures 16c, 16d and 16e, respectively, for larger
instances of these benchmarks. On these three problems the Petri nets approach scales
up far better than the automata approach. In fact, only very small instances of these
three problems can be solved using automata.

To explain the reasons behind the efficiency of the Petri nets approach (compared
with the automata approach) on these last three problems we plotted the sizes of the
final objects (automata or Petri nets) computed by Algorithm 1 in Figures 9b, 10b,
and 11b. For the first two benchmarks one can observe that the sizes of the automata
are growing much faster than those of Petri nets. This can be explained by the ne-
cessity to represent explicitly a large number of action interleavings in the automata,
whereas Petri nets represent interleavings implicitly.

The case of Milner’s cyclic scheduler cannot be explained directly from the sizes of
the final objects computed. In fact it appears that with the automata approach these
sizes are almost stable. For this particular case we thus looked at the average sizes
of the intermediate objects (messages) computed during a run of Algorithm 1, which
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Fig. 11. Milner’s cyclic scheduler

are shown in Figure 11c. They are growing much slower with the proposed Petri nets
approach.

5. TOWARD COST-OPTIMAL PLANNING
This section shows how the previous factored planning approach can be adapted to
cost-optimal planning. It first defines formally the cost-optimal factored planning prob-
lem in terms of weighted Petri nets. Next section shows that the central notions of
transition contraction and of redundant transition/place removal can be both extended
to the setting of weighted Petri nets in some particular cases.

5.1. Cost-optimal planning and weighted Petri nets
In cost-optimal planning the objective is not only to find an execution leading to the
goal, but to find a cheapest one. This notion of a cheapest sequence can be defined by
the means of costs associated with the transitions of a Petri net.

A weighted labelled Petri net is a tuple (P, T, F,M0,Λ, λ, c) where (P, T, F,M0,Λ, λ)
is a labelled Petri net and c : T → R≥0 is a cost-function on transitions. In such a Petri
net, each execution o = t1 . . . tn has a cost c(o) = c(t1) + · · · + c(tn). The (weighted)
language of a weighted Petri net is then:

L(N) = {(λ(o), c) | o ∈ 〈M0〉, c = min
o′∈〈M0〉,λ(o′)=λ(o)

c(o′)}.

A cost-optimal planning problem is then defined as a pair (N, g) where N is a
weighted labelled Petri net and g is a goal label. One has to find an execution
o = t1 . . . tn from the initial marking of N , such that g appears exactly once at the end
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of the labelling of o and such that the cost of o is minimal among all similar executions
in N (i.e. the ones ending by a transition labelled by g).

5.2. Product of weighted Petri nets
As for factored planning problems, cost-optimal planning problems are defined using
a notion of product of weighted labelled Petri nets.

The product N1||N2 = (P, T, F,M0,Λ, λ, c) of two weighted labelled Petri nets is de-
fined as the product of the underlying labelled Petri nets, by assigning to the transi-
tions resulting from a fusion the sum of costs of the original transitions (the transitions
that did not participate in a fusion retain their original cost.) An example is given in
Figure 12.

N1

p1

a, 3

p2

a, 2

N2

q1

a, 1

q2

b, 2

N1||N2

p1

a, 4

p2

q1

q2

b, 2a, 3

Fig. 12. Two weighted Petri nets (left) and their product (right).

A cost-optimal factored planning problem is then defined as a tupleN = (N1, . . . , Nn)
of cost-optimal planning problems ((Pi, Ti, Fi,M

0
i ,Λi, λi, ci), g). One has to find a cost-

optimal solution to the problem (N1|| . . . ||Nn, g) without computing the full product.

5.3. Message passing for cost-optimal factored planning
The message passing algorithms can be used on weighted languages [Fabre and Jeze-
quel 2009]. For that, the projection of a weighted language L (defined over Λ) to a
sub-alphabet Λ′ is:

ΠΛ′(L) = {(w|Λ′ , c) : (w, c) ∈ L, c = min
(w′,c′)∈L
w′|Λ′=w|Λ′

c′},

and the product of L1 and L2 (defined over Λ1 and Λ2 respectively) is:

L1||L2 = {(w, c) : w ∈ Π−1
Λ1∪Λ2

(L̄1) ∩Π−1
Λ1∪Λ2

(L̄2),

c = c1 + c2 with (w|Λ1
, c1) ∈ L1, (w|Λ2

, c2) ∈ L2},

where L̄ is the support of the weighted language L:

L̄ = {w : ∃(w, c) ∈ L}.
Exactly as in the case of languages without weights one gets a method to find a cost-

optimal word into a compound weighted language L = L1|| . . . ||Ln without computing
L as soon as L1, . . . ,Ln lives on a tree. From the updated components L′i obtained
by Algorithm 1 one can extract this cost-optimal word of L using Algorithm 2, just
replacing each selection of a word by the selection of a locally cost-optimal word. This
is due to the fact that:

(1) any cost-optimal word w with cost c in L is such that w|Λi
is a cost-optimal word

with the same cost c in L′i = ΠΛi
(L); and

(2) for any cost-optimal word wi in L′i = ΠΛi
(L) with cost c there exists a word w in L

with the same cost c, which is also cost-optimal and satisfies wi = w|Λi
.
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Exactly as before we can show that the product of weighted Petri nets implements the
product of weighted languages.

PROPOSITION 5.1. For any two weighted labelled Petri nets N1 and N2 one has
L(N1||N2) = L(N1)||L(N2).

PROOF. From Proposition 3.2 one directly gets that L(N1||N2) and L(N1)||L(N2)
have the same support. It remains to prove that for any (w, c) ∈ L(N1||N2) the cor-
responding (w, c′) ∈ L(N1)||L(N2) is such that c = c′. For that assume c < c′ (resp.
c > c′) the construction of the proof of ⊆ (resp. ⊇) for Proposition 3.2 can be ap-
plied to construct an execution o in L(N1)||L(N2) (resp. L(N1||N2)) such that the la-
belling of o is w and its cost is c (resp. c′), which is a contradiction with the fact that
(w, c′) ∈ L(N1)||L(N2) (resp. (w, c) ∈ L(N1||N2)) because c′ > c (resp. c > c′) is not the
minimal cost for w in this net.

Similarly as for non-weighted Petri nets, the projection of a weighted labelled Petri
net N = (P, T, F,M0,Λ, λ, c) on an alphabet Λ′ is simply the weighted labelled Petri
net ΠΛ′(N) = (P, T, F,M0,Λ′, λ′, c) where

λ′(t) = λ(t) if λ(t) ∈ Λ′

= ε else.

PROPOSITION 5.2. For any weighted labelled Petri net N and any alphabet Λ′, one
has L(ΠΛ′(N)) = ΠΛ′(L(N)).

PROOF. The fact that L(ΠΛ′(N)) and ΠΛ′(L(N)) have the same support comes from
Proposition 3.4. Observe that only the label of a transition may change during the
projection, while its cost remains the same. Hence for any (w, c) ∈ L(ΠΛ′(N)) the cor-
responding (w, c′) ∈ ΠΛ′(L(N)) is such that c = c′, which concludes the proof.

This allows us to use weighted Petri nets in our message passing algorithm instead
of weighted languages.

6. EFFICIENT PROJECTION OF WEIGHTED PETRI NETS
In order to make the above message passing algorithm of practical interest in presence
of weights, we examine when the size reduction operations (transition contraction,
redundant places and transitions removal) can be applied to weighted Petri nets while
preserving their weighted languages.

6.1. Removing redundant transitions and places
We first show that redundant transitions and places can be safely removed. One only
has to take care to remove the right transitions among redundant ones.

PROPOSITION 6.1. Removing a loop-only transition from a weighted Petri net does
not change its weighted language.

PROOF. Consider any execution o = t1 . . . tn of a Petri net N such that for some i ≤ n
the transition ti is loop-only. It is straightforward that o′ = t1 . . . ti−1ti+1 . . . tn is also
an execution of N . As ti is a silent transition one gets λ(o) = λ(o′). So the word λ(o)
still belongs to the language of P after the removal of ti.

Suppose that the cost of λ(o) in P is the cost of o, that is, there exists no execution o′′
such that λ(o′′) = λ(o) and c(o′′) < c(o). Two cases are possible. If c(ti) > 0 one can take
o′′ = o′ and contradict the above supposition. One can thus remove ti from P without
changing the cost of λ(o) in the weighted language of P . If c(ti) = 0 one has c(o′) = c(o)
and so ti can also be removed from P without changing the cost of λ(o) (it is achieved
by o′).
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Thus, removing ti from P does not change the words belonging to its language, nor
their cost. This concludes the proof.

PROPOSITION 6.2. Let t and t′ be duplicate transitions of a weighted Petri net P
such that c(t′) ≤ c(t). Removing t from P does not change its weighted language.

PROOF. Consider any execution o = t1 . . . tn of a Petri net N such that for some
i ≤ n the transition ti = t is a duplicate of some transition t′ with a smaller cost. It
is straightforward that o′ = t1 . . . ti−1t

′ti+1 . . . tn is also an occurrence sequence of N .
One has λ(t) = λ(t′), so the word λ(o) = λ(o′) still belongs to the language of P after
removal of t.

Suppose that the cost of λ(o) in P is the cost of o, that is, there exists no execution
o′′ such that λ(o′′) = λ(o) and c(o′′) < c(o). Two cases are possible. If c(t) > c(t′) one
can take o′′ = o′ and contradict the above supposition. One can thus remove t from P
without changing the cost of λ(o) in the weighted language of P . If c(t) = c(t′) one has
c(o′) = c(o) and so t can also be removed from P without changing the cost of λ(o) (it is
achieved by o′).

Thus, removing t from P does not change the words belonging to its language, nor
their cost. This concludes the proof.

PROPOSITION 6.3. Any redundant place can be removed from a weighted Petri net
without changing its weighted language.

PROOF. By definition, a redundant place of a Petri net P is a place that can be
removed without changing the possible occurrence sequences of P . So any sequence of
transition that can be fired in P can also be fired in the net P ′ obtained by removing a
redundant place from P , and conversely. So, for a given word w, the sets of occurrence
sequences o such that λ(o) = w are the same in P and P ′. In a weighted Petri net,
the cost of w is the minimal cost among these o such that λ(o) = w. Removing any
redundant place thus preserves this cost.

6.2. Contraction of silent transitions
We now consider the possibility to contract silent transitions, as in the non-weighted
case. In general not all transitions that could be safely contracted in a non-weighted
Petri net can still be safely contracted in a weighted Petri net. This is in particular
the case as we want to keep the contraction operation local: the contraction of a silent
transition should require only to look at and modify neighbour transitions and places.
In the following we first define the transition contraction operation for weighted Petri
nets. Then, we remark that transitions with cost 0 can be contracted as in the weighted
case. And finally we show how transition contraction can be performed in each case of
Proposition 3.7 (i.e. when transitions can be safely contracted in the non-weighted
case), this sometimes involve to strengthen the conditions for contraction.

For a weighted labelled Petri net with silent transitions N = (P, T, F,M0,Λ, λ, c),
consider a transition t ∈ T such that λ(t) = ε and •t∩ t• = ∅, consider also a set of tran-
sitions T (t) ⊆ T \ {t}. The (weighted) t, T (t)-contraction N ′ = (P ′, T ′, F ′,M0′,Λ, λ′, c′)

of N is such that (P ′, T ′, F ′,M0′,Λ, λ′) is the t-contraction of (P, T, F,M0,Λ, λ) and:

∀t′ ∈ T ′, c′(t′) =

{
c(t′) + c(t) if t′ ∈ T (t)
c(t′) else

PROPOSITION 6.4. For a weighted Petri net N = (P, T, F,M0,Λ, λ, c) and a silent
transition t ∈ T such that c(t) = 0, if the t-contraction of (P, T, F,M0,Λ, λ) has the same
language as (P, T, F,M0,Λ, λ), then the weighted t, T (t)-contraction of N has the same
weighted language as N for any T (t).

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 00, Publication date: 0000.



Factored Planning: From Automata to Petri Nets 00:19

PROOF. As c(t) = 0 one can consider without loss of generality that T (t) is
empty. Assume, also without loss of generality, that t is the only silent-transition
and each other transition t′ has for label (t′, c(t′)). This way, any occurrence se-
quence corresponding to a word w in N has for cost the cost of w. And the cost of
w = (t1, c(t1)) . . . (tk, c(tk)) in N is obtained directly from w as c(t1) + · · · + c(tk). As
(P, T, F,M0,Λ, λ) and its t-contraction have the same language it comes directly that
N and its t, T (t)-contraction have the same weighted language.

From now on we consider only silent transitions t such that c(t) > 0. For an execution
o and a set T ′ of transitions, denote by |o|T ′ the number of transitions from T ′ in o.
The idea behind the use of the set T (t) in the definition of the t, T (t)-contraction of a
weighted Petri net is that choosing T (t) such that |o|T (t) = |o|{t} for any execution o
allows to preserve weighted languages, as stated by the following proposition.

PROPOSITION 6.5. For a weighted Petri net N = (P, T, F,M0,Λ, λ, c), a silent tran-
sition t ∈ T , and a set T (t) ∈ T \ {t} such that for any execution o of N one has
|o|T (t) = |o|{t}, if the t-contraction of (P, T, F,M0,Λ, λ) has the same language as
(P, T, F,M0,Λ, λ), then the weighted t, T (t)-contraction of N has the same weighted lan-
guage as N .

However, such a T (t) does not exist in general, as one can notice in Figure 13: the
execution t1 does not contain the silent transition t2, so t1 /∈ T (t2), and then necessarily
|t1t2|T (t) 6= |t1t2|{t}.

t1

a, ca

t2

ε, cε

t3

b, cb

Fig. 13. A Petri net with weights on transitions.

It is possible to relax the constraints on the choice of T (t). Indeed, in a weighted
language, only the best costs for words are considered, so it is sufficient to ensure that
for any word w the executions o achieving the best cost for this word are such that
|o|T (t) = |o|{t}. Considering the net of Figure 13 one can then take T (t2) = {t3}. Indeed,
the word a is obtained with best cost from the execution t1 and the word ab from the
execution t1t2t3, so the execution t1t2 never has to be considered. This is formalized by
the following proposition.

PROPOSITION 6.6. For a weighted Petri net N = (P, T, F,M0,Λ, λ, c), a silent tran-
sition t ∈ T , and a set T (t) ∈ T \ {t} such that for any execution o = arg minλ(o′)=w c(o

′)

with w a word of N one has |o|T (t) = |o|{t}, if the t-contraction of (P, T, F,M0,Λ, λ) has
the same language as (P, T, F,M0,Λ, λ), then the weighted t, T (t)-contraction of N has
the same weighted language as N .

PROOF. As before consider, without loss of generality, that each non-silent transi-
tion ti has for label (ti, c(ti)) and that t is the only silent transition in N .

Let o = t1 . . . tk be an execution of N such that o = arg minλ(o′)=w c(o
′) with w a word

of N . One has w = (ti1 , c(ti1)) . . . (ti` , c(ti`)) where ti1 . . . ti` is the longest subsequence of
o not containing t. As the t-contraction of (P, T, F,M0,Λ, λ) has the same language as
(P, T, F,M0,Λ, λ), w is a word of this t-contraction and so o′ = ti1 . . . ti` is an execution of
it (by construction of the labelling of transitions). Moreover, by construction of T (t), one
has |o′|T (t) = |o|T (t) = |o|{t}. So the cost of o′ in the t, T (t)-contraction of N is the same
as the cost of o inN : it is obtained as c′(ti1)+· · ·+c′(ti`) = c(ti1)+· · ·+c(ti`)+|o|T (t)∗c(t).
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The t, T (t)-contraction of N contains no silent transition, so the cost of w in it is the
cost of o′ in it (o′ is the only execution such that λ′(o′) = w). We have shown that any
weighted word of N is also a weighted word of its t, T (t)-contraction.

Let w be a word of the t, T (t)-contraction of N . Let o = t1 . . . tk be an execution
of the t, T (t)-contraction of N such that o = arg minλ′(o′)=w c

′(o′). As t-contraction
preserves language, w is also a word in N . Let o′ be an execution of N such that
o′ = arg minλ(o′′)=w c(o

′′). Due to how we defined the labelling of the transitions, the
only difference between o and o′ is that o′ may contain occurrences of the silent tran-
sition t. However, by definition of T (t) one has |o′|T (t) = |o′|{t} and by construction
of o′ one has |o′|T (t) = |o|T (t). And so, c(o′) = c(t1) + · · · + c(tk) + |o′|{t} ∗ c(t) =
c(t1) + · · · + c(tk) + |o|T (t) ∗ c(t) = c′(t1) + · · · + c′(tk) = c′(o). This proves that any
weighted word of the t, T (t)-contraction of N is also a weighted word of N .

This concludes the proof, and also proves Proposition 6.5. Indeed, the set of all
executions o of N such that |o|T (t) = |o|{t} contains the set of all executions o =
arg minλ(o′)=w c(o

′) with w a word of N such that |o|T (t) = |o|{t}.

In the particular case of Petri nets representing planning problems the constraints
to choose T (t) can be relaxed a bit more. Indeed, one is not interested in all the words
in the weighted language of such weighted Petri nets but only in the ones which are
plans, that is the ones ending by the special letter g. This is formalized by the follow-
ing proposition, and it will be of interest in one of the cases of transition contraction
described below.

PROPOSITION 6.7. For a weighted Petri net N = (P, T, F,M0,Λ, λ, c), a silent tran-
sition t ∈ T , and a set T (t) ∈ T \ {t} such that for any execution o = arg minλ(o′)=w c(o

′)

with w a word of N ending by g one has |o|T (t) = |o|{t}, if the t-contraction of
(P, T, F,M0,Λ, λ) has the same language as (P, T, F,M0,Λ, λ), then the weighted t, T (t)-
contraction of N has the same set of weighted plans as N .

The proof of this proposition is the same as the proof of Proposition 6.6, only consid-
ering plans instead of words.

With that in mind we look at the different cases of secure and safeness preserving
transition contractions given in Proposition 3.7. In each case we propose a way to
compute a valid T (t). This sometimes implies to make the conditions for contraction
more restrictive.

PROPOSITION 6.8. If t is a silent transition of a weighted Petri netN satisfying case
1 of Proposition 3.7: |t•| = 1, •(t•) = {t} and M0(p) = 0 with t• = {p}, then T (t) = (t•)

•

is such that |o|T (t) = |o|{t} for any execution o = arg minλ(o′)=w c(o
′) with w a word of N .

PROOF. In this case, t• = {p} with M0(p) = 0 and •(t•) = {t} so the transitions
in (t•)

• can only be fired after a firing of t (they are not initially enabled and they can
only be enabled by t) and at most one of them can be fired after each firing of t (because
|t•| = 1 and •(t•) = {t}). Thus for any execution o one has |o|T (t) ≤ |o|{t}. Moreover, for
any execution o achieving the minimal cost for the word λ(o) one has |o|T (t) ≥ |o|{t}
(else one occurrence of the silent transition t can be removed from o without changing
the obtained word, and thus o did not achieve the minimal cost for λ(o)).

The case of a transition t satisfying case 2 in Proposition 3.7 is close to the previous
case. Indeed, for the same reasons as above the transitions in (t•)

• can only be fired
after firing t and for any execution o achieving the minimal cost for a word one has
|o|(t•)• ≥ |o|{t}. However, in general, it can be the case that |o|(t•)• > |o|{t}, because
|t•| > 1 and so some transitions from (t•)

• may be fired concurrently (as an example
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consider t3 and the dashed transition in Figure 14) or sequentially without having to
fire t another time.

t1

a, ca

t2

ε, cε

t3

b, cb

Fig. 14. Another Petri net with weights on transitions.

To solve this issue we limit these contractions to a simple case where only one tran-
sition in (t•)

• can be fired after each occurrence of t. This is formalized by the following
proposition.

PROPOSITION 6.9. If t is a silent transition of a weighted Petri net N satisfying
case 2 of Proposition 3.7: |•t| = 1, •(t•) = {t} and ∀p ∈ t•,M0(p) = 0, if moreover
∀t′, t′′ ∈ (t•)

•
, •t′ ∩ •t′′ ∩ t• 6= ∅, then T (t) = (t•)

• is such that |o|T (t) = |o|{t} for any
execution o = arg minλ(o′)=w c(o

′) with w a word of N .

PROOF. The proof that for any execution o achieving the minimal cost for a word
one has |o|(t•)• ≥ |o|{t} is the same as for Proposition 6.8. It remains to prove that
for any execution o achieving the minimal cost for a word one has |o|(t•)• ≤ |o|{t}.
First remark that because ∀p ∈ t•,M0(p) = 0 and •(t•) = {t}, it is not possible to
fire a transition from (t•)

• before having fired t at least once. Then remark that after
each firing of t no more than one transition from (t•)

• can be fired. This is because
∀t′, t′′ ∈ (t•)

•
, •t′ ∩ •t′′ ∩ t• 6= ∅, so firing any t′ from (t•)

• removes a token from a
predecessor of each of the t′′ ∈ (t•)

• which is also a successor of t (this token can
only be put back by t as •(t•) = {t}). As we consider only safe Petri nets, removing a
token from a predecessor of a transition always disables this transition. So by firing
a transition in (t•)

• one disables all transitions in (t•)
• until a new firing of t. This

ensures that |o|(t•)• ≤ |o|{t} and concludes the proof.

In the last case (contraction of t satisfying case 3 in Proposition 3.7) one cannot take
T (t) = (t•)

•, as it is possible that •(t•) ⊃ {t}, and so the transitions from (t•)
• may be

enabled without firing t before. Denote by p the only place in •t. Assume it is such that
M0(p) = 0. Then, T (t) = •p is a reasonable candidate. Indeed, t can only be enabled by
the firing of some transition in •p. However, there is no guarantee that the firing of a
transition t′ ∈ •p enforces to fire t afterwards (as an example t1 is useful for firing the
dotted transition in Figure 15), which would be necessary if T (t) = •p.

t1

a, ca

t2

ε, cε

t3

b, cb

Fig. 15. Another Petri net with weights on transitions.

In the particular case of planning, however, one is not interested in the full language
of a Petri net, but only in those words finishing by the special label g. In this context it
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is possible to ensure that t will always be fired after such t′ in an execution achieving
the minimal cost for a word. This is formalized by the following proposition.

PROPOSITION 6.10. If t is a silent transition of a weighted Petri net N satisfying
case 3 of Proposition 3.7: |•t| = 1 and (•t)

•
= {t}, if moreover M0(p) = 0, and ∀t′ ∈

•p, λ(t′) 6= g, c(t′) > 0 and t′
•

= {p} for p the only place in •t, then T (t) = •p is such that
|o|T (t) = |o|{t} for any execution o = arg minλ(o′)=w c(o

′) with w a word of N finishing by
g.

PROOF. First remark that t can only be fired if some t′ ∈ •p has been fired before
(because M0(p) = 0 and p ∈ •t), and for each firing of such a t′, t can be fired at most
once (because we consider safe nets and so p cannot contain more than one token).
So |o|•p ≤ |o|{t} for any execution o = arg minλ(o′)=w c(o

′) with w a word of N . Then
remark that in any occurrence sequence o achieving the cost of a minimal cost plan
(the last transition of such sequence is labelled by g), any occurrence of a t′ ∈ •p is
followed by an occurrence of t and there is no occurrence of any t′′ ∈ •p between the
occurrences of t′ and t. Indeed if t′ and t′′ are fired without firing t in between, then p
would contain two tokens at some time (which is not possible as we consider safe Petri
nets only). And if there is some occurrence of t′ without occurrence of t afterwards,
then the sequence o′ obtained by removing the said occurrence of t′ is an occurrence
sequence (because as t′• = {p} and •t = {p} firing t′ only enables t) such that c(o′) < c(o)
(because c(t′) > 0) and λ(o′) is a plan (because λ(t′) 6= g), so λ(o) is not a minimal cost
plan, which is in contradiction with the definition of o. Hence, |o|•p ≥ |o|{t} for any
execution o = arg minλ(o′)=w c(o

′) with w a word of N ending by g.

The fact that we require c(t′) > 0 in the above definition is not a strong limitation
as all actions of a planning problem will generally have a positive cost. However it is
always possible to avoid this limitation by preferring the shortest among two plans
having the same cost.

In summary, for each case where a transition can be removed while preserving safe-
ness, one is able to give a sufficient condition for preserving also the costs of words
that matter in the resolution of an optimal planning problem, i.e. those finishing by
the special goal label g. In two cases however these conditions are more restrictive
than in the non-weighted case, when transition contraction has to preserve language
and safeness only. The next section of this paper proposes an experimental evaluation
of at which extent these new conditions are more restrictive.

7. EXPERIMENTAL EVALUATION IN PRESENCE OF COSTS
In order to evaluate the impact of the new restrictions (Propositions 6.9 and 6.10) on
the efficiency of the silent transitions removal, we ran the message passing algorithm
on the same benchmarks as previously (Milner’s cyclic scheduler, divide and conquer
computation, dining philosophers, dining philosophers with dictionary, mutual exclu-
sion protocol on a ring) with and without weights on transitions. Notice that, in prac-
tice, the actual weight of a transition (as soon as it is not 0) has no impact on the
contraction, so we do not really add weights to transitions in these examples, but we
consider that each transition has a non-zero weight (this corresponds to a “worst” case
where no transition can be contracted as if it was without weight).

As before, we ran all our experiments on the same computer (Intel Core i5 proces-
sor, 8GB of memory). We first compared the runtimes of the weighted and the non-
weighted cases. The results of this comparison are presented in Figures 16a, 16b, 16c,
16d, and 16e.

We also compared the numbers of silent transitions remaining in the whole system
with and without weights. It turned out that in all the considered benchmark families
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(e) Milner’s cyclic scheduler

Fig. 16. Comparison of runtimes in the weighted and the non-weighted cases.

the ratio between these numbers was the same irrespective of the size of the instance:
1.0 for the philosophers (with and without dictionary) and for Milner’s scheduler, 1.11
for the mutual exclusion protocol, and 1.12 for the divide and conquer computation.

From our experiments it appears that, at least on the particular benchmarks con-
sidered, it is reasonable to treat the weighted case by doing contraction according to
the conditions given in Propositions 6.8, 6.9, and 6.10. The small runtime difference
between the weighted and the non-weighted case appearing even in the cases where
the same number of silent transitions can be contracted (dining philosophers with and
without dictionary and Milner’s cyclic scheduler) can be explained by the additional
computational cost of testing the supplementary conditions in presence of weights.
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8. CONCLUSION
This paper described an extension of a distributed planning approach proposed
in [Fabre et al. 2010], where the local plans of each component are represented as
Petri nets rather than automata. This technical extension has three main advantages.
First, Petri nets can represent and exploit the internal concurrency of each component.
This frequently appears in practice, as factored planning must operate on interaction
graphs that are trees, and getting back to this situation is naturally performed by
grouping components (through a product operation), which creates internal concur-
rency. Secondly, the size reduction operations for Petri nets (transition contraction,
removal of redundant places and transitions) are local operations: they do not modify
the full net but only parts of it. By contrast, the size reduction operation for automata
(minimisation) is expensive (while necessary, as only removing silent transitions does
not reduce the size of the automata enough and make messages grow too quickly [Jeze-
quel 2012]). As the performance of the proposed factored planning algorithm heavily
depends on the ability to master the size of the objects that are handled, Petri nets
allow us to deal with much larger components. Thirdly, the product of Petri nets is also
less expensive than the product of automata. This again contributes to keeping the
complexity of factored planning under control, and to reaching larger components.

This new approach was compared to its preceding version, based on automata
computations (which has been previously successfully compared to a version of A*
in [Fabre et al. 2010]), on five benchmarks from [Corbett 1996]. For two of these bench-
marks, the automata approach is the best. Still, the Petri nets approach scales up
decently on these problems, allowing one to address large instances. On the remain-
ing three benchmarks, the automata approach could hardly deal with small instances,
while the Petri nets version scaled up very well. We believe that these experimental
results show the practical interest of our new approach to factored planning.

We examined how far these ideas could be pushed to perform cost-optimal factored
planning. Surprisingly, the extension is rather natural: the central operation of size
reduction for Petri nets can be adapted to weighted Petri nets, with almost no increase
in theoretical complexity. By contrast, when working with automata, the extension
was much more demanding: the minimisation of weighted automata is not even always
possible.

Finally, we implemented and evaluated the interest of cost-optimal factored plan-
ning based on weighted Petri nets, with a specific focus on the contraction of silent
weighted transitions. On the same benchmarks as before, this has shown that the con-
ditions for contraction are not too restrictive and that a size reduction of weighted
Petri nets as effective as for non-weighted Petri nets is possible.
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