
Networks of automata with read arcs:
a tool for distributed planning

Loı̈g Jezequel ∗ Éric Fabre ∗∗

∗ ENS Cachan Bretagne, Rennes, France (loig.jezequel@irisa.fr).
∗∗ INRIA Rennes Bretagne Atlantique, Rennes, France (eric.fabre@inria.fr)

Abstract: A planning problem consists in driving a system from its current state to a set of target
states. Problems are generally expressed by a collection of state variables, and actions that change the
value of a subset of these variables. Such problems can be modeled as networks of automata, one per
state variable, that partially synchronize on some actions. Distributed planning (or factored planning)
consists in driving each of these automata to its goal state(s), while preserving the coherence of their
interactions. Real planning problems, however, need to model actions that can only be performed in one
component when another component is in a specific state. This paper proposes a mechanism to capture
this phenomenon, under the form of automata with read arcs, reproducing what already exists for Petri
nets. It is shown that a previous approach to distributed planning, based on automata computations, can
be extended to this new setting.

Keywords: distributed planning, factored planning, discrete event system, read arcs, concurrent system,
distributed constraint solving, formal language theory

1. INTRODUCTION

Planning consists in (optimally) selecting and organizing a set
of actions in order to reach a goal state from a given initial state
(Nau et al. (2004)). States correspond to tuples (vn)1≤n≤N of
values, one per variable Vn, and the actions read and write on
subsets of these variables. States and actions naturally define
an automaton, and planning amounts to finding a path in this
automaton, which is generally a complex search problem due
to the number of variables and actions, and to the possibe
concurrency of actions. Recently, factored planning approaches
have been developed to reduce this complexity: Brafman and
Domshlak (2006, 2008); Amir and Engelhardt (2003); Choi and
Amir (2006). They consist in solving the problem by parts. The
problem is modeled as a network of automata, typically one
automaton per state variable Vn. An action involving several
variables will be modeled by synchronized transitions in the
automata associated to these variables. The problem then be-
comes finding a plan in each automaton, while ensuring the co-
herence of these local plans, i.e. the correct use of synchronized
transitions.

Fig. 1 illustrates this idea on a simple example with three
automata A1,A2,A3 (from left to right), where goal states are
depicted with double circles. Let us first ignoreA3. Transitions
labeled α are private to A1, those labeled β are private to A2,
but γ represents an action that both involves A1 and A2. The
pair of words (γ, γ) for (A1,A2) is a valid factored plan: it
(synchronously) drivesA1 andA2 to their goal states. Similarly
(αα, β) is another valid factored plan, which does not require
any interaction. An advantage of factored planning is that the

? This work was partly supported by the European Community’s 7th Frame-
work Programme under project DISC (DIstributed Supervisory Control of large
plants), Grant Agreement INFSO-ICT-224498. This work was also supported
by the joint research lab between INRIA and ALU-Bell Labs.

α

γ

α

γ

β

α

β

γ

Fig. 1. Network of three partially synchronized automata
A1,A2,A3, from left to right.

concurrency of actions is correctly exploited: the interleaving
of local words αα and β is meaningless, and is left unspecified.
This means that the three of βαα, αβα and ααβ are valid
global plans, that actually need not be distinguished. Partially
ordered plans are also studied in Hickmott et al. (2007); Bonet
et al. (2007).

Several approaches have been proposed to derive such tuples
of local plans. Most of them are distributed search methods,
that perform a plan search for one state variable, and take the
result as a seed for a search on the next state variable, and so
on: Brafman and Domshlak (2006, 2008); Amir and Engelhardt
(2003); Choi and Amir (2006); Dechter (2003). An alternate
approach was proposed in Fabre and Jezequel (2009), and
computes all valid factored plans using automata computations.
This method can also be refined to compute the best factored
plan. In all cases, the computation of a factored plan is based
on message exchanges between the variables that may require
interactions (i.e. synchronized actions): Pearl (1986); Dechter
(2003); Fabre (2003).

The work in Fabre and Jezequel (2009) suffers from a weakness
however. Planning problems often specify that an action on
some variable Vn can only be performed if another variable

Vm displays some specific value. For example, loading a truck
requires the presence of the truck, but it does not change
the truck location. Moreover, the presence of the truck may
also enable another concurrent action, like filling it up. This
ability to read a variable is not encoded by standard automata
interactions based on synchronizations. Existing formalisms
would require to synchronize the truck with the loading action,
then with the filling up action, or conversely. In other words,
from the perspective of the truck, it would impose two actions,
with two possible orderings, while it is clear that the truck is
passive and that only its presence really matters. More formally,
consider again the example in Fig. 1, and assume that all actions
in A1 and A2 can only be performed if A3 is in its initial
(and final) state. To model this, one needs to introduce loops
in A3 that synchronize with α, β and γ. As a consequence, for
A1,A2,A3 to jointly reach their goal, A3 must perform one
word in {γ, ααβ, αβα, βαα}, which forces readings of its state
variable to be displayed, counted and ordered. In particular,
concurrent (simultaneous) readings become impossible. While
clearly there is no need of any “action plan” for A3.

This paper proposes a mechanism that solves this difficulty: it
extends the semantics of automata interactions to enable state
readings, without forcing a component to fire a transition in
order to display its state. In the previous example, this will
allow A3 to stay idle and simply “show” its state in order to
enable actions in A1 and A2. This mechanism can thus be
seen as the extension to automata of the read arcs of Petri
nets, that simply check for the presence of tokens in some
places to enable a transition, but that do not consume these
tokens if the transition fires: see for ex. Baldan et al. (2001).
The next section illustrates the principle of this construction in
the simplest setting, while Section 3 extends it to the case of
networks of automata, with cross and simultaneous readings.
Section 4 proves that this setting enjoys the right algebraic
properties that enable the distributed computation of factored
plans, and thus allows one to recycle the algorithms presented
in Fabre and Jezequel (2009).

2. SIMPLE READING MECHANISM

This section illustrates how a reading mechanism can be intro-
duced to define automata interactions. The setting is first limited
to the simple case of two automata. The next section extends
it to an arbitrary number of automata, with cross and multiple
readings.

2.1 Notation

Let us first recall standard notions. An automaton A is a tuple
A = (S, SI , SF ,Σ, T) where S is a finite set of states, SI , SF

are subsets of S representing initial and final states, Σ is a finite
alphabet of transition labels and T ⊆ S × Σ × S denotes
the transition set. A path in A is a sequence π = t1...tK of
transitions such that tk = (sk−1, σk, sk), 1 ≤ k ≤ K. We
adopt notation s0 = s−(π) and sK = s+(π). Path π is accepted
by A, iff s−(π) ∈ SI and s+(π) ∈ SF . The word associated
to π is the label sequence Σ(π) = σ1...σK . The language of
A, denoted by L(A), is the set of words produced by all paths
accepted by A.

2.2 Writing and reading

Beyond the simple composition of two automata A1 and A2

by the usual synchronous product, one would like to allow a

weak form of synchronization, where A2 is allowed to perform
some of its transitions only when A1 is in specific states.
This requires a double mechanism. First, A1 should display
properties of its states. Rather than associating labels to states, it
is equivalently assumed that transitions output a readable label.
So let us defineA1 = (S1, S

I
1 , S

F
1 ,Σ1×O1, T1) where O1 is a

finite set of readable labels, and so T1 ⊆ S1×Σ1×O1×S1. For
simplicity, in this paper a single state property is displayed. The
language L(A1) is defined as above by considering Σ1 × O1

as alphabet. Secondly, A2 must be able to read these values.
Let I2 be the set of “input values” to A2, that one can define
as A2 = (S2, S

I
2 , S

F
2 , I2 × Σ2, T2), with ? ∈ I2, and so

T2 ⊆ S2 × I2 × Σ2 × S2. The semantics is that a transition
t2 = (s2, a, σ, s

′
2) ∈ T2 will be able to fire only if A1 has

displayed the value a at the output of one of its transitions;
the special case of a = ? means that t2 is not reading in A1.
Again, the language L(A2) is obtained by considering I2 ×Σ2

as alphabet.

To define the interactions of A1 and A2 based on this reading
mechanism, let us first consider the composition of their lan-
guages. It consists of words over the alphabet I2 × Σ × O1

where Σ = Σ1 ∪ Σ2. A word w = (i1, σ1, o1)...(iK , σK , oK)
is coherent iff, for 1 ≤ k ≤ K, one has

(i) ik = ok−1 or ik = ? (in particular i1 = ?),
(ii) ok = ok−1 if σk 6∈ Σ1, and

(iii) ik = ? if σk 6∈ Σ2.

In other words, (i) expresses that if label σk is attached to a
reading, the previous label must have provided this value as
output. Condition (ii) expresses that labels of Σ2 \ Σ1, which
correspond to private transitions ofA2, can not change (or must
propagate) the output produced by A1. Symmetrically, (iii)
expresses that private transitions of A1 can not be associated
to a reading.

2.3 Operations on languages

The projection Π2 of words over I2 × Σ × O1 on I2 × Σ2 is
defined as the monoid morphism generated by Π2(i, σ, o) =
(i, σ) if σ ∈ Σ2, otherwise Π2(i, σ, o) = ε, where ε denotes the
empty word as usual. Similarly, the projection Π1 on Σ1 × O1

is the monoid morphism generated generated by Π1(i, σ, o) =
(σ, o) if σ ∈ Σ1, otherwise Π1(i, σ, o) = ε.

The composition or product of languages L(A1)×L L(A2) is
defined by all coherent wordsw over alphabet I2×Σ×O1 such
that Π1(w) ∈ L(A1) and Π2(w) ∈ L(A2). Notice that this def-
inition extends the natural synchronous product of languages,
where a letter σ ∈ Σ1∩Σ2 corresponds to synchronous actions
of two languages. Here, “letters” (i, σ) and (σ, o) in L(A2) and
L(A1) respectively give rise to the synchronous action (i, σ, o)
that both needs input i and produces output o.

Example. Let L(A1) = {w1 = (α, 1)(γ, 2)(α, 3)(δ, 4)} and
L(A2) = {w2 = (1, β)(?, γ)(?, β)(3, δ), w′2 = (1, γ)(1, β)},
with Σ1 = {α, γ, δ},Σ2 = {β, γ, δ} and I = O = {1, ..., 4}.
One has L(A1)×L L(A2) = {w, w′ } (Fig. 2) where

w= (?, α, 1)(1, β, 1)(?, γ, 2)(?, β, 2)(?, α, 3)(3, δ, 4)

w′ = (?, α, 1)(1, β, 1)(?, γ, 2)(?, α, 3)(?, β, 3)(3, δ, 4)
Observe that w′2 does not synchronize with w1, due to the
impossibility of reading again 1 after action γ has been per-
formed in A1. By contrast, words w1 and w2 synchronize in

two different ways, yielding w and w′. Notice that the readings
in A2 constrain the interleaving of the private events of A1 and
A2 (see the notion of asymmetric conflict in Petri nets with
read arcs in Baldan et al. (2001, 2004)). For example, the first
occurrence of β has to be performed after first occurrence of α,
while both are private. By contrast, since there is no reading in
the second occurrence of β, it can be performed either before
or after the second occurrence of α. Notice as well that writings
in A1 are propagated along product words by private events of
A2, which are attached to a “stuttering event” of A1 (circles in
Fig. 2). Finally, observe that the usual synchronous product of
languages is obtained by positioning all readings to ?.

1

2

3

4

α

γ

α

δ

×L

1

3

β

γ

β

δ

1

1

γ

β

=

1

1

2

3

3

4

α

β

γ γ

α

β

δ δ

1

1

2

2

3

4

α

β

γ γ

α

β

δ δ

Fig. 2. Product of languages. Arrows denote output and input
values. Product words, on the right, are depicted as syn-
chronized threads where circles denote stuttering events.

2.4 Operations on automata

In standard automata theory, one has that L(A1)×̇LL(A2)
is the language L(A1 × A2), where A1 × A2 is the syn-
chronous product of automata and L(A1)×̇LL(A2) the usual
synchronous product of languages defined as Π−1

1 (L(A1)) ∩
Π−1

2 (L(A2)). This property is essential to replace operations
on regular languages, which are possibly infinite objects, by
operations on their representations as automata, which are finite
objects. To extend this property to the writing and reading
automata described above, one needs a notion of automaton
with internal readings and writings.

Let A = (S, SI , SF , I × Σ × O, T) be an automaton with
(internal) inputs and outputs, assuming ? ∈ I . A path π =
t1...tK in A is said to be coherent iff its label sequence (I ×
Σ × O)(π) forms a coherent word over alphabet I × Σ × O.
Coherence here only involves condition (i) because Σ1 = Σ2 =
Σ. The coherent language ofA, denoted Lc(A), is now defined
as the restriction of L(A) to its coherent words.

The product is now defined as A = A1 × A2 iff S = S1 ×
S2, S

I = SI
1 × SI

2 , S
F = SF

1 × SF
2 , I = I2,Σ = Σ1 ∪

Σ2, O = O1, and the transition set T = Ts ∪ T1,p ∪ T2,p is
defined by

Ts = { ((s1, s2), i2, σ, o1, (s′1, s
′
2)) :

(s1, σ, o1, s
′
1) ∈ T1, (s2, i2, σ, s

′
2) ∈ T2 } (1)

T1,p = { ((s1, s2), ?, σ1, o1, (s′1, s2)) : σ1 6∈ Σ2,

(s1, σ1, o1, s
′
1) ∈ T1, s2 ∈ S2 } (2)

T2,p = { ((s1, s2), i2, σ2, o1, (s1, s
′
2)) : σ2 6∈ Σ1,

(s2, i2, σ2, s
′
2) ∈ T2, s1 ∈ S1, o1 ∈ O1 } (3)

Synchronized transitions in Ts correspond of course to σ ∈
Σ1 ∩ Σ2, private transitions of A1 appear with no reading
in T1,p, while private transitions of A2 reproduce all possible
outputs of A1 in T2,p.
Lemma 1. One has Lc(A1 ×A2) = L(A1)×L L(A2).

One can define as well a notion of projection on automata, such
that “L(Π(A)) = Π(L(A))”. This is examined later, in a more
general setting.

3. NETWORKS OF AUTOMATA WITH READ ARCS

To extend read arcs to networks of automata, several refine-
ments are necessary, and in particular one needs a mechanism
to specify where, that is in which component, input values must
be read. This relies on the notion of tag.

3.1 Reading and writing tags

Consider a finite set O of output labels partitioned into O =
O1] ...] ON . In the sequel, each On will characterize the
possible values displayed by component An in a network of
automata with read arcs composed of A1, ...,AN .

A tag over O is a function α : {1, ..., N} → O ∪ {?} such that
∀n, α(n) ∈ On ∪ {?}. The support of α is Supp(α) = {n :
α(n) 6= ?}, and for J ⊆ {1, ..., N}, TJ denotes the set of tags
whose support is J , T⊆J denotes the set of tags whose support
is included in J , and T denotes the set of all tags.

Two tags α and β are compatible , denoted by α ∼ β, iff
they coincide on Supp(α) ∩ Supp(β). The composition α ∧ β
is defined by (α ∧ β)(n) = α(n) if α(n) 6= ?, otherwise
β(n). Notice that Supp(α ∧ β) = Supp(α) ∪ Supp(β), and
α ∧ β = β ∧ α when α ∼ β. Composition will only be applied
in this case. For J ⊆ {1, ..., N}, the restriction of tag α to
J , denoted by α|J , is defined by α|J(n) = α(n) for n ∈ J ,
otherwise α|J(n) = ?.

3.2 Automata with read arcs

We assume a partition O = O1] ...]ON given once for all.

An automaton with read arcs (ARA) A on O is defined
as the tuple A = (S, SI , SF , T × Σ × TW , T,W), where
(S, SI , SF , T × Σ × TW , T) is an ordinary automaton, and
the writing set ∅ 6= W ⊆ {1, ..., N} defines the indices of
output sets On displayed by A. For technical reasons (namely
the definition of products below) we also require that Σ contains
the special label start, used to label each initial transition:
∀t ∈ T, s−(t) ∈ SI ⇒ Σ(t) = start.

A transition t = (s, α, σ, β, s′) ∈ T moves from s to s′ in
A when action σ is performed, assuming t manages to read
the values specified by the reading tag α ∈ T . As a result of
the firing, t produces the writing tag β ∈ TW , which means
that it changes the output values in each On, for n ∈ W .
Intuitively, transition t changes the state property displayed
by each component An for n ∈ W . This is made clear by
the semantics of an ARA, and by the composition operations
defined below. The reading set R ofA is defined as the smallest
subset of {1, ..., N} such that T ⊆ S × T⊆R × Σ × TW × S,
i.e. such that reading tags of transitions all have their support
in R. When needed, R can be appended at the end of the tuple
defining A.

Let π = t1...tK be a path in A, and (T × Σ × TW)(π) =
(α1, σ1, β1)...(αK , σK , βK) its associated word. This word is
coherent over W iff

∀ 2 ≤ k ≤ K, (αk)|W ∼ (βk−1)|W (4)

In other words, readings and writings along this path must be
consistent for every component On of the reading and writing
tags, for n ∈W . Given that Supp(βk−1) = W , (4) reproduces
condition (i) of Section 2, for every n ∈ W . The readings
performed outside W by transitions of A are not considered.
The coherent language of A, denoted Lc(A), is defined as
the subset of words in L(A) that are coherent over its writing
set W .

Notice that the above definitions of ARA and their semantics
are simply the extension of the automata with inputs and
outputs of Section 2 to the case of vector readings and writings.

A network of automata with read arcs is defined as an N -uple
(A1, ...,AN) of ARA such that An = (Sn, S

I
n, S

F
n , T⊆Rn

×
Σn × T{n}, Tn, {n}, Rn) , 1 ≤ n ≤ N . Each component An

is thus in charge of displaying values in its private set On of
state properties, by means of the writing tags in T{n} attached
to transitions. Notice that An may also read values in its own
On by the reading tags in T⊆Rn

, which is somehow redundant
with (but not equivalent to) reading its own internal state to
enable the firing of a transition. The interest of this phenomenon
becomes clear in the definition of the composition of ARA,
since it allows cross-readings. It is also of crucial importance
for working with languages, regardless of the actual automata
that produced them.

3.3 Operations on languages

Weak inclusion. Let L,L′ be two languages over TR×Σ×TW .
We write L v L′ iff ∀w = (α1, σ1, β1)...(αK , σK , βK) ∈ L
there exists a word w′ = (α′1, σ1, β1)...(α′K , σK , βK) ∈ L′
such that α′k is a restriction of αk, 1 ≤ k ≤ K. In other words,
w′ is identical to w up to reading tags, that may be less specific.
We denote it by w v w′, with a light abuse of notation.

Projection. Consider letter (α, σ, β) ∈ T × Σ × TW , and let
R′,Σ′,W ′ be respectively reading, label and writing sets. Pro-
jection ΠR′,Σ′,W ′ is defined on letters by ΠR′,Σ′,W ′(α, σ, β) =
(α|R′ , σ, β|W ′) if σ ∈ Σ′, otherwise ΠR′,Σ′,W ′(α, σ, β) = ε.
Projection is then extended to words in (T × Σ × TW)∗ as
the induced monoid morphism, and to languages by union.
Notice that if L is a coherent language over W , its projec-
tion ΠR′,Σ′,W ′(L) may lose coherence, due to the missing
writing tags attached to letters σ 6∈ Σ′. Remark: for w =
(α1, σ1, β1)...(αK , σK , βK), the definition of ΠR′,Σ′,W ′ as a
monoid morphism allows one to associate uniquely any letter
(αk, σk, βk) of w to its image in ΠR′,Σ′,W ′(w), when σk ∈ Σ′.

Product. For i = 1, 2, let wi ∈ (T⊆Ri
× Σi × TWi

)∗ be a
coherent word overWi. The product w1×Lw2 is defined as the
set of words w ∈ (T⊆R ×Σ× TW)∗ that are coherent over W ,
with R = R1 ∪ R2, Σ = Σ1 ∪ Σ2 and W = W1 ∪W2, and
such that

(I) ΠRi,Σi,Wi(w) v wi, for i = 1, 2
(II) for any letter (α, σ, β) along w

(a) if σ ∈ Σ1 ∩ Σ2, let (α1,k, σ, β1,k) and (α2,l, σ, β2,l)
be the projected images of (α, σ, β) in w1 and w2,
resp., then α = α1,k ∧ α2,l and β = β1,k ∧ β2,l.

(b) if σ 6∈ Σ2, let (α′, σ′, β′) be the last letter before
(α, σ, β) in w such that σ′ ∈ Σ2; let (α1,k, σ, β1,k)
be the image of (α, σ, β) in w1, and (α′2,l, σ

′, β′2,l)
the image of (α′, σ′, β′) in w2, then α = α1,k ∧
(β′2,l)|W2\W1 and β = β1,k ∧ (β′2,l)|W2\W1 .

(c) if σ 6∈ Σ1, symmetric conditions of (b).

Condition (I) ensures that w reproduces the labels of w1 and
w2, as in a standard product of languages, and that it reproduces
also their writings, and at least their readings. But the readings
in w could be much stronger: they could erase more ? than
strictly necessary, i.e. require more values than those specified
in w1 and w2. So (II) ensures that the readings of letters in
w combine exactly those required by the associated letters in
w1 and w2, and not more. Specifically, (II.a) combines the
reading and writing tags of the two image letters in w1, w2;
the compatibility of these tags is guaranteed by (I). In (II.b), a
private event of w1 has to be reflected in w. Its reading and
writing tags are thus augmented to push forward the output
values previously positioned by (α′2,l, σ

′, β′2,l) on W2 \ W1.
Indeed, observe that the image of (α, σ, β) in w2 is an epsilon,
“immediately preceded” by (α′2,l, σ

′, β′2,l). Notice also that
α1,k ∼ β′2,l, thanks again to (I), so α = α1,k ∧ (β′2,l)|W2\W1 =
α1,k ∧ β′2,l.

Notice that conditions (I,II) above can easily be turned into a
recursive construction of an element in w1 ×L w2, that would
interleave letters of these two words, provided the coherence of
reading and writing tags is checked before each composition, in
order to ensure the coherence of the resulting w over W .

The definition of the product of two words naturally extends to
languages by union. It is also clearly associative.
Lemma 2. LetLi be a language over T⊆Ri×Σi×TWi , i = 1, 2.
Then ΠRi,Σi,Wi(L1×LL2) is a coherent language overWi, and
satisfies

ΠRi,Σi,Wi(L1 ×L L2) v Li.

Notice that the product L1 ×L L2 removes more words in
each Li than the usual synchronous product (that it actually
reinforces). This is due to the necessity of checking more
properties in pairs of words w1 and w2 that are combined,
namely the coherence of their cross readings and common
writings over W1 ∩W2. Notice as well that ΠRi,Σi,Wi

(w1 ×L

w2) is not wi in general, but a set of versions of wi where
reading tags are reinforced. This is due to readings inherited
from the letters of the other word wj with which they may
synchronize.

3.4 Product of automata with read arcs

Consider Ai = (Si, S
I
i , S

F
i , T × Σi × TWi

, Ti,Wi), i = 1, 2.
The product A1 × A2 is defined by (S, SI , SF , T × Σ ×
TW , T,W) where S = S1 × S2, S

I = SI
1 × SI

2 , S
F = SF

1 ×
SF

2 ,Σ = Σ1 ∪ Σ2,W = W1 ∪ W2, and the transition set
T = Ts ∪ T1,p ∪ T2,p is given by

Ts = { ((s1, s2), α1 ∧ α2, σ, β1 ∧ β2, (s′1, s
′
2)) :

(si, αi, σ, βi, s
′
i) ∈ Ti, α1 ∼ α2, β1 ∼ β2 } (5)

T1,p = { ((s1, s2), α1 ∧ β2, σ1, β1 ∧ β2, (s′1, s2)) :

σ1 6∈ Σ2, (s1, α1, σ1, β1, s
′
1) ∈ T1, s2 ∈ S2,

β2 ∈ TW2\W1 , α1 ∼ β2 } (6)

T2,p = { ((s1, s2), α2 ∧ β1, σ2, β1 ∧ β2, (s1, s
′
2)) :

σ2 6∈ Σ1, (s2, α2, σ2, β2, s
′
2) ∈ T2, s1 ∈ S1,

β1 ∈ TW1\W2 , α2 ∼ β1 } (7)
(5) merges/synchronizes transitions carrying shared labels, pro-
vided they agree on readings and writings. (6) extends private
transitions ofA1 to all possible values of s2, and to all possible
values of tags over W2 \W1 that are used both for reading and
writing, i.e. for the propagation of the output values set by A2

over W2 \ W1. (7) does the symmetric operation for private
transitions of A2.

Not all transitions defined above are accessible and coaccessi-
ble inA1×A2. Therefore some trimming should be performed
to remove useless transitions, taking into account that (co-)
accessibility here must incorporate the coherence over W .
Theorem 3. Lc(A1 ×A2) = Lc(A1)×L Lc(A2)

Theorem 3 can be plugged into Lemma 2, which reveals that
ΠR1,Σ1,W1(Lc(A1 × A2)) v Lc(A1) (and symmetrically for
A2). So the synchronization of A1 with A2 removes words w1

of A1 that have no compatible companion w2 in A2, both for
the firing of common labels in Σ1∩Σ2 and for the compatibility
of readings and writings. And for words w1 of A1 that are
preserved, their writing tags are unchanged, but their reading
tags may inherit extra conditions from their companion w2 in
A2.

4. DISTRIBUTED PLANNING IN NETWORKS OF ARA

As mentioned in the introduction, a planning problem can
be modeled as a network of automata with read arcs. Given
(A1, ...,AN), a global plan is simply a (coherent) word w
in Lc(A1 × ... × AN), i.e. a sequence of events reaching a
marked or final state from the/an initial state, ensuring both that
synchronized actions are performed correctly, and that readings
and writings in each component An are also performed cor-
rectly. Factored planning would consist in deriving w under a
factored form, i.e. as a tuple (w1, ..., wN) of words, with wn =
ΠRn,Σn,Wn(w) ∈ ΠRn,Σn,Wn(Lc(A1× ...×AN)) v Lc(An).
Distributed planning goes a little further in this direction, and
requires that the wi be computed without computing w, since
working with A1 × ... × AN might be intractable. Surpris-
ingly, this can be achieved if component interactions are sparse
enough, as it was already proved in Fabre and Jezequel (2009).
The idea is that the projected languages ΠRn,Σn,Wn(Lc(A1 ×
... × AN)) can be derived without computing first Lc(A1 ×
...×AN), by means of local and coordinated computations. The
same procedure can be used as well to select a factored plan
(w1, ..., wN) in these projections. The central tool to achieve
this is a relation between product and projection on languages,
that we immediately translate into a relation between product
and projection of ARA, in order to handle finite objects.

4.1 Projection of an ARA

The projection of an automaton with read arcsA = (S, SI , SF ,
T × Σ × TW , T,W) on R′,Σ′,W ′, respectively reading, la-
bel and writing sets, is defined as the ARA ΠR′,Σ′,W ′(A) =

(S, SI , S′
F
, T⊆R′×Σ′×TW ′ , T ′,W ′). Transitions are defined

from a (possibly empty) silent path π, i.e. labeled by Σ \ Σ′,
followed by a visible transition, i.e. labeled by Σ′.

T ′ = { (s, α|R′ , σ, β|W ′ , s′) : σ ∈ Σ′,

∃(s′′, α, σ, β, s′) ∈ T,
∃π a path in A,Σ(π) ∈ (Σ \ Σ′)∗,

s−(π) = s, s+(π) = s′′}.
The fact that only α|R′ is considered requires a comment. In
the sequel,R′,Σ′,W ′ will be the reading, label and writing sets
of some automaton, and thus will select the transitions of this
automaton. So any discarded transition t′ of path π will be a pri-
vate transition of another automaton, which can not modify the
values necessary to α|W ′ . So (s, α|R′ , σ, β|W ′ , s′) will remain
firable in the projection, since coherence is only tested overW ′.
Finally, the set S′F is also constructed from paths of transitions
from Σ \ Σ′: S′F = SF ∪ {s ∈ S : ∃π a path in A,Σ(π) ∈
(Σ \ Σ′)∗, s−(π) = s, s+(π) ∈ SF }. As for the product,
this definition may produce states and transitions that are not
accessible and coaccessible, so a trimming may be necessary.

The construction above corresponds to an ε-reduction: use-
less transitions are bypassed. It generally results in non-
deterministic automata. Standard determinization and mini-
mization procedures can be performed (see for example Cas-
sandras and Lafortune (1999)): as they preserve the language
over alphabet T⊆R′×Σ′×TW ′ , they also preserve the coherent
language. Determinization may however incur an exponential
blowup in the number of states, in the worst case, although
in practice this is rarely the case and one observes a reduction
in size (at least for the planning problem benchmarks that we
have considered). See also Mohri (1997), Section 4, witnessing
size reductions performed by the determinization of automata
related to speech processing benchmarks.

The projection of an ARA is related to the projection of its
language provided an extra structural property is satisfied. The
ARA A = (S, SI , SF , T × Σ × TW , T,W) is state labelled
iff for any pair t1, t2 of transitions arriving at the same state s,
i.e. ti = (si, αi, σi, βi, s), one has β1 = β2. In other words, the
output label of a transition only depends on its final state, and
thus can be attached to the latter. This is clearly true for plan-
ning problems, or it can be made true with a minimal transform.
The property of being state labelled is preserved by standard
operations on automata (product, projection, minimization,...).

In the sequel, we denote by ΠAi
the projection ΠRi,Σi,Wi

,
whereAi = (Si, S

I
i , S

F
i , T ×Σi×TWi , Ti,Wi, Ri), and Ri is

the writing set of Ai.
Theorem 4. Let A1,A2 be state labelled ARA, then
Lc(ΠAi(A1 ×A2)) = ΠAi(Lc(A1 ×A2))

The importance of being state labelled comes from the fact
that the coherence of the words produced by A1 × A2 is
only checked when taking the language. Taking the projection
ΠAi

(A1 ×A2) first can thus erase some of the coherence con-
ditions, unless if they are stucturally reflected in the automata.

As explained below, it is never requested to use projections
that are not of the form ΠAi(A1 × A2). In consequence,
Theorems 3 and 4 allow one to work directly on automata
instead of languages, which is required in practice as automata
are finite objects while languages may be infinite.

4.2 Central relation between product and projection

This part presents the key result that motivated the above
construction. It enables the computation of a factored plan
by distributed computations, of lower complexity, as soon as
component interactions are sparse enough.

LetA1,A2,A3 have disjoint writing sets Wi,A2 separatesA1

and A3 iff:

(1) Σ3 ∩ Σ1 ⊆ Σ2 (separation of actions),
(2) R3 ∩W1 ⊆ R2, and ∀ t3 = (s, α, σ, β, s′) ∈ T3,

α|W1 6= ? ⇒ σ ∈ Σ2 (propagation of readings),
(3) and symmetrically, by inverting indexes 1 and 3.

Condition (2) expresses that any reading performed by A3

insideA1 corresponds to an action σ that is shared withA2. So
in the productA3×A2, the latter will inherit the readings inA1

that are necessary to A3. This induces the following property
Theorem 5. If A2 separates A1 from A3, then

ΠA1(A1 ×A2 ×A3) = ΠA1(A1 ×ΠA2(A2 ×A3)).

The practical consequence of this result is that ΠA1(A), which
language describes the local plans of A1, can be derived with-
out computing first the big product A = A1 × A2 × A3,
which language describes all global plans. Indeed, it suffices
to combine A1 with the smaller message ΠA2(A2 ×A3) from
A2, and project the result on A1. Similar ideas allow one to
derive as well all the local plan descriptions ΠAi(A). We refer
the reader to an forthcoming longer version of this work for
a detailed application example of Theorem 5, or to Fabre and
Jezequel (2009) for an illustration in a slightly different setting.

5. CONCLUSION

We have proposed a new notion of automaton with read arcs,
to capture weak or asymmetric interactions between systems.
This feature is demanded by most planning problems. It was
also shown that a distributed planning approach previously
derived for networks of weighted automata still works in this
new setting.

Automata with read arcs relate to the model of asynchronous
automata presented in Zielonka (1995). The latter are discrete
event systems where actions read and write in some registers,
with the property that writings are private, like in our case.
Asynchronous automata capture concurrency (when two ac-
tions operate on different registers) and causality. They generate
words that are partially ordered, i.e. traces. This phenomenon
appears as well in networks of ARA: events in a single ARA
are totally ordered, but a factored plan (w1, ..., wN) is a tuple
of partially synchronized sequences, and thus a partial order.
In fact it is possible to encode an asynchronous automaton as
a network of automata with readings (the idea is to use one
automaton per register, states being the possible values in this
register). The converse is also possible.

Representing plans as partial orders is extremely useful: it re-
duces the search space since useless interleavings of concurrent
events need not be explored. Notice that the set of factored
plans (w1, ..., wN) in networks of ARA gives rise to a notion of
asymmetric conflict, as it is the case in Petri nets with read arcs
(Baldan et al. (2001), Baldan et al. (2004)). One may have that
two actions a and b in wi and wj are possible simultaneously,
or with a before b, but not with b before a. This is of course due
to the enabling by read arcs.

Distributed planning with networks of automata with readings
was only explained in a three-automata network. However
it generalizes to larger networks. The idea is to express a
more general separation property, which leads to a notion of
communication graph between automata of a network. When
this graph is a tree, the separation property allows one to derive
a message passing algorithm that exploits a generalization of
Theorem 5. This kind of algorithm was studied per se in Fabre
(2007), and adapted to networks of weighted automata (without
reading) in Fabre and Jezequel (2009).

As we are interested in cost-optimal planning – i.e. finding
minimal-cost plans when actions are equipped with additive
costs – our future work will combine weighted automata and
read arc mechanisms.

REFERENCES

Amir, E. and Engelhardt, B. (2003). Factored planning. In
IJCAI-03.

Baldan, P., Busi, N., Corradini, A., and Pinna, G.M. (2004).
Domain and event structure semantics for petri nets with read
and inhibitor arcs. Theoretical Computer Science, 323 (1-3),
129–189.

Baldan, P., Corradini, A., and Montanari, U. (2001). Contextual
petri nets, asymmetric event structures and processes. Infor-
mation and Computation, 171, 1–49.

Bonet, B., Haslum, P., Hickmott, S., and Thiebaux, S. (2007).
Directed unfolding of petri nets. In UFO-07.

Brafman, R.I. and Domshlak, C. (2006). Factored planning:
How, when, and when not. In AAAI-06.

Brafman, R.I. and Domshlak, C. (2008). From one to many:
Planning for loosely coupled multi-agent systems. In ICAPS-
08.

Cassandras, C. and Lafortune, S. (1999). Introduction to
Discrete Event Systems. Kluwer Academic Publishers.

Choi, J. and Amir, E. (2006). Factored planning for controlling
a robotic arm: theory. In CogRob 2006.

Dechter, R. (2003). Constraint Processing, chapter 9, 245–270.
Morgan Kaufmann Publishers.

Fabre, E. (2003). Convergence of the turbo algorithm for
systems defined by local constraints. Technical Report PI
4860, INRIA.

Fabre, E. (2007). Bayesian Networks of Dynamic Systems,
chapter 2, 21–37. Habilitation à diriger des recherches,
Université Rennes 1.

Fabre, E. and Jezequel, L. (2009). Distributed optimal planning:
an approach by weighted automata calculus. In CDC’09.

Hickmott, S., Rintanen, J., Thiebaux, S., and White, L. (2007).
Planning via petri net unfolding. In IJCAI-07.

Mohri, M. (1997). Finite-state transducers in language and
speech processing. Computational Linguistics, 23:2.

Nau, D., Ghallab, M., and Traverso, P. (2004). Automated Plan-
ning: Theory & Practice. Morgan Kaufmann Publishers.

Pearl, J. (1986). Fusion, propagation, and structuring in belief
networks. Artificial Intelligence, 29, 241–288.

Zielonka, W. (1995). The Book of Traces, chapter 7, 205–248.
World Scientific.

