
Fundamenta Informaticae XX (2015) 1–33 1

DOI 10.3233/FI-2012-0000

IOS Press

Factored Cost-Optimal Planning Using Message Passing Algorithms∗

Loı̈g Jezequel
Université de Nantes, IRCCyN, UMR CNRS 6597

Nantes, France

loig.jezequel@irccyn.ec-nantes.fr

Eric Fabre
INRIA Rennes Bretagne Atlantique

Rennes, France

eric.fabre@inria.fr

Abstract. This paper proposes an approach to solve cost-optimal factored planning problems. Plan-
ning consists in organizing actions in order to reach some predefined goal. In factored planning one
considers several interacting planning problems and has to design an action plan for each of them.
But one must also guarantee that all these local plans are compatible: actions shared among several
problems must be jointly performed or jointly rejected. We enrich the problem with the extra re-
quirement that the global plan computed in this modular manner must also minimize the sum of all
action costs. A solution is provided to this problem, based on classical message passing algorithms,
known as belief propagation in the setting of Bayesian networks. Here, messages carry complex
information under the form of weighted (or (min,+)) automata, and all computations are performed
with these objects. At the time our first paper on this topic was published, this method was the only
one to solve cost-optimal factored planning problems in a modular way. Since then, new approaches
were proposed. Experiments on classical benchmarks show that it is a valuable alternative to existing
methods.

Keywords: Factored planning, weighted automata, networks of automata, concurrency

∗This paper regroups results from two conference papers [13, 14], with the addition of the proofs of these results and of new
material (the extensions presented in Sections 4 and 5).

2 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

1. Introduction

Planning consists in organizing a set of actions in order to reach some predefined objective. Each action
consumes and produces resources, that can be modeled as discrete variables that are read and modified.
A state of a planning problem is thus a function that associates a value to each resource (or state variable),
and actions modify locally these states, i.e. modify a subset of the state variables. In this vision, one can
equivalently consider a planning problem as a graph, where vertices represent states and edges represent
actions. Planning then consists in finding a path in this graph (equivalently a sequence of actions, or a
plan), from the initial state to one of the possible goal states. Cost-optimal planning assumes that each
action incurs a cost, and one looks for a path reaching a goal state at minimal cost. In practice, planning
problems would induce huge graphs, so one would like to avoid the full exploration of this state-space,
and to find a path/plan as quickly as possible. For cost-optimal planning, it is even more important to
master the search effort, and to balance the computational effort with the expected plan cost reduction.

The current approaches to cost-optimal planning are mainly based on variants of the celebrated A∗

algorithm, and use heuristic functions to guide the graph exploration. Heuristic functions associate to
any state an estimate of the best cost to reach the goal from that state. With an accurate heuristic, this
approach avoids visiting expensive paths, and thus reduces the exploration of the state-space to a narrow
beam directed towards the goal. More recently, alternate strategies were proposed to reduce the explored
portion of the state graph, under the generic name of factored planning. The idea consists in splitting a
planning problem into several sub-problems, relying either on a partition of the state variable set or on
a partition of the action set. One then solves all sub-problems, with a method ensuring that their local
solutions are compatible, i.e. that they can be assembled into a valid global plan. So far, the existing
factored planning approaches are limited to ordinary planning problems, and can not address cost-optimal
planning problems. Moreover, they generally take the shape of semi-algorithms, that incrementally adjust
bounds on the length of paths/plans, so they can hardly decide the non-existence of a solution. The aim of
this paper is to propose a general framework for factored planning, which addresses these two limitations.

The rest of this introduction formalizes planning and factored planning problems, gives an overview
of the existing factored planning methods and of the one proposed here. Section 2 proves the soundness
of our approach, and Section 3 explains how it can be implemented using a weighted automata calculus.
Sections 4 and 5 propose two extensions of this method, to accommodate either complexity issues or
specific shapes of planning goals. Finally, Section 6 gives some experimental results obtained on classical
planning benchmarks.

1.1. Automated planning

A planning problem is a tuple P = (A,O, i,G). A is a set of atoms (or binary variables), that represent
the resources of the problem. They are either present (true) or absent (false), so a state of the planning
problem is actually a subset of A. O ⊆ 2A × 2A × 2A is a set of operators on these atoms, i ⊆ A is
an initial state, and G ⊆ 2A is a set of goal states. An operator of O takes the form o = (pre, del, add)
where these three subsets of A are called precondition (pre), additive effects (add), and deleting effects
(del). The semantics is as follows: from a state s ⊆ A the operator o = (pre, del, add) is firable if
and only if pre ⊆ s, and the firing of o leads to the new state s′ = s \ del ∪ add. The objective in
such a problem is to find a sequence of operators which, when fired, allows one to reach a state in G,
starting from the initial state i. Such a sequence is called a plan. Notice that we define A as a set of

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 3

atoms, however, other standard representations exist: set of boolean variables, or even set of variables
{vk}1≤k≤K , each one with its own domain Dk.

A planning problems can be transformed into a path finding problem in a directed graph. The states
of the planning problem (i.e. the subsets of A) are the vertices of the graph, and the labeled edges
correspond to the operators of the planning problem: there is an edge labeled by o from vertex/state s to
vertex/state s′ if and only if o is firable from s and its firing results in s′. Clearly the labels of a winning
path in this graph, leading from the vertex corresponding to i to a vertex corresponding to an element of
G, define a plan for the corresponding planning problem, and conversely.

Cost-optimal planning problems are special instances of planning problems where each operator has
a cost: P = (A,O, i,G, c) with c : O → R+. The objective is no longer to find a plan but to find one
with minimal cost, where the cost of a plan o1...oN is defined as the sum of the costs of its operators∑N

n=1 c(on). In graph terms, cost-optimal planning thus reduces to a shortest path problem, where each
edge representing operator o takes weight c(o).

The standard method to solve (cost-optimal) planning problems is to use the well-known A∗ algo-
rithm proposed by Hart et al. in 1968 [16] (or one of its variants). This algorithm explores the state-space
of a problem using a heuristic function, i.e. a function that associates to each state s an estimate h(s)
of the cost to reach G from s. A∗ proceeds by always extending the search through the most promis-
ing state s, among those that were visited so far. The ranking is performed on the basis of a function
f(s) which adds up the best known cost g(s) to reach s plus the estimated cost h(s) to go from s to
the goal. A∗ converges, as it is clearly a variant of breadth-first search. But its main property is else-
where. If the heuristic function is admissible, i.e. if it associates to each s a lower bound on the best
cost to reach the goal from s, then the first valid plan that is obtained is a cost-optimal plan. Given this
background, the art of planning concentrates on two essential difficulties: the efficient modeling of a real
life planning problems into a representation suited to the A∗ algorithm, and the design of good heuris-
tic functions. Numerous contributions have addressed these questions, for various families of planning
problems [33, 18, 4, 11, 22, 19, 29, 21].

1.2. Factored planning

The complexity of some planning problems has motivated the exploration of divide and conquer strate-
gies. Some of them consist in looking for plans with given landmarks, where possible intermediate
sub-goals are identified before trying to fill in the gaps between such successive landmarks. More recent
works have proposed factored planning methods, exploiting the structure of a planning problem. The
idea consists of splitting the planning problem into several sub-problems, as independent as possible, i.e.
with as few interactions as possible. One then solves each of these sub-problems almost independently
(as interactions must be taken care of), and merges all these local plans into a global plan , that is a
plan for the original problem. There are essentially two ways of splitting a planning problem: by taking
a partition of the set A of atoms [40, 7], or by taking a partition of the set O of operators [2, 6]. The
two methods are very similar and rely on the same principles. As the present paper focuses on the first
approach, we only describe this one.

Let A = A1 ∪ · · · ∪ AN be a partition of the atom set of problem P = (A,O, i,G). For clarity, let
us also assign distinct names to the actions of O: each action now takes the form o = (λ, pre, del, add)
where the name λ is a label taken in some finite set Λ. Each An induces the sub-problem Pn =
(An, On, in, Gn), 1 ≤ n ≤ N , where On gathers the operators of O interacting with An, and trun-

4 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

cated to these atoms: for each o = (λ, pre, del, add) ∈ O such that (pre ∪ add ∪ del) ∩ An 6= ∅, one
creates (λ, pre ∩ An, del ∩ An, add ∩ An) in On. In practice, two actions of On that only differ by
their name should not be distinguished (or should be merged), but for simplicity this detail is ignored.
in = i ∩ An is the restriction of the initial state to An, and Gn = {g ∩ An | g ∈ G} is the restriction
of the set of goal states to An. In such a decomposition of P = (A,O, i,G), the objective is to find a
local plan pn in each sub-problem Pn = (An, On, in, Gn) such that these pn are all compatible: there
is a plan p in P = (A,O, i,G) whose restriction to each On is exactly pn, where the restriction of p
simply amounts to removing actions that have no effect on An, or equivalently actions which names do
not appear in On. Figure 1 shows some examples of compatible and non-compatible local plans.

p1

g1

p2

g2

p3

g3

p1

g1

p2

g2

p′3

g3

Figure 1. The pn represent local plans, i.e. sequences of actions, read from top to bottom. Circles represent
operators (or action names) appearing in only one sub-problem Pn = (An, On, in, Gn). White boxes stand for op-
erators appearing in two sub-problems, and black boxes stand for operators involving three sub-problems. Dashed
lines join local operators with the same name. On the left hand side: the three local plans are compatible. On the
right hand side: p2 and p′3 are not compatible: the operators they share are not used in the same order.

The methods used to solve factored planning problems usually take the shape of semi-algorithms.
They involve some bound on the possible plans that are explored. For example, Brafman and Domshlak
[7] bound by K the length of the sequence of shared operators, i.e. operators that appear in more than
one subproblem. Given K, the problem is reduced to a constraint satisfaction problem [10] (which aims
at finding a sequence of shared operators with length K) coupled with local planning (aiming at filling
the gaps between two shared operators in each subproblem Pn with operators appearing only in On). If
no solution is found, one proceeds with a larger K.

At the time of the publication of our first paper on cost-optimal factored planning [13], no other ap-
proaches were able to perform cost-optimal planning in a modular way. Since then, however, a few other
solutions have been proposed, allowing several agents to perform cost-optimal planning in a distributed
way. One can notice in particular two adaptations of A* to a multi-agent setting [26, 36] and a work on
planning with self-interested agents [37].

1.3. Representation of plans

Most approaches to planning, and specifically those based on the A∗ algorithm, compute plans as se-
quences of operators, which is probably the most intuitive representation. However, several authors
noticed that it could be more relevant to consider plans as partial orders of operators: this is the case of

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 5

GRAPHPLAN presented in Blum and Furst [3] and more recently of the works of Hickmott et al. [23, 5]
which rely on unfoldings of concurrent systems. The central observation is that operators generally in-
volve few atoms, therefore two operators acting on different subsets of atoms can fire in any order, which
characterises a notion of concurrency (or parallelism). Handling plans as partial orders of operators,
where this concurrency is well represented, avoids the burden of dealing with all possible interleavings
of these operators into sequences, which makes no real sense and generates an explosion of the plan
space. For example, assume o1 and o2 have disjoint supports, i.e. read and modify different subsets of
atoms. Then either both sequences o1o2 and o2o1 are valid plans, or none of them is, since they pro-
duce/reach the same final states. The partial order approach will only explore the unordered pair {o1, o2}
as a plan, and not the two sequences, meaning that these two operators must be used regardless of their
order. In the general case, one should thus handle Mazurkiewicz traces [42] of operators rather than
sequences.

Interestingly, factored planning is a natural setting for handling plans as partial orders. For example,
let us represent local plans as sequences of action names and let p1 = αbδ and p2 = αcδ be two local
plans in subproblems P1 and P2 resp., where b and c are private operators of P1 and P2 resp. (b only
involves variables of P1, and symmetrically). Then b and c are concurrent and in a global plan they can
be fired in any order after α is fired, and before δ is fired. In other words, one could propose α{b, c}δ
as a partially ordered plan, instead of any of the two sequences αbcδ or αcbδ. This is also equivalent to
proposing the pair of local plans (αbδ, αcδ) as a solution to the factored planning problem (P1, P2). We
will call such a tuple a factored plan in this paper.

1.4. A new approach to factored planning

As the usual approaches to factored planning rely on semi-algorithms, they suffer from two related
weaknesses. One is that they can not conclude about the absence of solution, but mostly that they are
inadequate to cost-optimal factored planning problems, since when a (best) plan is found at some stage,
there is no straightforward guarantee that a better plan could not be obtained at a later stage. The approach
presented here adopts another strategy, where all local plans of a given sub-problem Pn are handled at
a time, and one progressively removes those that are not compatible with local plans of the other sub-
problems, until convergence. It is therefore a top-down approach, that proceeds by filtering out invalid
local plans, whereas previous contributions adopt bottom-up approaches and try to build plans.

Our top-down approach is made possible thanks to two ingredients. One is the family of message
passing algorithms (see [12] for ex.), that proceed with recursive filterings in a peer to peer manner: each
sub-problem Pn communicates its constraints to its neighbors, and conversely takes their constraints into
account in its own selection of local plans. The second ingredient is the representation of possibly in-
finite sets of local plans within a compact data structure, namely a regular weighted language, encoded
as a weighted automaton. As shown below, one can combine message passing algorithms with compu-
tations on weighted automata. This approach is radically new, and of course still amenable to numerous
improvements, some of which are suggested in conclusion. However, the objective of this paper is to
convince the reader that this new strategy is sound, feasible and even promising.

The next section presents the main framework used in this paper, namely message passing algorithms,
and explains how it can be instantiated to perform cost-optimal factored planning.

6 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

2. Message passing algorithms for planning

Message passing algorithms (MPA) appeared independently in several communities and at different dates
and under different forms, for example to optimally decode convolutional error correcting codes (the
Viterbi algorithm), to estimate the state of a Markovian dynamic system (Kalman filtering), to compute
the posterior distribution of random variables in a Bayesian network, given the value of some of these
variables (Pearl [38]), etc. In this former setting, they also appear under the name belief propagation (BP).
The general idea is first to represent graphically the interactions of a set of variables: variables become
the nodes of the graph, and edges encode the presence of interaction between the connected variables.
For example, these interactions can be hard constraints, soft constraints (probabilities), or combinations
of them. The sparser the graph, the less structured are the interactions, in the sense that (conditional)
independencies between variables are more numerous, and the more manageable is the global system.
As shown below, message passing algorithms solve an inference problem on these variables, i.e. explains
how the complete field influences each or some of its variables. These MPA are distributed in nature: they
combine messages exchanged on the edges between neighbor variables, and local computations at each
node. Section 2.1 proposes a minimal algebraic setting that enables the deployment of these algorithms,
as well as some intuition on the links between this setting and factored planning. Section 2.2 then shows
formally how factored planning problems can be recast within this framework.

2.1. An abstract version of message passing algorithms

2.1.1. Variables, systems, composition, projection, and the reduction problem

Let Vmax be a finite set of variables, each variable V ∈ Vmax taking values in a domainDV . We consider
abstract systems defined over these variables; these systems are generically denoted by S. Systems are
provided with a composition (or product) operation, denoted as S1 ∧ S2, which is commutative and
associative. We also provide this setting with a projection (or reduction) operator: the reduction of
system S to a subset of variables V is denoted as ΠV(S). Intuitively, this is similar to the marginalization
operation on probabilities, that discards variables (Vmax \ V) from a joint distribution. The following
axiom establishes that operators ΠV are projectors:

∀V1,V2 ⊆ Vmax,∀S, ΠV1(ΠV2(S)) = ΠV1∩V2(S) (1)

Further, it is assumed that each system has a limited range, i.e. that it operates over (or is defined on) a
limited set of variables:

∀S,∃V ⊆ Vmax, ΠV(S) = S (2)

Combined with (1), there is thus a minimal set V for which this holds, which can be considered as the
domain of system S. The central axiom in this setting is the following. Let systems S1, S2 be defined
over V1,V2 respectively, then

∀V3 ⊇ V1 ∩ V2, ΠV3(S1 ∧ S2) = ΠV3(S1) ∧ΠV3(S2) (3)

This property establishes that the interactions between two systems are fully captured by their shared
variables. It can be considered as an algebraic counterpart of the conditional independence statements
that define Bayesian networks: here one would say that V1 and V2 (or S1 and S2) are conditionally

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 7

independent given V3. Axiom (3) is central in the derivation of MPA. Finally, a last technical axiom is
necessary: the existence of a neutral element 1 for composition

∀S, S ∧ 1 = S. (4)

One could further add the natural property ∀S, Π∅(S) = 1, but this is not necessary to the developments
below.

To make this formal setting a little more intuitive, let us illustrate it on a simple example where
systems define constraints on the value of variables. Other illustrations could be envisioned : systems
could as well define local potential functions as in the case of Gibbs fields (see the definition of spin
glasses in statistical physics), and the rest of this paper will actually illustrate the application of this
formalism to factored planning.

Let the variable set V = {A,B,C,D} contain four variables, which respective domains are sim-
ply denoted as DA = {a1, a2, a3, ...},DB = {b1, b2, ...} etc. A system represents possible tuple of
values for some of these variables. Let S1 be defined on variables {A,B} for example, with S1 =
{(a1, b1), (a1, b2), (a2, b2)}. Projections can simply be defined as restrictions to some variables of the
tuples permitted by a system. So projecting S1 on variable A results in ΠA(S1) = {a1, a2}, which means
for example that this system does not allow the value a3 for A. Observe that obviously ΠA,B(S1) = S1.
Consider now S2 operating on variables {B,C} and defined as S2 = {(b2, c2), (b2, c3), (b3, c3)}. One
then has for S = S1 ∧S2 a system operating on {A,B,C} and defined as S = {(a1, b2, c2), (a2, b2, c2),
(a1, b2, c3), (a2, b2, c3)}. Projecting S on the variables of S1 yields S′1 = ΠA,B(S) = {(a1, b2), (a2, b2)}
⊂ S1, so the tuple (a1, b1) has vanished as it could not be extended with a value for C since S2 has no
tuple starting with b1. Similarly S′2 = ΠB,C(S) = {(b2, c2), (b2, c3)} ⊂ S2 and the pair (b3, c3) has
vanished. Nevertheless, observe that S′1 ∧ S′2 = S.

Fig. 2 illustrates a slightly larger example, still on constraint systems. All values of variables appear,
components S1, ..., S4 are defined on pairs of variables (respectively {A,B}, {B,C}, {C,D}, {D,A})
and are thus represented as edges: edge (a1, b1) in S1 means that S1 allows this pair of values. Observe
that any composition of 3 of these components leads to no ”reduction” of the components : projecting for
example S1∧S2∧S3 on {A,B} yields S1, etc. However, the composition of all four components induces
some reduction in the possible pairs of variables that remain valid in each component : ΠA,B(S1 ∧ ... ∧
S4) = S′1 ⊂ S1. In the remaining of this Section we formally define this notion of reduction and explain
why it is usefull and how it can be computed, using what we call message passing algorithms.

2.1.2. The reduction problem

Let S1, ..., SN be systems defined over V1, ...,VN respectively, and consider the compound system S =
S1 ∧ . . . ∧ SN . The reduction problem that we consider here can be stated as follows: compute the
projection ΠVn(S) of the global system S on the variable set of each of its components, for 1 ≤ n ≤ N .
This amounts to understanding how each component Sn is modified once it is connected to all the others.
In a Bayesian setting, for example, this can encode the computation of the posterior distribution of a
subset of variables Vn given the observed value of some other variables. The efficient computation of
these reduced components S′n = ΠVn(S) is precisely what the MPA does. In some situations, and quite
surprisingly, the reduced components can be derived without first computing S itself. This is a crucial
property because computing S can be a very expensive operation, not to mention the projection of the
result.

8 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

3

a
3

a
2

a
1

a
4

c
3

c
2

c
1

c
4

b
3

b
2

b
4

b
1

d
3

d
2

d
1

d
4

S’
4

S’
1

S’
2

a
3

a
2

a
1

a
4

c
3

c
2

c
1

c
4

b
3

b
2

b
4

b
1

d
3

d
2

d
1

d
4

S
4

S
1

S
2

S’
3

S

Figure 2. Left: components S1, ..., S4 defined respectively over variable sets {A,B}, {B,C}, {C,D} and
{A,D}. Each variable can take 4 values. Each component expresses which pairs of values are permitted, for
example S1 allows {(a1, b1), (a1, b2), (a2, b2), (a3, b3), (a4, b4)}. Right: the reduced components S′

i, that contain
only the pairs of Si that participate to a valid 4 − tuple. For example, (a1, b1) in S′

1 is the restriction to A,B of
(a1, b1, c1, d1) that satisfies the constraints of all 4 components.

2.1.3. Interaction and communication graphs

The first step towards MPA is to associate a graph to a compound system S = S1 ∧ . . . ∧ SN . The
(non-directed) interaction graph of S is defined as: G = (V,E), were V = {S1, . . . , Sn} and E =
{(Si, Sj) | Vi ∩ Vj 6= ∅}. A communication graph of S is obtained by recursively removing redundant
edges from G, until no more redundant edge remains. An edge (Si, Sj) is said to be redundant in a
graph iff there exists a path SiSk1 . . . SkLSj in that graph such that Vi ∩ Vj ⊆ Vk` and kL /∈ {i, j} for
1 ≤ ` ≤ L. Figure 3 illustrates these notions. If any communication graph of S is a tree then all the
communication graphs of this system are trees [12]; S is then said to live on a tree.

S1

S2 S3

(a)

S1

S2 S3

(b)

S1

S2 S3

(c)

S1

S2 S3

(d)

Figure 3. interaction graph of a system S = S1 ∧ S2 ∧ S3 such that V1 ∩ V2 = V2 ∩ V3 = V3 ∩ V1 6= ∅ (a), and
the three corresponding communication graphs (b) (c) (d).

2.1.4. Abstract message passing algorithm

Algorithm 1 is called message passing algorithm. It works on a communication graph G = (V,E) of a
compound system S = S1∧. . .∧Sn. In this algorithm,N (Si) denotes the set containing all the neighbors
of Si in G. The first loop is an initialization step. The second loop is the core of the algorithm: the idea
is that each sub-system Si propagates its knowledge of the compound system S to all its neighbors Sj
using the messagesMi,j . When messages no longer evolve, the main loop terminates. The third loop
yields the reduced components systems S′i using the messages computed before.

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 9

Algorithm 1 message passing algorithm (MPA)
forall (Si, Sj) ∈ E do
Mi,j ← 1

done
until stability of messages do

select (Si, Sj) ∈ E
Mi,j ← ΠVi∩Vj (Si ∧ (∧Sk∈N (Si)\{Sj}Mk,i))

done
forall Si ∈ V do
S′i = Si ∧ (∧Sk∈N (Si)Mk,i)

done

Theorem 2.1. ([12])
If S = S1 ∧ . . . ∧ Sn lives on a tree, then the message passing algorithm converges in finitely many
(useful) steps on any communication graph of S, and at convergence one has ∀1 ≤ i ≤ n, S′i = ΠVi(S).

In the until loop, an update of Mi,j is “useful” if at least one of the inputs on the right hand side
has changed. The proof can be found in [12]. It makes use of the four axioms above, and relies on the
following idea. Every edge (Si, Sj) separates the tree into two parts. Let Si<j = ∧k≤i<jSk denote
the product of components lying of the side of Si from the standpoint of Sj , then the only stationary
point of the algorithm is obtained for Mi,j = ΠVi∩Vj (Si<j). So each message arriving at node Sj
summarizes the influence of a whole subtree on Sj . These messages are conditionally independent given
Vj so axiom (3) justifies the final merge equation.

This observation reveals that convergence can be reached with exactly one update of each message.
The idea is the following: the main loop should update a message only when all the other messages
taking part in its computation were already updated, and no message should be updated twice. Message
updates thus start at the leaves of the tree, and one easily sees that the algorithm can not stop, until all
messages have been updated exactly once. They then contain the sub-tree summary mentioned above,
which can be proved by recursion. This yields Algorithm 2.

Algorithm 2 MPA with efficient message computation
forall (Si, Sj) ∈ E do
Mi,j ← 1

done
until all messages were updated exactly once do

select (Si, Sj) ∈ E s.t. ∀Sk ∈ N (Si) \ {Sj},Mk,i was updated before
Mi,j ← ΠVi∩Vj (Si ∧ (∧Sk∈N (Si)\{Sj}Mk,i))

done
forall Si ∈ V do
S′i = Si ∧ (∧Sk∈N (Si)Mk,i)

done

10 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

2.2. Application to cost-optimal planning

As stated in Section 1.1, a planning problem can be reduced to a shortest path problem in a weighted,
directed and labeled graph. Such a graph can be considered as an automaton where goal vertices corre-
spond to marked/accepting states, so the shortest path problem is equivalent to finding an accepted word
of minimal cost in this automaton. From this perspective, the set of all plans of a given planning problem
can be represented as the (regular) language of a weighted automaton, i.e. a language where costs are
associated to words.

This section relies on this formal language interpretation of an optimal planning problem, and shows
that factored planning can be expressed in this setting: variables are actions (or action names), systems
are weighted languages on this alphabet of actions, and the suitable product (×) and projections (P) are
described below. In the following, we formally show our results on the application of weighted language
calculus for factored cost-optimal planning, and we also demonstrate them on a running example.

Running example. As a running example we consider the following planning problemP = (A,O, i,G).
The set of atoms is A = {A, B, C, D, E, F, G, H, I}. The set of operators is O = {a, b, c, α, β} and the
five operators are such that: a = ({A}, {A}, {B, C}), b = ({A}, {A}, {B, D}), c = ({H}, {H}, {I}),
α = ({B, E}, {B, E}, {F}), and β = ({F, I}, {F}, {G}). The initial state is i = {A, E, H} and the goal
states in G are all the states containing atom G. As we are interested in cost-optimal planning, we con-
sider a weighted version of this problem, with the cost function c defined as follows: c(a) = 1, c(b) = 2,
c(c) = 1, c(α) = 2, c(β) = 3. We also consider a factored version of this problem, defined by the three
subsets of atoms A1 = {A, B, C, D}, A2 = {E, F, G}, and A3 = {H, I}. This defines three subproblems
(for simplicity we do not distinguish operators from their labels):

• P1 = (A1, O1, i1, G1) with O1 = {a, b, α} where a = ({A}, {A}, {B, C}), b = ({A}, {A}, {B, D}),
and α = ({B}, {B}, ∅), i1 = {A}, and all states belong to G1;

• P2 = (A2, O2, i2, G2) with O2 = {α, β} where α = ({E}, {E}, {F}) and β = ({F}, {F}, {G}),
i2 = {E}, and G2 = {{G}, {E, G}, {F, G}, {E, F, G}};

• P3 = (A3, O3, i3, G3) with O3 = {c, β} where c = ({H}, {H}, {I}) and β = ({I}, ∅, ∅), i3 =
{H}, and all states belong to G3.

To each of these subproblems we associate a cost function so that, for each operator, the sum of its local
costs in all the subproblems that contain it gives its initial cost in the original problem: c1(a) = c(a),
c1(b) = c(b), c1(α) = 1, c2(α) = 1, c2(β) = 1.5, c3(c) = c(c), c3(β) = 1.5.

Definition 2.2. A weighted language L = (W,Σ, w) is a set W of words over the finite alphabet Σ,
equipped with a cost function w : W → R+.

A planning problem with costs P = (A,O, i,G, c) reduces immediately to this setting: Σ is exactly the
set of operators O (or of operator names), a sequence of operators p is in W if and only if p is a plan in
P , and the cost w(p) of the word p in L is the cost c(p) of the plan p in P .

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 11

Running example. The weighted language corresponding to P is then L = (W,Σ, w) with Σ = O =
{a, b, c, α, β} and W = {aαcβ, acαβ, caαβ, bαcβ, bcαβ, cbαβ} (the set of plans in P). For any plan
p ∈ W its associated weight is w(p) = c(a).|p|a + c(b).|p|b + c(c).|p|c + c(α).|p|α + c(β).|p|β where
|p|σ is the number of occurrences of σΣ in p. For example, w(aαcβ) = c(a) + c(α) + c(c) + c(β) = 6.

Each subproblem Pi being itself a planning problem, one can also represente it (in fact, its local
plans) as a weighted language (where ε denotes an empty word):

• P1 corresponds to L1 = (W1,Σ1, w1) with: Σ1 = {a, b, α}, W1 = {ε, a, b, aα, bα}, w1(p) =
c1(a).|p|a + c1(b).|p|b + c1(α).|p|α;

• P2 corresponds to L2 = (W2,Σ2, w2) with: Σ2 = {α, β}, W2 = {αβ}, w2(αβ) = c2(α) +
c2(β) = 2.5;

• P3 corresponds to L3 = (W3,Σ3, w3) with: Σ3 = {c, β}, W3 = {ε, c, cβ, cββ, . . . }, w3(p) =
c3(c).|p|c + c3(β).|p|β .

As we want to take Σ as our variable set and weighted languages as our systems, we need both a
projection and a product on weighted languages. The projection is in fact the natural projection of
languages over a subalphabet associated with a cost minimization.

Definition 2.3. For a word u over alphabet Σ, let us denote by u|Σ′ the restriction of u to Σ′ (obtained by
removing all the letters not in Σ′ from u). The projection PΣ′(L) of a weighted language L = (W,Σ, w)
over an alphabet Σ′ is the language L′ = (W ′,Σ′, w′) such that1: W ′ = W|Σ′ = {u|Σ′ | u ∈ W} and
c′(u′) = minu|Σ′=u′, u∈W c(u).

Running example. The projection of L over Σ1 is the weighted language PΣ1(L) = (W ′,Σ1, w
′)

such that: W ′ = {aαcβ|Σ1
, acαβ|Σ1

, caαβ|Σ1
, bαcβ|Σ1

, bcαβ|Σ1
, cbαβ|Σ1

} = {aα, bα}, w′(aα) =
min(w(aαcβ), w(acαβ), w(caαβ)) = 7 and w′(bα) = min(w(bαcβ), w(bcαβ), w(cbαβ)) = 8.

Lemma 2.4. The projection of weighted languages satisfies axioms (1) and (2).

Proof:
For (1), let L = (W,Σ, w) and consider alphabets Σ1 and Σ2. One must prove PΣ1(PΣ2(L)) =
PΣ1∩Σ2(L). For any word u ∈ W of L, one has u′ = (u|Σ1

)|Σ2
= u|Σ1∩Σ2

, so the two projected
languages above are clearly defined over the same alphabet Σ′ = Σ1 ∩ Σ2 ∩ Σ, and contain the same
words. Word u′ also has the same weight in the two projected languages by observing

min
u∈W

u|Σ1∩Σ2
=u′

c(u) = min
v∈W|Σ2
v|Σ1

=u′

 min
u∈W
u|Σ2

=v

c(u)

Axiom (2) is straightforward by taking Σ′ = Σ. ut
1Strictly speaking, the min should be an inf , as languages can be infinite. But as we deal later with weighted languages
generated by weighted automata with positive transition costs, the infimum will be realized by some word.

12 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

To define the composition of weighted languages, we adapt the synchronous product of languages,
taking costs into account by summing them.

Definition 2.5. Let Li = (Wi,Σi, wi), i ∈ {1, 2}, be two weighted languages, their product L =
L1 × L2 = (W,Σ, w) is defined by Σ = Σ1 ∪ Σ2, W = {u ∈ Σ∗ : u|Σ1

∈ W1, u|Σ2
∈ W2 }, and

∀u ∈W, w(u) = w1(u|Σ1
) + w2(u|Σ2

).

Running example. The product of L1 and L2 is the language L1 × L2 = (W1,2,Σ1 ∪ Σ2, w1,2) such
that: W1,2 = {aαβ, bαβ} where aαβ is obtained from aα in W1 and αβ in W2 and bαβ is obtained
from bα in W1 and αβ in W2, notice that the words ε, a and b in W1 have no representative in W1,2

because any word in W2 contains α and so the projection on Σ1 = {a, b, α} of any word in W1,2 is
non-empty. Regarding weights, one has w1,2(aαβ) = w1(aα) + w2(αβ) = 4.5 and w1,2(bαβ) =
w1(bα) + w2(αβ) = 5.5. One can also notice that L1 × L2 × L3 = L, which justifies the use of
{L1,L2,L3} as the factored representation of L in the following.

Lemma 2.6. Product and projection of weighted languages satisfy axiom 3.

Proof:
One has to prove that, for any languages L1 = (W1,Σ1, w1) and L2 = (W2,Σ2, w2), and any alphabet
Σ3 ⊇ Σ1 ∩ Σ2, the following holds: PΣ3(L1 × L2) = PΣ3(L1) × PΣ3(L2). Note PΣ3(L1 × L2) =
(W,Σ, w) and PΣ3(L1) × PΣ3(L2) = (W ′,Σ′, w′). It is clear that Σ = Σ′ = Σ3 ∩ (Σ1 ∪ Σ2), by
definition of product and projection. Also notePΣ3(L1) = (W 3

1 ,Σ
3
1, w

3
1) andPΣ3(L2) = (W 3

2 ,Σ
3
2, w

3
2).

And note L1 × L2 = (W1,2,Σ1,2, w1,2).
We first prove that W = W ′. An intuition of this proof is given in Figure 4. This figure shows two

words u1 ∈ W1 and u2 ∈ W2 and the part of W and W ′ they generate. Squares depict elements of
Σ1 ∩ Σ2. Notice that all these elements are in Σ3. Dashed lines depict synchronizations between these
elements. White circles depict the other elements of Σ3 and black circles the elements of Σ1 and Σ2

which are not in Σ3. The sign ‖ between two parts of words means ”all possible interleavings of these
parts”.

Let u ∈ W , one has by definition of projection that ∃u1,2 ∈ W1,2 such that u1,2|Σ3
= u. Thus, by

definition of the product, ∃u1 ∈ W1 and ∃u2 ∈ W2 such that u1,2|Σ1
= u1 and u1,2|Σ2

= u2. Then, by
definition of the projection, u1|Σ3

∈ W 3
1 , and u2|Σ3

∈ W 3
2 . Then remark that u1|Σ3

= (u1,2|Σ1
)|Σ3

=

(u1,2|Σ3
)|Σ1

= (u1,2|Σ3
)|Σ1∩Σ3

= u|Σ1∩Σ3
and similarly u2|Σ3

= u|Σ2∩Σ3
. By definition of product this

proves that u ∈W ′. It concludes the proof that W ⊆W ′.
Let u ∈ W ′, one has, by definition of W ′, u = u1

1u
1
2 . . . u

n
1u

n
2 with ui1 ∈ (Σ1 ∩ Σ3)∗ and ui2 ∈

(Σ2 ∩ Σ3)∗ for all i. By definition of the product one has u|Σ1∩Σ3
= u1

1u
2
1 . . . u

n
1 is a word in W 3

1 .
Similarly u|Σ2∩Σ3

= u1
2u

2
2 . . . u

n
2 is a word in W 3

2 . Thus, by definition of the projection, there exists
a word u1 = u1

1
′
u2

1
′
. . . un1

′ in W1 such that ui1
′
|Σ3

= ui1 for all i. Similarly there exists a word u2 =

u1
2
′
u2

2
′
. . . un2

′ in L2 such that ui2
′
|Σ3

= ui2 for all i. As Σ3 ⊇ Σ1 ∩ Σ2, the word u′ = u1
1
′
u1

2
′
. . . un1

′un2
′ is

in W1,2. Thus u′|Σ3
is a word in W . And u′|Σ3

= u1
1
′
|Σ3
u1

2
′
|Σ3

. . . un1
′
|Σ3
un2
′
|Σ3

= u1
1u

1
2 . . . u

n
1u

n
2 = u. This

proves that W ′ ⊆W .
Now prove that, for u ∈W , w(u) = w′(u). The first step is to show w(u) ≤ w′(u). By definition of

product, it is known thatw′(u) = w3
1(u3

1)+w3
2(u3

2) for some u3
1 ∈W 3

1 and some u3
2 ∈W 3

2 . By definition

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 13

u1

u2

u1|Σ3

u2|Σ3

‖‖‖

‖‖‖

× PΣ3

PΣ3 ×

Figure 4. Product and projection of words. Top are two words. Middle left is a representation of their product
(which is in fact a set of words). Middle right are the restrictions of these words to Σ3. Down is a representation
of the restriction to Σ3 of their product, which is also the product of their restrictions to Σ3.

of projection it is known that w3
1(u3

1) = w1(u1) for some u1 ∈ W1 and w3
2(u3

2) = w2(u2) for some
u2 ∈W2. Moreover, u1|Σ3

= u3
1 and u2|Σ3

= u3
2. As Σ3 ⊇ Σ1 ∩ Σ2, it is known that there is u′ ∈W1,2

such that u′|Σ1
= u1 and u′|Σ2

= u2. Thus, by definition of projection, it is known that w(u) ≤ w1,2(u′).
Moreover, by definition of product, w1,2(u′) = w1(u1) +w2(u2) = w3

1(u3
1) +w3

2(u3
2) = w′(u). Finally,

w(u) ≤ w′(u). The remaining is to prove that w′(u) ≤ w(u). It is known, by definition of product
and projection, that there is u1 ∈ W1 and u2 ∈ W2 such that w(u) = w1(u1) + w2(u2). Moreover, it
is known that u ∈ W ′, so, uΣ1 = u3

1 ∈ W 3
1 and uΣ2 = u3

2 ∈ W 3
2 , and w′(u) = w3

1(u3
1) + w3

2(u3
2).

One has, in particular, that u1|Σ3
= u3

1 and u2|Σ3
= u3

2. By definition of projection, w1(u1) ≥ w3
1(u3

1)
and w2(u2) ≥ w3

2(u3
2). Hence, w′(u) = w3

1(u3
1) + w3

2(u3
2) ≤ w1(u1) + w2(u2) = w(u). Finally

w′(u) ≤ w(u). It has been proved that w(u) ≤ w′(u) and w′(u) ≤ w(u) for any u ∈ W . Hence,
w(u) = w′(u). ut

Taking alphabets as variable sets and weighted languages as systems over these variables, we have
proved that the axiomatic setting of Section 2.1 is satisfied. For completeness, axiom (4) holds for
1 = ({ε}, ∅, 0) where ε denotes the empty word, and noticing that for every word u, u|∅ = ε.

Consider now the encoding of an optimal factored planning problem as the compound language
L = L1 × . . . × Ln, with Li = (Wi,Σi, wi). If L lives on a tree, then the message passing algorithm
converges on a communication graph representing the interactions between the Li, and it yields the
L′i = PΣi(L) for 1 ≤ i ≤ n. These reduced components help to solve the optimal factored planning
problem thanks to the following property, that derives directly from the definition of projection (one can,
for example, immediately check it on the running example):

Property 2.7. Let L′i = (W ′i ,Σi, w
′
i) = PΣi(L) and L = (W,Σ, w). Let u be a word of minimal

weight in L, then its projection ui = u|Σi
has minimal weight in L′i. Moreover, these minimal weights

are identical: w′i(ui) = w(u). Conversely, any word ui of minimal weight in L′i is the projection
ui = u|Σi

of a word u of minimal weight in L, and one has w′i(ui) = w(u).

14 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

In other words, once the MPA has converged, optimal global plans result from assembling optimal
local plans. If each L′i contains a unique optimal local plan, then these local plans can be assembled into
the unique optimal global plan. In general, some L′i will contain several local plans of identical minimal
weight. To build an optimal global plan, one thus needs to select a tuple of compatible optimal local
plans. This again can be solved by an MPA-like procedure. The idea is to select one optimal local plan
u∗i in some component L′i, that forms a seed Li” for this selection, initiated at node i. This weighted
language Li” formed of a single word u∗i initiates message updates towards the neighbours of node i.
Let j be one of these neighbors, L′j will then select a optimal local word u∗j compatible with u∗i , i.e.
compatible with the projection of Li”. And so on untill all nodes have been visited. This results in a
tuple (u∗i)1≤i≤n of compatible local plans, or equivalently to an optimal global plan encoded as a partial
order of actions, which can further be reinterleaved into a proper optimal plan.

This approach to optimal factored planning is actually stronger than necessary. By construction,
L = L1 × . . .× Ln represents all possible global plans, and consequently each word ui in L′i, i.e. each
local plan ui, is the local view ui = u|Σi

of some global plan u. One may argue that each Li, and even
the reduced systems L′i, can be infinite objects, which makes the MPA ineffective. We have actually
proved above the soundness of this approach from an algebraic point of view. The next section will show
how it can be made practical by replacing weighted languages by weighted automata, i.e finite objects.
Before that, we illustrate the use of the language-based MPA on a simple example.

2.3. Using MPA for weighted languages on the running example

The interaction graph of L1, L2 and L3 is a tree, depicted in Figure 5 (left). It is also a communication
graph as it contains no redundant edges (no edge can be redundant in a tree). So the MPA will converge
on this graph.

L1 L2 L3

{α} {β}

4:M2,1

L1 L2 L3

1:M1,2 2:M2,3

3:M3,24:M2,1

Figure 5. Interaction graph of L1, L2, and L3 (left) and a possible order for computing the messages (right).

According to Algorithm 2, a possible order for computing the messages for a run of the MPA on this
communication graph is the one given in Figure 5 (right). This is the order we will use in the following.

One firsts computesM1,2 as PΣ1∩Σ2(L1) = (W1→2,Σ1→2, w1→2) with Σ1→2 = Σ1 ∩ Σ2 = {α},
W1→2 = {ε|{α}, a|{α}, b|{α}, aα|{α}}, bα|{α} = {ε, α}, w1→2(ε) = min(w1(ε), w1(a), w1(b)) = 0 and
w1→2(α) = min(w1(aα), w2(bα)) = 2.

Then, for computing M2,3. One first computes M1,2 × L2, a weighted language with alphabet
Σ2 = {α, β}; with set of words {αβ}; and with weight function assigning weight w1→2(α)+w2(αβ) =
4.5 to the word αβ. And then one gets M2,3 as PΣ2∩Σ3(M1,2 × L2) = (W2→3,Σ2→3, w2→3) with:
Σ2→3 = Σ2 ∩ Σ3 = {β}, W2→3 = {αβ|{β}} = {β}, and w2→3(β) = w1→2(α) + w2(αβ) = 4.5.

Similarly, from right to left, one first computes M3,2 as PΣ3∩Σ2(L3) = (W3→2,Σ3→2, w3→2)
where: Σ3→2 = Σ3 ∩ Σ2 = {β}, W3→2 = {ε|{β}, c|{β}, cβ|{β}, ccβ|{β}, . . . } = {ε, β}, w3→2(ε) =

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 15

min(w3(ε), w3(c)) = 0 and w3→2(β) = min(w3(cβ), w3(ccβ), . . .) = 2.5.
Then, for computingM2,1. One first computesM3,2×L2 whose alphabet is Σ2 = {α, β}; whose set

of words is {αβ}; and whose weight function is such that the weight of αβ is w3→2(β) + w2(αβ) = 5.
And then one getsM2,1 asPΣ1∩Σ2(M3,2×L2) = (W2→1,Σ2→1, w2→1) with: Σ2→1 = Σ1∩Σ2 = {α},
W2→1 = {αβ|{α}} = {α}, and w2→1(α) = w3→2(β) + w2(αβ) = 5.

From that, according to the last loop of Algorithm 2, on gets the following three reduced languages:

• L′1 = L1×M2,1 = (W ′1,Σ1, w
′
1) with: W ′1 = {aα, bα}, w′1(aα) = w1(aα) +w2→1(α) = 7 and

w′1(bα) = w1(bα) + w2→1(α) = 8,

• L′2 = L2 ×M1,2 ×M3,2 = (W ′2,Σ2, w
′
2) with: W ′2 = {αβ}, w′2(αβ) = w2(αβ) + w1→2(α) +

w3→2(β) = 7,

• L′3 = L3 ×M2,3 = (W ′3,Σ3, w
′
3) with: W ′3 = {cβ}, w′3(cβ) = w3(cβ) + w2→3(β) = 7.

From the above computatinos, one can check that taking a word of minimal cost in each reduced
language L′1, L′2, and L′3 leads to a word of minimal cost in L and thus to a cost-optimal solution to the
original planning problem P . In fact, the only possibility is to take aα (cost 7) in L′1, αβ (cost 7) in L′2,
and cβ (cost 7) in L′3. These three words can be interleaved as either caαβ, acαβ, or aαcβ which are
three cost-optimal solutions to P , all of them with cost 7.

3. Weighted automata approach

As mentioned above, the weighted language approach to minimal cost factored planning is algebraically
sound, but may not be practical, as the languages involved in the computations may be infinite. Fortu-
nately, the weighted language describing an optimal planning problem is regular, i.e. can be encoded as
a weighted automaton [9, 39]. And the operations of the previous section (composition and projection)
preserve this regularity. Based on this remark, this section shows that all computations can actually be
performed with automata, which are finite objects. We rely in particular on an algorithm from [35] for
the projection.

Definition 3.1. A weighted automatonA = (S, T,Σ, s0, F, c, f) is a standard automaton equipped with
a cost-function on transitions and on marked states. Specifically, S is a finite state set and Σ a finite
alphabet, T ⊆ S × Σ× S is a transition set, s0 ∈ S an initial state and F ⊆ S a set of final (or marked)
states. The cost functions are c : T → R+ on transitions, and f : F → R+ on final states.

In such an automaton, a path π = t1 . . . tn is a sequence of transitions such that there exist states
s0, ..., sn in S satisfying ti = (si−1, ai, si), 1 ≤ i ≤ n. The word corresponding to such a path is
σ(π) = a1 . . . an. Path π is said to be accepted by A if and only if s0 = s0 and sn ∈ F . A word u ∈ Σ∗

is said to be accepted by A if and only if there exists a path π accepted by A such that u = σ(π). The
cost of an accepted path is c(π) = c(t1) + · · · + c(tn) + f(sn), and the cost of an accepted word u is
c(u) = minu=σ(π)c(π). The language L(A) = (W,Σ, w) of a weighted automaton A is such that W is
the set of all words accepted by A, and for u ∈W , w(u) = c(u).

As mentioned above, a planning problem with costs P = (A,O, i,G, c) can be recast as a shortest
path problem into a weighted directed graph. Similarly it can be translated into the problem of finding a

16 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

word of minimal cost in a weighted automaton A = (S, T,Σ, s, F, c′, f), defined as: S = P(A) , 2A,
Σ = O, T = {(s1, o, s2) | o is firable from s1 and leads to s2}, s0 = i, F = G, c′((s1, o, s2)) = c(o)
for o ∈ O, and f(s) = 0 for all s ∈ F . The weights on final sets vanish here, but their necessity becomes
obvious in the computations involved in factored planning (see below).

Running example. The weighted automaton A corresponding to P is represented in Figure 6. The
states are represented as circles (each one with the corresponding set of atoms written inside), the tran-
sitions are represented by arrows whose labels give the corresponding actions and costs, the initial state
is the one with an ingoing arrow outgoing from no state, and the final states are represented by double
circles. Similarly, the weighted automataA1,A2, andA3 corresponding respectively to the subproblems
P1, P2, and P3 are represented in Figure 7. One can notice that L(A) = L, L(A1) = L1, L(A2) = L2,
and L(A3) = L3.

3.1. Product of weighted automata

Definition 3.2. The product of two weighted automata Ai = (Si, Ti,Σi, s
0
i , Fi, ci, fi), i ∈ {1, 2} is the

weighted automaton A1‖A2 = (S, T,Σ, s0, F, c, f), extending the synchronous product of automata as
follows: S = S1 × S2, Σ = Σ1 ∪ Σ2, s0 = (s0

1, s
0
2), F = F1 × F2, and for transitions

T = {((s1, s2), α, (s′1, s
′
2)) | (s1, α, s

′
1) ∈ T1 ∧ (s2, α, s

′
2) ∈ T2}

∪ {((s1, s2), α, (s′1, s2)) | (s1, α, s
′
1) ∈ T1 ∧ α /∈ Σ2}

∪ {((s1, s2), α, (s1, s
′
2)) | (s2, α, s

′
2) ∈ T2 ∧ α /∈ Σ1},

Regarding cost functions, for t = ((s1, s2), α, (s′1, s
′
2)) ∈ T , if α ∈ Σ1∩Σ2 then c(t) = c1((s1, α, s

′
1))+

c2((s2, α, s
′
2)), if α ∈ Σ1 \ Σ2 then c(t) = c1(s1, α, s

′
1), and symmetrically. Finally, for (s1, s2) ∈ F ,

f((s1, s2)) = f1(s1) + f2(s2).

Running example. Figure 8 (left) represents the product ofA1 andA2 (Figure 7). One can notice that
the product of this automaton withA3 (Figure 7) is exactlyA (Figure 6), that is the representation of the
full planning problem.

Lemma 3.3. Let A1,A2 be two weighted automata, then L(A1‖A2) = L(A1)× L(A2).

In other words, the synchronous product of automata “implements” (or can be seen as a finite represen-
tation of) the product of languages.

Proof:
NoteL(A1)×L(A2) = (W,Σ, w) andL(A1‖A2) = (W ′,Σ′, w′). Moreover, noteL1 = (W1,Σ1, w1) =
L(A1) and L2 = (W2,Σ2, w2) = L(A2). It is clear that Σ = Σ′ = Σ1 ∪ Σ2. First show that W = W ′.

Let u be a word from W . Suppose that u /∈ W ′. Thus there is no path π in A1‖A2 such that
σ(π) = u. Hence, by definition of product of weighted automata, either there is no path π1 in A1 such
that σ1(π1) = u|Σ1

or there is no path π2 in A2 such that σ2(π2) = u|Σ2
. So, by definition of product of

weighted languages, u /∈W . It proves that if u ∈W and u /∈W ′, then u /∈W . Hence, W ⊆W ′.

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 17

{A, E, H}{B, C,
E, H}

{B, D,
E, H}

{A, E, I}{B, C,
E, I}

{B, D,
E, I}

{C, F, H} {D, F, H}

{C, F, I} {D, F, I}

{C, G, I} {D, G, I}

a,1 b,2

c,1c,1 c,1

a,1 b,2

α,2 α,2

c,1 c,1

α,2 α,2

β,3 β,3

Figure 6. A weighted automaton representation of the planning problem P from the running example. Observe
the numerous concurrency diamonds due to concurrent actions.

A1

{A}

{B, C} {B, D}

{C} {D}

a,1 b,2

α,1 α,1

A2

{E}

{F}

{G}

α,1

β,1.5

A3

{H}

{I}

c,1

β,1.5

Figure 7. Weighted automata representations of the subproblems P1, P2, and P3 from the running example.

{A, E}

{B, C, E} {B, D, E}

{C, F} {D, F}

{C, G} {D, G}

a,1 b,2

α,2 α,2

β,1.5 β,1.5

{A}

{B, C} {B, D}

{C} {D}

α,1 α,1

α,2 α,3

Figure 8. The product ofA1 andA2 (left) and the projection ofA1 on the alphabet {α} (right, unreachable states
have been preserved).

18 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

Let u be a word fromW ′. Suppose that u /∈W . Hence, either u|Σ1
/∈W1 or u|Σ2

/∈W2. Thus, either
there is no path π1 in A1 such that σ1(π1) = u|Σ1

or there is no path π2 in A2 such that σ2(π2) = u|Σ2
.

So, by definition of the product of weighted automata, there is either no path π in A1‖A2 such that
σ(π)|Σ1

= u|Σ1
or no path π in A1‖A2 such that σ(π)|Σ2

= u|Σ2
. Thus, no path π in A1‖A2 such that

σ(π) = u. Hence, u /∈W ′. It proves that if u ∈W ′ and u /∈W , then u /∈W ′. Hence, W ′ ⊆W .
Finally, one has W ⊆ W ′ and W ′ ⊆ W . Thus W = W ′. The remaining is to prove that, for any

u ∈W , w(u) = w′(u).
Let u be a word fromW and supposew(u) < w′(u). It means that there is two paths, p1 inA1 and p2

in A2 such that σ1(p1) = u|Σ1
, σ2(p2) = u|Σ2

, and c1(p1) + c2(p2) = w(u) < w′(u). In this case there
is a path p in A1‖A2 which is constructed from p1 and p2, thus σ(p) = u and c(p) ≤ c1(p1) + c2(p2).
By definition of w′(u) one has w′(u) ≤ c(p). Thus w′(u) ≤ c1(p1) + c2(p2) < w′(u). It is impossible,
and finally one has w(u) ≥ w′(u).

Let u be a word from W and suppose w′(u) < w(u). It means that there is a path p in A1‖A2 such
that σ(p) = u and c(p) = w′(u) < w(u). Hence, there is a path p1 in A1 and a path p2 in A2, such that
σ1(p1) = uΣ1 , σ2(p2) = u|Σ2

and c1(p1) + c2(p2) = c(p). Moreover, one has c1(p1) + c2(p2) ≥ w(u).
Thus, w(u) ≤ c1(p1) + c2(p2) = c(p) < w(u). This is impossible, so one has w′(u) ≥ w(u).

To conclude: one has w(u) ≥ w′(u) and w′(u) ≥ w(u). Thus w′(u) = w(u). ut

In practice, one is only interested in the accessible part of the product, so the product operation may
include some trimming. This makes it computable in a recursive manner, by breadth first search in both
A1 and A2, starting from (s1, s2).

3.2. Projection of weighted automata

Just like the product, the projection of a (regular) weighted language can be directly performed on a
weighted automaton that accepts this language. Let us introduce notation s[π〉s′ for a path π starting at
state s and terminating at state s′. By convention, path π can be empty and then s = s′.

Definition 3.4. LetA = (S, T,Σ, s0, F, c, f) be a weighted automaton, its projection PΣ′(A) on alpha-
bet Σ′ is defined as PΣ′(A) = (S, T ′,Σ ∩ Σ′, s0, F ′, c′, f ′) with

T ′ = {(s, α, s′) : ∃π ∈ T ∗,∃t ∈ T, s[πt〉s′, σ(t) = α ∈ Σ′, σ(π) ∈ (Σ \ Σ′)∗}
F ′ = {s ∈ S : ∃s′ ∈ F, ∃π ∈ T ∗, s[π〉s′, σ(π) ∈ (Σ \ Σ′)∗}

Regarding weights, for transition t′ = (s, α, s′) ∈ T ′ one has

c′(t′) = min
π ∈ T ∗, t ∈ T :

s[πt〉s′, σ(t) = α

σ(π) ∈ (Σ \ Σ′)∗

c(πt)

and for final state s ∈ F ′

f ′(s) = min
s′ ∈ F, π ∈ T ∗ :

s[π〉s′, σ(π) ∈ (Σ \ Σ′)∗

c(π) + f(s′)

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 19

This definition actually encodes an epsilon-reduction (or epsilon-closure), where the epsilon (or silent)
transitions are those labeled by Σ \ Σ′. Notice that the definition of projection does not include deter-
minization nor minimization, as these operations are not always possible on weighted languages (see
below).

Running example. Figure 8 (right) represents the projection ofA1 (Figure 7) on the alphabet it shares
with A2 (Figure 7), that is {α}. Unreachable states have been preserved.

Lemma 3.5. Let A be a weighted automaton and let Σ′ an alphabet. Then L(PΣ′(A)) = PΣ′(L(A))

So the projection of weighted languages can be “implemented” as a projection on the automaton that
accepts this language.

Proof:
Note PΣ′(L(A)) = (W,Σ ∩ Σ′, w) and L(PΣ′(A)) = (W ′,Σ ∩ Σ′, w′). Note L(A) = (Wa,Σa, w

′
a).

First show that W = W ′.
Consider a word u ∈ W . Suppose u /∈ W ′. Then, there is no path p in A such that σ(p) = u′ and

u′|Σ′ = u. Thus, there is no word u′ ∈Wa such that u′|Σ′ = u. Hence, u /∈W . It proves that u ∈W and
u /∈W ′ implies u /∈W , which is impossible. Finally, one has W ⊆W ′.

Consider a word u ∈ W ′. Suppose u /∈ W . Then, there is no word u′ ∈ Wa such that u′|Σ′ = u.
Thus, there is no path p in A such that σ(p)|Σ′ = u. Hence, u /∈ W ′. It proves that u ∈ W ′ and u /∈ W
implies u /∈W ′, which is impossible. Finally one has W ′ ⊆W .

It has been proved that W ⊆ W ′ and W ′ ⊆ W , thus one has W = W ′. The remaining is to prove
that w = w′.

Consider a word u ∈ W . There is no u′ in Wa such that u′|Σ′ = u and wa(u) < w(u). Thus,
there is no path p in A such that σ(p) = u′ with u′Σ′ = u and c(p)¡w(u). Hence, there is no path p′ in
PΣ′(A) = (S′, T ′,Σ′, (s0)′, F ′, c′, f ′) such that σ(p′) = u and c′(p′) < w(u). So, w′(u) ≥ w(u).

In the same way one can prove that w(u) ≥ w′(u), and finally one has w(u) = w′(u). ut

This projection operation can be effectively computed, using Mohri’s epsilon-reduction algorithm
for weighted automata [35].

3.3. Smaller automata

Factored planning aims at solving possibly large planning problems by a divide and conquer strategy,
or a modular approach. So the computations attached to each module or component should remain
tractable. In the setting of an MPA computing on weighted automata rather than on their languages, it
is thus important to keep the size of these automata under control. A first strategy is of course to trim
these automata, that is to remove states and transitions that are not accessible (not reachable from the
initial state) or coaccessible (can not reach a final state). A trimming algorithm has been presented by
Mohri [35], and works for any weighted automaton. Beyond trimming, one may also consider mini-
mization. Again, Mohri shows [35] how a standard minimization procedure for ordinary deterministic
automata (as presented by Sakarovitch in [39] for example) can be extended to the case of deterministic
weighted automata. Of course, this minimization preserves the weighted language.

20 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

By construction, the weighted automata representing planning problems are deterministic – i.e. there
is no state s such that ∃α,∃s′ 6= s′′, (s, α, s′) ∈ T and (s, α, s′′) ∈ T . Clearly, the product of weighted
automata preserves determinism. However, projections do not preserve determinism (see Figure 8 (right)
for an example). As a consequence, if one wishes to work with minimal automata, determinization
techniques are required. There exists a determinizationn algorithm for weighted automata [35], which
derives from the classical subset construction for standard automata [39].

Let us denote byDet(A) the determinized version of weighted automatonA = (S, T,Σ, s0, F, c, f).
The states of Det(A) are of the form (A, λ), where A ⊆ S and λ : A→ R+ associates a residual cost to
each “inner” state s ofA. The initial state ofDet(A) is ({s0}, λ0), such that λ0(s0) = 0. The other states
are recursively derived from this initial state. Let q = (A, λ) be a state of Det(A) and α ∈ Σ such that
the new state q′ = (A′, λ′) obtained by firing α ∈ Σ is such that A′ = {s ∈ S | ∃s′ ∈ A, (s′, α, s) ∈ T}
and, for s′ ∈ A′,

λ′(s′) = λ′(s′)−
(

min
s′′∈A′

λ′(s′′)

)
,

where λ′(s′) is defined as:
λ′(s′) = min

s∈A,t=(s,α,s′)∈T
λ(s) + c(t).

The cost of the transition (q, α, q′) in Det(A) is then mins′∈A′λ′(s′). The cost of a final state (A, λ) is
mins∈A∩F λ(s) + f(s). This definition of Det(A) directly gives an algorithm for the determinization of
weighted automata, which has been fully described by Mohri [35].

As an example, one can consider the deterministic automaton of Figure 9, which is the deterministic
version of the automaton of Figure 8 (right). Notice that, after determinization, the link between the
states of the automaton and the atoms of the planning problem is partially lost.

{({A}, 0)} {({C}, 0),
({D}, 1)}

α,2

Figure 9. A deterministic weighted automaton with the same weighted language as the weighted automaton of
Figure 8 (right).

Unfortunately, not all weighted automata have an equivalent finite deterministic weighted automaton.
And, as a consequence, not all weighted automata are determinizable using the above algorithm (notice
however that the fact that a weighted automaton is not determinizable by the above algorithm does not
imply that this automaton admit no equivalent finite deterministic weighted automaton, this has been
stated for example by Allauzen and Mohri [1]). See for example Figure 10. In this automaton, the cost of
a word u is min(|u|a, |u|b). A deterministic weighted automaton recognizing the same language should
be able to “count” the number of a and the number of b in a word, and, thus, could not be finite.

There exists a sufficient condition for the determinizability of weighted automata [35]. This condition
is based on the twin property: two states s and s′ are twins if and only if 1) they cannot be reached by
the same label sequence from the initial state or 2) for all u ∈ Σ∗ such that u allows to loop on both s
and s′ the cost of this loop is the same for s and s′. An automaton has the twin property if and only if
any s, s′ in it are twins. Twin automata are determinizable. This condition is only sufficient in general,

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 21

A

B

C

c, 0

c, 0

a, 1

b, 0

a, 0

b, 1

Figure 10. a weighted automaton that can not be determinized

but is also necessary for special classes of weighted automata [8, 31] which are well characterized [32].
For the general class of weighted automata there is – to our knowledge – currently no known necessary
and sufficient condition to decide determinizability.

During our tests it appeared that the determinization and the minimization of weighted automata,
when possible, often gave better performance for our planning system. This is due to the fact that taking
the product of two deterministic automata is generally more efficient than taking the product of two
non-deterministic automata. In particular, A‖A = A when A is deterministic, while A‖A is a larger
automaton than A when A is non-deterministic.

Moreover, it is possible to avoid the problem of the non-determinizability of weighted automata by
performing a partial determinization: a determinization procedure that stops after some bound is reached
and provides an automaton which is deterministic “at the beginning”. Such a procedure allows one to
recognize small words with the deterministic part of the automaton, and use the non-deterministic part
for larger words only. The next section describes this procedure. Before that, an example of an execution
of the message passing algorithm on weighted automata is given.

3.4. Using MPA for weighted automata on the running example

The communication graph ofA1,A2 andA3 is, as in the case of languages, a tree, depicted in Figure 11.

A1 A2 A3

{α} {β}

Figure 11. Communication graph of A1, A2, and A3.

As the communication graphs are similar in both cases (which is normal as they correspond to the
same planning problem, using the same decomposition) we will compute messages in the same order as
in the case of languages.

One first computesM1,2 as PΣ1∩Σ2(A1) (this weighted automaton is represented in Figure 9).
Then, one computesM2,3. For thatM1,2‖A2 is first computed (Figure 12, left). And then one gets

M2,3 as PΣ2∩Σ3(M1,2‖A2) (Figure 12, right).

22 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

M1,2‖A2

α,3

β,1.5

β,4.5

β,1.5

M2,3

β,4.5

Figure 12. Steps for the computation ofM2,3 in the running example:M1,2‖A2 (left), and PΣ2∩Σ3
(M1,2‖A2)

before (center) and after (right) minimization.

Similarly, from right to left, one first computes M3,2 as PΣ3∩Σ2(A3) (Figure 13, left). Then one
computes M3,2‖A2 (Figure 13, center), which is then used to compute M2,1 = PΣ1∩Σ2(M3,2‖A2)
(Figure 13, right).

M3,2

β,2.5

β,1.5

1

M3,2‖A2

α,1

β,4

M2,1

α,1

4

Figure 13. Steps for the computation of M2,1 in the running example: M3,2 (left), M3,2‖A2 (center), and
PΣ2∩Σ1

(M3,2‖A2) (right). Outgoing arrows at final states represent the cost of ending at these states.

One can then get the reduced automata A′1 = A1‖M2,1 (Figure 14, left), A′2 = A2‖M1,2‖M3,2

(Figure 14, center), and A′3 = A3‖M2,3 (Figure 14, right). Checking that the languages of theses
automata correspond to the reduced languages computed in Section 2.3 (i.e la(A′1) = L′1, la(A′2) = L′2,
and la(A′3) = L′3) concludes our running example.

4. Partial determinization

As explained before, the determinization is not always possible for weighted automata (and it is not even
known how to decide the determinizability of weighted automata in the general case). That is why, in
this section, is suggested a method to partially determinize weighted automata. The principle is to de-
terminize up to some depth and complete the determinized automaton obtained with a non-deterministic

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 23

A′1

a,1 b,2

α,2 α,2

4 4

A′2

α,3

β,4

A′3

c,1

β,6

Figure 14. Reduced automata for the running example. Outgoing arrows at final states represent the cost of
ending at these states.

part. In fact, a related idea has been mentioned by Mohri in [34], named local determinization, where
determinization is done only at some particular states of an automaton.

4.1. Basics of the method

In the determinized version of a weighted automaton it is possible to associate a depth to each state. The
initial state has depth 0. Each successor of the initial state has depth 1. Their successors have depth 2,
and so on. Equivalently, the depth of a state is the minimal depth among its predecessors, plus 1. For
example, Figure 15(a) represents the (beginning of the) determinization of the automaton of Figure 10.
The depths of the states are represented by dashed lines.

0 1 2 3

A, 0
B, 0
C, 0

c, 0

B, 1
C, 0

B, 0
C, 1

B, 2
C, 0

B, 0
C, 2

. . .

. . .

a, 0

b, 1

a, 1

b, 0

a, 0

b, 1

a, 1

b, 0

a, 0

b, 1

a, 1

b, 0

(a)

A, 0

B, 0
C, 0

c, 0 B, 1
C, 0

B, 0
C, 1

a, 0

b, 0

A

B

C

a, 1

b, 0

a, 0

b, 1

c, 0

c, 0

a, 2

b, 1

b, 2

a, 1

a, 0

b, 1

b, 0

a, 1

(b)

Figure 15. (a) first steps of the (infinite) determinization of Figure 10. Notice that all states – excepted (A,0) –
are final states ; (b) partial determinization at depth 2 of Figure 10. Notice that all states – excepted (A,0) and A –
are final states. State A may be trimmed.

The partial determinization consists in stopping the determinizastion at some depth and branching the
states at this depth to the original (non deterministic) automaton, without initial states. More formally,
in the partial determinization at depth n of a weighted automaton A, for each state (A, λ) at depth n, all
the transitions (A,α, s) such that ∃s′ ∈ A, (s′, α, s) ∈ T are added. The costs of these transitions are
such that c′((A,α, s)) = mins′∈A,(s′,α,s)∈T λ(s′) + c((s′, α, s)). This clearly preserves the languages.

24 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

For example, for the automaton of Figure 10, the partial determinization at depth 2 is represented in
Figure 15(b).

One may have noticed that, even if some states can be removed (like A in the example of Fig-
ure 15(b)), the partial determinization of a non-determinizable weighted automaton is usually bigger
than the original automaton. However, using deterministic automata reduces the complexity of taking
the synchronous product, so the partial determinization can reduce the complexity of an execution of our
algorithm for planning.

4.2. Smaller representation

In the same spirit as in the previous section one wants to have data structures as small as possible. To do
that we can take inspiration from [41]. In this paper, a method for the determinization of probabilistic
automata was suggested. For the determinization of a probabilistic automaton A, this method consists
in a standard determinization of the non-probabilistic automaton A′ support of A, on which some new
costs are attached afterwards. However, these new costs are not probabilities but matrices, changing the
power of the model.

Applying some of the principles of this method to the framework of this paper, it is possible to
complete a partially determinized automaton by transitions with matrices of weights instead of adding
transitions leading to the original automaton. Formally, the principle is, as before, to stop the deter-
minization procedure at a given depth, and, from that, to add some transitions to the remaining states. If
(A, λ) is a state at the stopping depth, one as to add a transition ((A, λ), α, (A′, λ′)) for each α such that
there is a ∈ A such that ∃(a, α, a′) ∈ T . The set A′ contains all states a′ such that there is (a, α, a′) ∈ T
and a ∈ A. For all a′ ∈ A′, λ′(a′) = 0. The ”cost” M of the new transition is a matrix with |A| rows
and |A′| columns. One has Mi,j = λ(ai) + c(ai, α, a

′
j) where ai is the ith element of A and a′j is the

jth element of A′. In fact, when there already exists a state (A′, λ′′) in the determinized automaton it
is possible to plug the new transition directly to this state (or one of these states). In this case one has
Mi,j = λ(ai) + c(ai, α, a

′
j)− λ′′(a′j). Notice that, if some states (A′, λ′′) exist, there exists always one

such that, ∀i, j,Mi,j ≥ 0.
In such an automaton, the cost of a word is not obtained directly: if some transitions have a cost

matrix some computations are needed to find the best possible cost for this word. For example, in the
determinized automaton presented in Figure 16, the words of length greater than 2 involve computations.

5. Structured states

In factored planning problems, the sets of states – and in particular the initial and the final states – are
products of the sets of states of the sub-problems. However, it is possible to extend the algorithms pre-
sented in this paper in order to solve more general problems, not expressible in the planning formalism.
In this section are presented such problems, were the set of final states is not exactly the product of all
the sets of final states but a subset of it, defined by a relation on the final states. The results of this section
may be extended to the initial states (or even to any type of states). For matter of clarity only the case of
final states is presented here.

Given two automata, we want to be able to express that it is not sufficient that s1 and s2 are final
for a state (s1, s2) to be final. It is also needed that s1 and s2 are in relation. To express this notion of

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 25

A, 0

B, 0
C, 0

c, 0 B, 1
C, 0

B, 0
C, 1

a, 0

b, 0

a,

B C

B 1 ∞
C ∞ 0

b,

B C

B 0 ∞
C ∞ 1

b,

B C

B 1 ∞
C ∞ 0

a,

B C

B 0 ∞
C ∞ 1

Figure 16. partial determinization at depth 2 of Figure 10: matrices representation.

being in relation one can add to each final state of an automaton a set of labels. Two final states are then
in relation if they share some of their labels. Formally, a weighted automaton is, in this case, a tuple
A = (S, T,Σ, s0, F, c, f,Λ, `), where (S, T,Σ, s0, F, c, f) is a weighted automaton as defined above, Λ
is a set of labels, and ` : F → 2Λ associates a set of these labels to each final state. The remaining is to
define the product of weighted automata in this framework.

Definition 5.1. The product A1‖A2 = (S, T,Σ, s0, F, c, f,Λ, `) of two weighted automata with labels
on the final states A1 = (S1, T1,Σ1, s

0
1, F1, c1, f1,Λ1, `1) and A2 = (S2, T2,Σ2, s

0
2, F2, c2, f2,Λ2, `2)

is such that: (S, T,Σ, s0, F ′, c, f) is the product of the weighted automata (S1, T1,Σ1, s
0
1, F1, c1, f1) and

(S2, T2,Σ2, s
0
2, F2, c2, f2) without labels on the final states. Moreover, F = {(f1, f2) ∈ F ′ | `1(f1) ∩

`2(f2) 6= ∅}, Λ = Λ1 ∪ Λ2, and `((f1, f2)) = `1(f1) ∩ `2(f2) ∪ (`1(f1) \ Λ2) ∪ (`2(f2) \ Λ1).

It is a bit tricky to define the projection of these weighted automata with labels on the final states.
However, there exists a simple translation from weighted automata with labels on the final states to
weighted automata. The idea is, from an automatonA = (S, T,Σ, s0, F, c, f,Λ, `) with label on the final
states, to construct a standard weighted automaton A′ = (S′, T ′,Σ′, s0′ , F ′, c′, f ′) such that: S′ = S ∪
{sF }, T ′ = T ∪ {(s, α, sF) | s ∈ F, α ∈ `(s)}, Σ′ = Σ∪̇Λ, s0′ = s0, F ′ = {sF }, ∀t ∈ T, c′(t) = c(t),
∀t = (s, α, sF) ∈ T ′ \T, c′(t) = f(s), f ′(sF) = 0. In fact, this corresponds to an encoding of the labels
of the final states as shared transitions.

Lemma 5.2. A path π = (s1, α1, s2) . . . (sn−1, αn−1, sn) is accepted in a weighted automaton A with
labels on the final states if and only if ∃α ∈ `(sn) (s1, α1, s2) . . . (sn−1, αn−1, sn)(sn, α, sF) is accepted
in the corresponding weighted automaton A′ (with the convention that `(s) = ∅ if s /∈ F).

Proof:
This lemma comes directly from the construction of A′. ut

26 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

From this lemma and the definition of the product of weighted automata with labels on the final states,
one gets – for any two weighted automata A1 and A2 with labels on the final states – that (A1‖A2)′ =
A′1‖A′2. Thus, a system represented as a network of weighted automata with labels on the final states (i.e.
a systems such that the final states are not expressible as products of the final states of its components)
can be represented as a network of standard weighted automata. This allows one to solve such problems
using the exact algorithms presented above.

6. Experimental results

As for any planning algorithm the theoretical complexity of the message passing algorithm for planning
is huge. However, we wanted to see if this algorithm is efficient in practice. Thus, we implemented it
and tested this implementation on some standard benchmarks from planning community.

6.1. Implementation

We implemented the message passing algorithm for weighted automata in a planner called Distoplan.
Our implementation is based on the openFst library2 for most of the operations on weighted automata
(ε-reduction, trimming, minimization, determinization). Our planner accepts as input planning prob-
lems given directly in terms of weighted automata (using the format specified in openFst) or as PDDL
(Planning Domain Definition Language) files [15] (which are a standard representation of planning prob-
lems in the planning community). The parsing of the PDDL files is done using the parser from HSP∗

planner [17].
Notice that our implementation only deals with factored planning problem. It cannot automatically

find a decomposition of a given planning problem. In other words, it is unable to find a decomposition
of the set of atoms that ensures that the communication graphs are trees. This is due to the fact that,
currently, it is not known what is an efficient decomposition. One could however remark that a tree
decomposition of a problem so that, when the problem grows, the number of components grows but the
size of these components remain small will, in general, certainly be better suited to our approach than
a decomposition so that the size of the components grows with the size of the problem (this is due to
the fact that compositions of large components – and search in them – is the main source of complexity
for our approach). This has been our main guideline for selecting benchmarks: they had to have a good
decomposition in the sense of this remark (notice that a problem where such a good decomposition exists
but our approach is still not scalling well has been analysed in details in a previous paper [14]). Methods
to decompose problems exists (such as in [10] or similarly in [2]) but they only provide a communication
graph which is a tree, not necessarily the best one for factored planning, or even a good one (as, again, it
is not known what exactly is a good decomposition).

6.2. Rooms and robot

The first test we performed was on a problem presented in [2], called rooms and robot. We wanted to
try this problem because [2] presents the only implemented factored planner to our knowledge and uses
rooms and robot as a benchmark for testing it. Thus, it was of interest to note if the performances of our

2http://www.openfst.org/

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 27

planner were comparable to the performances of this one (notice that our planner performs cost-optimal
planning, which is not the case of the one from [2]).

The rooms and robot problem is the following: a robot has to move in different rooms in order to
close and lock one window per room. More precisely, the rooms are organized into a circle and the robot
can only move in one step from the room where it is to an adjacent room on the circle. Inside a room the
robot can close the window, and lock it if it is closed. The goal is to lock all windows (in our case with a
minimal number of actions).

A natural decomposition of this problem considers each room as a component. However, this de-
composition is such that the interaction graph contains a cycle and has no redundant edges. In order to
obtain a tree shaped communication graph, and thus to permit the use of the message passing algorithms
on this problem, we had to propose another decomposition. For this purpose, we added an atom for each
room, giving the position of the robot. We accordingly modified the moving actions by adding these new
atoms to the preconditions and the effects. The window closing and window locking actions remained
as before. We consider the same components as in the natural decomposition of the problem, with the
addition of a new one containing the new atoms. The corresponding interaction graph still has cycles.
However, some edges are redundant and the only communication graph is a tree.

The results obtained by Distoplan on this problem are given in Figure 17. The leftmost plot presents
the execution time of three versions of Distoplan on small instances of rooms and robot (5 to 11 rooms).
The upper curve is obtained using no size reduction technique. The middle curve is obtained when the
automata are trimmed after each product and each projection. The lower curve is obtained when the
automata are minimized after each each product and projection (they are thus also determinized after
each projection). The rightmost plot presents the execution time of Distoplan on larger instances of
rooms and robot (up to 50 rooms). It has been obtained with the version of Distoplan where automata
are minimized after each iteration.

 0.01

 0.1

 1

 10

 100

 5 6 7 8 9 10 11

tim
e

(s
)

number of rooms

no size reduction
trimming

determinization

 0.01

 0.1

 1

 10

 100

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

number of rooms

distoplan

Figure 17. results obtained by distoplan on rooms and robots, the time is in logscale.

The first conclusion we can draw from these results is that, on this particular problem, using minimal
deterministic automata strongly improves the time efficiency of Distoplan. This significant efficiency
gap shows that the use of deterministic automata - when possible - can really be of interest and may
allow a better scalability of our planner.

28 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

A second conclusion is that, as expected, the execution time of Distoplan scales well with the size of
this problem. We obtain, in fact, a problem solving time subexponential in the number of rooms. This is
comparable with what is presented in [2]. It is possible, thought, that a better efficiency can be achieved
using another decomposition of the problem. Indeed our decomposition has the drawback that the size
of one of the components grows with the number of rooms. Finding a decomposition which avoids this
phenomenon may result in better performances. Such a decomposition is proposed in [2], but we were
not able to adapt it to our setting (as our decompositions are defined by subsets of the atoms while in [2]
the decompositions are defined by subsets of the actions).

6.3. IPC Benchmarks

We then tested Distoplan on problems from international planning competitions (IPC). Among the prob-
lems we considered we found two that we were able to decompose well. That is, for which we found a
decomposition so that only the number of components is increased (their size remaining the same) with
growing instances of the problem. These two problems come from the Promela domains of the fourth
international planning competition [24]. These domains regroup problems translated to PDDL from the
Promela language. The first problem corresponds to the classical “dinning philosophers” problem, while
the second problem is based on a communication protocol for a network of optical telegraphs. In each
problem the objective is to find a deadlock. We also considered other versions of these problems where
no deadlock exists. In this case one has to detect the absence of deadlock.

For each problem we proposed a decomposition ensuring the communication graphs to be trees. Us-
ing these decompositions we ran Distoplan on instances of growing size for each problem and compared
the run times obtained with the performances of other up-to-date planners. For comparison we used a
planner based on Fast-Downward [20] (i.e. an A* based search) with the landmark cut heuristic [21] and
the IPC-5 version of SATPLAN [30]. Notice that SATPLAN would not take part in the same track as
Distoplan in a planning competition. Indeed it does not ensure cost-optimality of the plans found.

Dinning philosophers Some philosophers want to eat. They sit all around a table, with one fork
between any two philosophers. To eat a philosopher needs two forks: not all philosophers can eat at the
same time. He has to take a first fork, then a second one. When he has finished eating a philosopher
releases the forks he used. In this setting one has to find deadlocks: situations were no philosopher can
eat and no fork is free.

More precisely, philosophers and forks form an alternating cycle. Each philosopher can perform the
following actions: 1) take left fork if free, 2) take right fork if free, 3) release right fork if taken, and 4)
release left fork if taken. These actions can be performed only in this order. Hence, a simple deadlock
occurs when each philosopher has taken his left fork: no fork can be released and no more fork can be
taken.

When looking at this problem as a factored problem, an intuitive approach is to consider the set
of atoms pi defining each philosopher as a component and the set of atoms fi defining each fork as
a component. However, in this case the communication graph obtained is not a tree: it is a cycle,
as represented in Figure 18 (left) for four philosophers. It is possible to come up with a tree shaped
communication graph by defining components as the union of the atoms defining each philosopher with
the atoms defining the opposite fork on the circle. Figure 18 (right) represents the interaction graph
obtained for four philosophers. It is a line, and thus a tree.

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 29

p1

f4

p4

f3

p3

f2

p2

f1

p1 × f4

f1 × p4

p2 × f3

f2 × p3

Figure 18. philosophers problem: philosophers – pi – and forks – fi – as components (left), merging component
to get communication graph which is a tree (right)

Results obtained with Distoplan on instances of the dinning philosophers problem of growing size are
presented in Figure 19. The same figure also gives results obtained with Fast Downward and SATPLAN.
The left plot presents results obtained in the exact case presented above, when a deadlock exists. The
right plot presents results obtained with slightly modified problems where there is no deadlock (this is
achieved by allowing one of the philosophers to take right fork first).

 0.01

 0.1

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

number of philosophers

Distoplan
 Fast Downward

SATPLAN

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

number of philosophers

Distoplan
 Fast Downward

Figure 19. Performances of Distoplan, Fast Downward, and SATPLAN on philosophers problems with (letf) and
without (right) deadlocks. Time is logscale.

One can notice that Distoplan runs in sub-exponential time in the number of philosophers (that is in
the number of components) in both cases. In fact, Distoplan is not affected by the presence or the absence
of solution. We used the version of Distoplan which minimizes automata after each operations (as for
rooms and robot, the version with no size reducing technique and the version using trimming were much
less efficient). With regards to other planners we remark that SATPLAN is – as expected – very efficient
when there is solutions. Remark however that it does not guarantee cost-optimality of solutions. When
there is no solution SATPLAN is not able to detect it, that’s why it is not plotted in the results. Fast
Downward works well in presence of deadlocks, but scales less efficiently than Distoplan. When there is

30 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

no solutions it has to explore the full state space of the problem to detect it and thus runs in exponential
time in the number of philosophers.

Optical telegraph This second benchmark is the following: some telegraph stations – organized as
a circle – have to communicate, following a precise protocol. As for philosophers, the goal is to find
potential deadlocks in the communication protocol. In fact, this problem can be seen as philosophers with
more private actions. The decomposition we proposed for this problem is based on the same principles as
for philosophers. Each natural component of the circle (here telegraph stations and their communication
channels) is merged with its opposite on the circle.

The results we obtained are presented in Figure 20. The left plot has been obtained for problems
with deadlocks. The right plot has been obtained for problems without deadlocks (telegraph stations are
organized as a line rather than as a circle).

 0.01

 0.1

 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

number of stations

Distoplan
 Fast Downward

SATPLAN
 1

 10

 100

 1000

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

number of stations

Distoplan
 Fast Downward

Figure 20. Performances of Distoplan, Fast Downward, and SATPLAN on optical telegraph problems with (left)
and without (right) deadlocks. Time is logscale.

For Distoplan and SATPLAN these problems are not that different from the dinning philosophers
problems. The results obtained are thus similar to the previous ones: a computation time sub-exponential
in the size of the problems. The addition of many private actions in each component (compared to the
dinning philosophers case) makes the state space of this problem much larger. This explains the lower
efficiency of Fast Downward. Notice that, on these problems, most of the computation time of Distoplan
(90%) is spent building the initial automata from the PDDL representation of the problems.

7. Conclusions

The solution to cost optimal factored planning presented here is based on two main ingredients: 1/ dis-
tributed constraint satisfaction algorithms, encoded as message passing algorithms and extended to per-
form as well cost optimization, and 2/ weighted automata calculus. An essential difference with previous
approaches is that we handle all plans solving the problem, under a suitable factorized (thus compact)
form. This is crucial to guarantee the optimality of the best plan(s) found, a feature that was missing to
previous factored planning approaches. Of course, as for all factored planning methods, the theoretical

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 31

worst case complexity is huge. However, the “practical complexity” seems much smaller as evidenced
by our experiments on classical planning problems.

Several extensions to this work have already been explored and partially published. A first technical
extension concerns the fact that some resources may be necessary to enable some action, but may not
be consumed by this action. This must not be encoded as a read/write operation on this non-modified
resource since it enforces the ordering of accesses to this resource, whereas one would rather like to
preserve the possibility of concurrent (i.e. simultaneous) accesses. A solution to this was proposed
under the form of weighted automata with read arcs, which mimic the read arcs proposed for Petri
nets [25]. As a general rule, one should take advantage of the concurrency of actions as much as possible
in order to reduce the set of possible plans to consider. Another step in this direction was proposed
in [28], where components are handled as (weighted) Petri nets, instead of (weighted) automata, which
allows to exploit as well the internal concurrency of events within each individual component. As a third
extension of our approach, we have examined approximate planning methods in order to deal with large
networks of components that do not have a tree structure. Other communities (e.g. error correcting codes)
have evidences that message passing algorithms could still perform well even in the presence of cycles.
This gave birth to turbo-codes, so by analogy we have experimented turbo-planning [27]. Surprisingly,
and despite any theoretical proof of convergence, MPA still perform well on large and cyclic graphs of
components, drawn at random. Most of the time a feasible plan is found, and very often it is optimal or
close to optimal (when the comparison can be performed, that is when the problem is still manageable
by classical optimal planning methods). Finally, the reader may be bothered by our top-down approach,
that progressively reduces the sets of possible local plans, and he may be more confident in bottom-up
approaches that build one plan (possibly the optimal one). So let us mention another line of work inspired
by the present paper, which recasts the celebrated A* algorithm into a fully distributed message passing
version [26].

Acknowledgment

We would like to thank Patrik Haslum for lending us his PDDL parser, and for his help in selecting
meaningful benchmarks for our experiments.

References
[1] Allauzen, C., Mohri, M.: Efficient Algorithms for Testing the Twins Property, Journal of Automata, Lan-

guages and Combinatorics, 8(2), 2003, 117–144.

[2] Amir, E., Engelhardt, B.: Factored Planning, Proceedings of the 18th International Joint Conference on
Artificial Intelligence, 2003.

[3] Blum, A., Furst, M.: Fast Planning Through Planning Graph Analysis, Artificial Intelligence, 90(1-2), 1995,
281–300.

[4] Bonet, B., Geffner, H.: Planning as Heuristic Search, Artificial Intelligence, 129(1-2), 2001, 5–33.

[5] Bonet, B., Haslum, P., Hickmott, S., Thiébaux, S.: Directed Unfolding of Petri Nets, Transactions on Petri
Nets and other Models of Concurrency, 1(1), 2008, 172–198.

[6] Brafman, R., Domshlak, C.: Factored Planning: How, When, and When Not, Proceedings of the 21st AAAI
Conference on Artificial Intelligence, 2006.

32 L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs

[7] Brafman, R., Domshlak, C.: From One to Many: Planning for Loosely Coupled Multi-Agent Systems,
Proceedings of the 18th International Conference on Automated Planning and Scheduling, 2008.

[8] Buchsbaum, A., Giancarlo, R., Westbrook, J.: On the Determinization of Weighted Finite Automata, SIAM
Journal on Computing, 30(5), 2000, 1502–1531.

[9] Cassandras, C., Lafortune, S.: Introduction to Discrete Event Systems, Kluwer Academic, 1999.

[10] Dechter, R.: Constraint Processing, Morgan Kaufmann, 2003.

[11] Edelkamp, S.: Planning with Pattern Databases, Proceedings of the 12th International Conference on Auto-
mated Planning and Scheduling, 2001.

[12] Fabre, E.: Bayesian Networks of Dynamic Systems, Habilitation à diriger des recherches, Université de
Rennes1, 2007.

[13] Fabre, E., Jezequel, L.: Distributed Optimal Planning: an Approach by Weighted Automata Calculus, Pro-
ceedings of the 48th IEEE Conference on Decision and Control, 2009.

[14] Fabre, E., Jezequel, L., Haslum, P., Thiébaux, S.: Cost-Optimal Factored Planning: Promises and Pitfalls,
Proceedings of the 20th International Conference on Automated Planning and Scheduling, 2010.

[15] Ghallab, M., Isi, C., Penberthy, S., Smith, D., Sun, Y., Weld, D.: PDDL - The Planning Domain Definition
Language, Technical report, Yale Center for Computational Vision and Control, 1998.

[16] Hart, P., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths,
IEEE Transactions on Systems Science and Cybernetics, 4(2), 1968, 100–107.

[17] Haslum, P.: Tp4’04 and HSP*-a, 4th International Planning Competition Booklet, 2004.

[18] Haslum, P., Geffner, H.: Admissible Heuristics for Optimal Planning, Proceedings of the 5th International
Conference on Automated Planning and Scheduling, 2000.

[19] Haslum, P., Helmert, M., Hoffmann, J.: Explicit-State Abstraction: A New Method for Generating Heuristic
Functions, proceedings of the 23rd AAAI Conference on Artificial Intelligence, 2008.

[20] Helmert, M.: The Fast Downward Planning System, Journal of Artificial Intelligence Research, 26(1), 2006,
191–246.

[21] Helmert, M., Domshlak, C.: Landmarks, Critical Paths and Abstractions: What’s the Difference Anyway?,
Proceedings of the 19th International Conference on Automated Planning and Scheduling, 2009.

[22] Helmert, M., Haslum, P., Hoffmann, J.: Fexible Abstraction Heuristics for Optimal Sequential Planning,
Proceedings of the 17th International Conference on Automated Planning and Scheduling, 2007.

[23] Hickmott, S., Rintanen, J., Thiébaux, S., White, L.: Planning via Petri Net Unfolding, Proceedings of the
19th International Joint Conference on Artificial Intelligence, 2007.

[24] Hoffmann, J., Edelkamp, S., Thiébaux, S., Englert, R., dos Santos Liorace, F., Trüg, S.: Engineering Bench-
marks for Planning: the Domains Used in the Deterministic Part of IPC-4, Journal of Artificial Intelligence
Research, 26(1), 2006, 453–541.

[25] Jezequel, L., Fabre, E.: Networks of Automata with Read Arcs: A Tool for Distributed Planning, Proceedings
of the 18th IFAC World Congress, 2011.

[26] Jezequel, L., Fabre, E.: A#: A Distributed Version of A* for Factored Planning, Proceedings of the 51th
IEEE Conference on Decision and Control, 2012.

[27] Jezequel, L., Fabre, E.: Turbo Planning, Proceedings of the 11th International Workshop on Discrete Event
Systems, 2012.

L. Jezequel, E. Fabre / Factored Cost-Optimal Planning using MPAs 33

[28] Jezequel, L., Fabre, E., Khomenko, V.: Factored Planning: From Automata to Petri Nets, Proceedings of the
13th International Conference on Application of Concurrency to System Design, 2013.

[29] Karpas, E., Domshlak, C.: Cost-Optimal Planning With Landmarks, Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 2009.

[30] Kautz, H., Selman, B., Hoffmann, J.: SATPLAN: Planning as Satisfiability, 5th International Planning
Competition Booklet, 2006.

[31] Kirsten, D., Maürer, I.: On the Determinization of Weighted Automata, Journal of Automata, Languages and
combinatorics, 10(2), 2005, 287–312.

[32] Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding Unambiguity and Sequentiality From a Finitely
Ambiguous Max-Plus Automaton, Theoretical Computer Science, 327(3), 2004, 349–373.

[33] Knoblock, C.: Generating Parallel Execution Plans With a Partial-Order Planner, Proceedings of the 2nd
International Conference on Artificial Intelligence Planning Systems, 1994.

[34] Mohri, M.: Finite-State Transducers in Language and Speech Processing, Computational Linguistics, 23(2),
1997, 269–311.

[35] Mohri, M.: Handbook of Weighted Automata, chapter 6, Springer, 2009.

[36] Nissim, R., Brafman, R. I.: Multi-agent A* for parallel and distributed systems, Proceedings of the 11th
International Conference on Autonomous Agents on Multi-Agent Systems, 2012.

[37] Nissim, R., Brafman, R. I.: Cost-Optimal Planning by Self-Interested Agents, Proceedings of the Twenty-
Seventh AAAI Conference on Artificial Intelligence, 2013.

[38] Pearl, J.: Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach, Proceedings of the
2nd National Conference on Artificial Intelligence, 1982.

[39] Sakarovitch, J.: Éléments de théorie des automates, Vuibert, 2003.

[40] Su, R., Wonham, W. M.: Global and Local Consistencies in Distributed Fault Diagnosis for Discrete-Event
Systems, IEEE Transactions on Automatic Control, 50(12), 2005, 1923–1935.

[41] Thorsley, D., Teneketzis, D.: Diagnosability of Stochastic Discrete-Event systems, IEEE Transactions on
Automatic Control, 50(4), 2005, 476–492.

[42] Zielonka, W.: The Book of Traces, chapter 7, World Scientific, 1995.

