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Abstract. Attractors of network dynamics represent the long-term be-
haviours of the modelled system. Their characterization is therefore cru-
cial for understanding the response and differentiation capabilities of a
dynamical system. In the scope of qualitative models of interaction net-
works, the computation of attractors reachable from a given state of the
network faces combinatorial issues due to the state space explosion.
In this paper, we present a new algorithm that exploits the concurrency
between transitions of parallel acting components in order to reduce the
search space. The algorithm relies on Petri net unfoldings that can be
used to compute a compact representation of the dynamics. We illustrate
the applicability of the algorithm with Petri net models of cell signalling
and regulation networks, Boolean and multi-valued. The proposed ap-
proach aims at being complementary to existing methods for deriving
the attractors of Boolean models, while being generic since it applies to
any safe Petri net.

Keywords: dynamical systems, attractors, concurrency, qualitative mod-
els, biological networks

1 Introduction

Living cells embed multiple regulation processes that lead to several emerging
phenotypes such as cell differentiation, division, or response to environmental
stress or signals. A large part of these processes are often represented as interac-
tion networks (e.g., signalling networks, gene regulation networks) that describe
the influences between numerous entities (genes, RNA, proteins). The global
dynamics of such networks can then be captured using qualitative modelling
frameworks, such as Boolean or discrete networks, that describe the possible
transitions between the qualitative states of the system.

In the landscape of dynamics of a network model, one can distinguish between
the transient and long-run dynamics, the latter being our focus in this article. In
qualitative models, the long-run dynamics are referred to as attractors, and are
formally defined as the Bottom Strongly Connected Components (BSCCs) of the
transition graph whose nodes are the global states of the network, and directed



edges are the possible direct transitions between those states. One typically
distinguishes between two kind of attractors: the fixed points, that are the states
from which no further transition is possible; and the cyclic attractors, that are
a set of states that can be visited infinitely often.

Characterizing the attractors of network dynamics is key for capturing the
potential adaptation and differentiation processes the cell can undergo. In partic-
ular, one could verify, from a given state of the network, if the dynamics always
converges toward a unique attractor or may diverge towards different attractors.
The former indicates a deterministic long-term behaviour, whereas the latter
suggests an indeterministic differentiation, potentially controlled by additional
mechanisms not captured by the level of abstraction of the model.

In practice, given a qualitative model of a network, the computation of the
attractors reachable from one (set of) states can become very expensive as the
size of the network grows. The naive approach consisting in generating the tran-
sition graph and computing the BSSCs suffers from the combinatorial explosion
of the state space (exponential with the number of components of the network)
and the explosion of the number of transitions.

A part of the combinatorial explosion of dynamics is due to the concurrency
between the asynchronous transitions: in a given state, several transitions may
be independently fired, which results in numerous redundant interleavings of
transitions in the concrete transition space.

Contribution. In this paper, we propose a new algorithm for characterizing all
the attractors that are reachable from a given initial state in a qualitative model
expressed with safe Petri nets [18], a broad class of nets which encompasses
asynchronous Boolean or multi-valued networks. Our algorithm exploits the un-
foldings of safe Petri net in order to reduce the size of the state space to explore.

Petri net unfoldings [7,8] aim at representing the state space rechable from an
initial state by exploiting concurrency between transitions to prune redundant
interleavings of these transitions. To our knowledge this is the first algorithm for
computing all the reachable attractors which relies on unfolding structures. Our
algorithm is applicable to any safe Petri net.

Whereas experiments on particular cases of biological networks show room for
improvement, such a technique exploiting concurrency is foremost complemen-
tary to existing algorithms (which ignore this dynamical feature) and therefore
appeals for designing combinations of techniques to make tractable the analysis
of very large networks.

Related work. In the scope of Boolean networks, there has been numerous work
to link the topology of the network (the interaction graph, giving signed relations
between the components) with the fixed points - resulting in bounds or charac-
terization of a subset of fixed points (e.g., [1,23,22]); and with cyclic attractors,
e.g., [24,17]. While the full characterization of the fixed points of Boolean/multi-
valued networks can be quite efficient for large networks [20,21,12], the complete
characterization of cyclic attractors is still a challenging task due to the com-
binatoric explosition of the state space to explore. Symbolic representation of



the state space using binary decision diagrams has been used by [11] to charac-
terize attractors in synchronous and asynchronous Boolean networks. The rela-
tionships between attractors in synchronous and asynchronous settings has then
been exploited in [3] to speed the exploration of all possible attractors in Boolean
networks, as well as Boolean network reduction techniques in [29]. Approximate
methods are also largely considered, such as in [30], which selectively explore
appropriate regions of the state space to derive a subset of cyclic attractors of
the global network dynamics.

In this paper, we will focus on the use of unfolding to compute finite complete
prefixes [14] of safe Petri nets. Finite complete prefixes contain all the reachable
markings in a compact representation (the prefix is always smaller than the
reachability graph). Unfoldings are very well suited to capture concurrent system
dynamics, and can be efficient for reachability analysis [9], for instance.

Outline. In Sect. 2, we give a formal definition of (safe) Petri nets and their
attractors, and introduce a running example. In Sect. 3, we present the unfolding
of safe Petri nets. In Sect. 4, we detail our new algorithm to derive the attractors
of a safe Petri net using its unfolding. Finally, implementation and experimations
on Petri net models of biological networks are discussed in Sect. 5.

2 Petri Nets and Attractors

A Petri net is a bipartite graph where nodes are either places or transitions.
In this paper, we consider only safe Petri nets where a place is either active
or inactive (in oppositon to general Petri nets where each place can receive an
arbitrary number of tokens, safe Petri nets allow at most one token per place).
The set of active places form the state, or marking, of the net. A transition is
said enabled if all the places that are parents of the transition are active. In the
semantics, the firing of a transition makes inactive the parent places and then
makes active the children places, modifying the current marking of the net.

Formally, a (safe) Petri net is a tuple N = 〈P, T, F,M0〉 where P and T are
sets of nodes (called places and transitions respectively), and F ⊆ (P × T ) ∪
(T × P ) is a flow relation (whose elements are called arcs). A subset M ⊆ P of
the places is called a marking, and M0 = {p10, . . . , pn0} is a distinguished initial
marking. For any node x ∈ P ∪ T , we call pre-set of x the set •x = {y ∈ P ∪ T |
(y, x) ∈ F} and post-set of x the set x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A transition t ∈ T is enabled at a marking M if and only if •t ⊆M . Then t

can fire, leading to the new marking M ′ = (M \ •t) ∪ t•. We write M
t→M ′. A

firing sequence is a (finite or infinite) word w = t1t2 . . . over T such that there

exist markings M1,M2, . . . such that M0
t1→ M1

t2→ M2 . . . For any such firing
sequence w, the markings M1,M2, . . . are called reachable markings.

The Petri nets we consider are said to be safe because we will assume that
any reachable marking M is such that for any t ∈ T that can fire from M leading
to M ′, the following property holds: ∀p ∈M ∩M ′, p ∈ •t ∩ t• ∨ p /∈ •t ∪ t•.
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Fig. 1. A safe Petri net (left) and the corresponding marking graph (right) - the initial
marking is in bold.

Figure 1 (left) shows an example of a safe Petri net. The places are repre-
sented by circles and the transitions by horizontal lines (each one with a label
identifying it). The arrows represent the arcs. The initial marking is represented
by dots (or tokens) in the marked places.

From an initial marking of the net, one can recursively derive all possible
transitions and reachable markings, resulting in the marking graph (Def. 1).
The marking graph is always finite in the case of safe Petri nets. The attractors
reachable from the initial marking of the net can then be fully characterized by
the bottom strongly connected components of the marking graph (Def. 2).

Definition 1 (Marking graph). The marking graph of a Petri Net N is a di-
rected graph G = (V,A) such that V is the set of all reachable markings (obtained
from all the possible firing sequences) and A ⊆ V × V is such that (M,M ′) ∈ A
if and only if M

t→M ′ for some t ∈ T .

Definition 2 (Attractors). An attractor is a bottom strongly connected com-
ponent of G, that is a set A of markings such that either A = {M} and no
transition is enabled from M ; or for every M ∈ A, the set of markings reachable
from M is precisely A.

Figure 1 (right) represents the marking graph of the Petri net of Figure 1
(left). The two attractors of the Petri net of Figure 1 (left) are evidenced by the
grey parts of its marking graph in Figure 1 (right).

3 Unfoldings

In this section, we explain the basics of Petri net unfoldings. A more exten-
sive treatment of the theory explained here can be found, e.g., in [7]. Roughly
speaking, the unfolding of a Petri net N is an “acyclic” Petri net U that has
the same behaviours as N (modulo homomorphism). In general, U is an infi-
nite net, but if N is safe, then it is possible [16] to compute a finite prefix P



of U that is “complete” in the sense that every reachable marking of N has a
reachable counterpart in P. Thus, P represents the set of reachable markings of
N . Figure 2 shows a finite complete prefix of the unfolding of the Petri net of
Figure 1.
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p4 p5p3

p1 p2

p6p3 p4 p5

p4 p6

t3t1

t2 t4

t6t1 t3

t5

Fig. 2. A finite complete prefix
of the unfolding of the Petri net
of Figure 1. Dashed events are
flagged as cut-offs: the unfold-
ing procedure does not continue
beyond them.

In principle, the set of reachable mark-
ings can also be computed by constructing
the marking graph (see Definition 1). How-
ever, the marking graph suffers from combi-
natorial explosion due to concurrency. For in-
stance, suppose that N simply contains n in-
dependent concurrent actions. Then the only
attractor of the net is reached by executing
all n actions in any arbitrary order. However,
the marking graph will uselessly explore all n!
different schedules for executing them, and all
2n intermediate markings.

Research into concurrent systems has pro-
duced a number of solutions to alleviate the
problem of combinatorial explosion due to
concurrency (and eventually other sources).
In [16], McMillan first proposed the use of fi-
nite unfolding prefixes. Esparza et al [8] later
improved this solution. For instance, the un-
folding of the previous example with n inde-
pendent actions is simply of size O(n). With
respect to the marking graph, an unfolding
represents a time-space tradeoff: in general, a
complete unfolding prefix P is much smaller
than the marking graph of N , but the prob-
lem whether a marking M of N is reachable,
given P, is NP-complete. However, this trade-
off is usually favourable [9].

We now give some technical definitions to introduce unfoldings formally.

Definition 3 (Causality, conflict, concurrency). Let N = 〈P, T, F,M0〉 be
a net and x, y ∈ P ∪ T two nodes of N . We say that x is a causal predecessor
of y, noted x < y, if there exists a non-empty path of arcs from x to y. We note
x ≤ y if x < y or x = y. If x ≤ y or y ≤ x, then x and y are said to be causally
related. x and y are in conflict, noted x # y, if there exist u, v ∈ T such that
u ≤ x, v ≤ y, and •u∩ •v 6= ∅. We call x and y concurrent, noted x co y, if they
are neither causally related nor in conflict.

As we said before, an unfolding is an “acyclic” version of a net N . This notion
of acyclicity is captured by Definition 4.

Definition 4 (Occurrence net). Let N = 〈P, T, F,M0〉 be a Petri net. We
say that N is an occurrence net if it satisfies the following properties:



1. The causality relation < is acyclic;
2. |•p| ≤ 1 for all places p, and M(p) = 1 iff |•p| = 0;
3. for every transition t, t # t does not hold, and {x | x ≤ t} is finite.

As is convention in the unfolding literature, we shall refer to the places of an
occurrence net as conditions and to its transitions as events. Due to the structural
constraints, the firing sequences of occurrence nets have special properties: if
some condition c is marked during a run, then the token on c was either present
initially or produced by one particular event (the single event in •c); moreover,
once the token on c is consumed, it can never be replaced by another token, due
to the acyclicity constraint on <.

Definition 5 (Configuration, cut). Let N = 〈C,E, F,M〉 be an occurrence
net. A set C ⊆ E is called configuration of N if (i) C is causally closed, i.e. for
all e, e′ ∈ E with e′ < e, if e ∈ C then e′ ∈ C; and (ii) C is conflict-free, i.e. if
e, e′ ∈ C, then ¬(e # e′). The cut of C, denoted Cut(C), is the set of conditions
(M ∪ C•) \ •C.

Intuitively, a configuration is a set of events that can fire during a firing
sequence of N , and its cut is the set of conditions marked after that firing
sequence.

We can now define the notion of unfoldings. Let N = 〈P, T, F,M0〉 be a safe
Petri net. The unfolding U = 〈C,E,G,M ′0〉 of N is an (infinite) occurrence net
(equipped with a homomorphism h) such that the firing sequences and reachable
markings of U are exactly the firing sequences and reachable markings of N
(modulo h). U can be inductively constructed as follows:

1. The conditions C are a subset of (E ∪ {⊥})× P . For a condition c = 〈x, p〉,
we will have x = ⊥ iff x ∈ M ′0; otherwise x is the singleton event in •c.
Moreover, h(c) = p. The initial marking M ′0 contains exactly one condition
〈⊥, p〉 for each initially marked place p of N .

2. The events of E are a subset of 2C × T . More precisely, we have an event
e = 〈C ′, t〉 for every set C ′ ⊆ C such that c co c′ holds for all c, c′ ∈ C ′ and
{h(c) | c ∈ C ′ } = •t. In this case, we add edges 〈c, e〉 for each c ∈ C ′ (i.e.
•e = C ′), we set h(e) = t, and for each p ∈ t•, we add to C a condition
c = 〈e, p〉, connected by an edge 〈e, c〉.

Intuitively, a condition 〈x, p〉 represents the possibility of putting a token onto
place p through a particular firing sequence, while an event 〈C ′, t〉 represents a
possibility of firing transition t in a particular context.

Recall that a configuration C of U represents a possible firing sequence, whose
resulting marking corresponds, due to the construction of U , to a reachable
marking of N . This marking is defined as Mark(C) := {h(c) | c ∈ Cut(C) }.
Since U is infinite in general, we are interested in computing an initial portion
of it (a prefix ) that completely characterizes the behaviour of N .

Definition 6 (complete prefix). Let N = 〈P, T, F,M0〉 be a safe Petri net
and U = 〈C,E,G,M ′0〉 its unfolding. A finite occurrence net P = 〈C ′, E′, G′,M ′0〉



is said to be a prefix of U if E′ ⊆ E is causally closed, C ′ = M ′0 ∪ E′
•
, and G′

is the restriction of G to C ′ and E′. A prefix P is said to be complete if for
every reachable marking M of N there exists a configuration C of P such that
(i) Mark(C) = M , and (ii) for each transition t ∈ T enabled in M , there is an
event 〈C ′′, t〉 ∈ E′ enabled in Cut(C).

It is known [16,8] that the construction of such a complete prefix is indeed
possible, and efficient tools [26,13] exist for this purpose. The precise details of
this construction are out of scope for this paper; for what follows it suffices to
know that it essentially follows the construction of U outlined above but that
certain events are flagged as cut-offs when they do not “contribute any new
reachable markings” (these events are represented by dashed lines in Figure 2).
The construction then does not continue “beyond” such a cut-off event.

4 Extracting attractors from unfoldings

Our method for finding the attractors of a Petri net N uses unfoldings in two
steps: first to find a set of markings which intersects all the attractors, second
to output the attractors as a set of finite complete prefixes.

4.1 Representation of attractors as finite complete prefixes

We first remark that finite complete prefixes of unfoldings are particularly well
suited for the representation of attractors. In fact, every attractor A is a set
of states which form a maximal strongly connected component of the marking
graph of N . For every marking M in A, the attractor A is precisely the set of
markings reachable from M . Hence it can be compactly represented as a finite
complete prefix of the unfolding of the Petri net N initialized at M . Denote this
prefix UM : the markings associated to the configurations of UM are precisely
those of the attractor, moreover the prefix shows the dynamics of the net while
in the attractor. Last, the size of UM (as number of non cut-off events) can be
up to exponentially smaller (in case of highly concurrent behaviour) than the
number of markings in the attractor, and never exceeds it.

Figure 3 shows two attractors of the Petri net N of Figure 1 represented as
finite complete prefixes. The one on the left, U{p4,p6}, represents the attractor
containing the marking {p4, p6}. The one on the right represents the attractor
made of the single marking {p3, p2} which is a deadlock.

4.2 Maximal configurations and attractors

We have shown the interest of prefixes for representing attractors. What we
need is a way to find a setM of markings of the Petri net N which contains one
marking per attractor. Given such M, the set {UM |M ∈M} gives a complete
characterization of the attractors of N .

Now we show that the desired set M of markings can be obtained from the
maximal configurations of a finite complete prefix of the unfolding of N .
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Fig. 3. Two attractors of the Petri net of Figure 1 represented as finite complete
prefixes U{p4,p6} (on the left) and U{p3,p2} (on the right).

Definition 7 (maximal configuration). A configuration of a prefix is called
maximal if no other event of the prefix can be added to the configuration. Equiv-
alently, the configuration is a deadlock of the prefix viewed as a Petri net.

For example, in the prefix shown on Figure 2, the configuration corresponding to
the firing sequence t3t2 is not maximal because it can be extended, for instance
by t4 and the other event labeled t3, yielding this time a maximal configuration,
which reaches the marking {p4, p5}. Notice that this marking is not a deadlock
in the original Petri net, yet the configuration is maximal in the prefix.

Property 1. Let N be a Petri net and U a finite complete prefix of its unfolding.
For every attractor A of N , there exists a maximal configuration of U whose
associated marking belongs to A.

Proof. Choose a marking M in A. Because U is complete, it has a configuration
C whose associated marking is M . Now because U is finite, it has a maximal
configuration C′ which extends C. The marking M ′ associated to C′ is reachable
from M , therefore it is also in A.

The prefix shown on Figure 2 has four maximal configurations. One is ob-
tained after firing only t1; its associated marking is the deadlock {p3, p2}. This
marking is associated to another maximal configuration: the one obtained by
firing t3 and then t2t1 concurrently with t4. The third maximal configurations is
obtained by firing t3, then t2 and t4 concurrently, and then t3 again; it reaches
the marking {p4, p5}. Finally, one can fire t3, then t2t1 and t6 concurrently, and
then t5; it reaches the marking {p4, p6}.

One can check that every attractor has a marking in this set: the dead-
lock {p3, p2} is represented twice; the marking {p4, p6} represents the attractor
{{p3, p6}, {p1, p6}, {p4, p6}}. The marking {p4, p5}, also associated to a maximal
configuration of U , is not in an attractor.



4.3 Algorithm

Property 1 allows one to use finite complete prefixes to identify attractors: the
set Mmax of markings corresponding to maximal configurations intersects all
the attractors. But not all the markings in Mmax belong to an attractor. Also
an attractor may contain several markings in Mmax.

In order to characterize the attractors of a safe Petri net N , we filter the
set Mmax and keep only one marking per attractor. The idea is to remove it-
eratively the markings from which another marking of the set is reachable. The
reachability checking is done again using unfoldings.

The algorithm is the following:

1. Compute a finite complete prefix U of the unfolding of N .
2. InitializeM to the setMmax of markings corresponding to maximal config-

urations of U .
3. Initialize the set of attractors to ∅.
4. Loop for M in M

– Compute a finite complete prefix UM of the net N initialized at M .
– If a markingM ′ ∈M other thanM is reachable fromM (the reachability

check is done using UM ),
Then remove M from M,
Else add UM to the set of attractors.

5. Output the set of attractors.

Termination of the algorithm is straightforward. We prove that at every
step of the algorithm, the set M intersects all the attractors. This property is
preserved when we remove a marking M fromM because, if M is in an attractor
A, then the marking M ′ ∈M reachable from M is also in A. Notice also that, if
M is not in an attractor, then at least one attractor A is reachable from M ; and
becauseM∩A 6= ∅,M contains a marking M ′ ∈ A which is reachable from M .
This ensures that UM is added to the set of attractors iff M is in an attractor
A and M∩A = {M}.

4.4 Illustration on the running example

For our running example the setM is initialized to {{p3, p2}, {p4, p5}, {p4, p6}}.
The algorithm computes the prefix UM for every M ∈ M, but outputs only
U{p3,p2} and U{p4,p6}, pictured in Figure 3. U{p4,p5} is dropped because {p4, p6}
is reachable from {p4, p5}.

5 Implementation and Experimental Results

In order to test the applicability of our approach, we implemented a prototype
of the algorithm described above using Mole[26] for computing the complete
prefixes, and Minisat[6] for extracting the maximal configurations1.

1 Executables, scripts, and Petri net models are available for Linux 64bits at
http://loicpauleve.name/cmsb2014.tbz2



We applied our algorithm for the identification of attractors of three quali-
tative models of biological networks taken from the literature. In all cases, we
applied a transformation to safe Petri net (Appendix A) that consists in hav-
ing one place for each qualitative level of each component of the network, and
transitions corresponding to the asynchronous semantics, i.e., each transition will
actually change the level of only one component. By construction, the places cor-
responding to the levels of each components are mutually exclusive. The initial
marking may then correspond either to a single state of the qualitative model, or
to several possible initial states by adding transitions that non-deterministically
select the initial state for some components (Sect. A.2). In this latter encoding,
the returned attractors are the attractors reachable from at least one of the
possible initial state of the qualitative model.

Model Nb. nodes Nb. max. conf. Nb. attractors

Lambda switch 4 15 2
Cell cycle 10 12 1
ERBB (1) 20 301 1
ERBB (2) 20 302 2
VPC C. elegans 88 1240 1

Table 1. Results of the attractors characterization using Petri net unfoldings. For each
model (which includes the initial state), we give the number of maximal configurations
and the number of attractors reachable from the initial state.

Tab. 1 sums up the results of computing the finite complete prefixes on
the following regulatory networks: a multi-valued model of the lambda switch
[27], a Boolean model of he mammalian cell cycle [10], a Boolean model of the
ERBB receptor [25], and a multi-valued model of fate determination in the Vulval
Precursor Cells (VPC) in C. elegans [28]. For the ERBB model, two different
initial settings have been tested: (1) when EGF is active; (2) when either EGF is
active or inactive. For the other models, the initial state is the level 0 for all the
components. The execution times are in the order of a fraction of a second for the
two first models; in the order of a few seconds for ERBB; and around 15 minutes
for the VPC model. For the latter, we note that starting from a different initial
state leads to a combinatoric explosion of the complete prefix, showing room for
improvement to handle large model in general. It is difficult to compare with
other existing tools as most of them handle only Boolean networks and do not
support the search from a given initial state. GINsim [19] also provides attractors
computations from a given initial state, but it relies on explicit state transition
graph computation, which is always larger than a complete prefix (Section 3).
For instance on the VPC example, GINsim has been stopped after one hour.



6 Discussion

We presented a new algorithm for computing all the attractors reachable from a
given state in the general class of safe Petri nets, i.e., Petri nets having at most
one token in each place. This class includes Boolean and multi-valued networks
that are typically used to model the qualitative dynamics of biological networks.

Our approach relies on Petri net unfoldings that natively take into account
the concurrency between transitions to produce a compact representation of the
reachable states. Then, we use the notion of maximal configuration to derive,
from the computed unfolding, a set of states that includes at least one state of
each reachable attractor. This set of maximal configuration is then filtered to
output exactly one state per reachable attractors. The identification of attrac-
tors is complete in the sense that all the attractors reachable from the supplied
markings are detected, including fixed points and cyclic and complex attractors.

By the use of Petri unfoldings, we aim at reducing the complexity of exploring
the full reachable space by inherently pruning redundant transitions due to some
interleaving of concurrent transitions. We applied a prototype implementation of
the algorithm to four biological networks ranging from four to eighty interacting
components, either multi-valued or Boolean.

The unfolding technique mentioned in this paper is generic to any safe Petri
net. This indicates several directions for improving its computation (including
the extraction of maximal configurations) in the particular case of biological
interaction networks, such as the use of contextual Petri nets [2], merge processes
[15], unravelings [4], and the use of the network topology and static analysis to
prune non-necessary transitions and decompose the detection of attractors.
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cient unfolding of contextual Petri nets. TCS, 449:2–22, 2012.

3. N. Berntenis and M. Ebeling. Detection of attractors of large boolean networks
via exhaustive enumeration of appropriate subspaces of the state space. BMC
Bioinformatics, 14(1):361, 2013.

4. G. Casu and G. M. Pinna. Flow unfolding of safe nets. In Petri Nets, 2014.

5. C. Chaouiya, A. Naldi, E. Remy, and D. Thieffry. Petri net representation of
multi-valued logical regulatory graphs. Natural Computing, 10(2):727–750, 2011.
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A Encoding asynchronous discrete networks with safe
Petri Nets

A.1 Encoding with one initial state

In literature, Boolean and multi-valued networks modelling dynamics of bio-
logical influence networks are typically represented by functions associating for
each component the levels towards which it evolves with respect to each pos-
sible level of its regulators. In order to encode their asynchronous dynamics in
Petri nets, one need to have a transition-centered representation, instead of a
function-centered. Informally, this can be achieved by having one place per possi-
ble level of each component (we note iu the place corresponding to the level u of
component i), and listing the conditions for moving a token from iu to iu+1 and
iu−1. Such conditions can typically be built from the expression of the discrete
functions of the network. Our encoding always results in safe Petri nets, which
makes it different from [5] which relies on more advanced Petri nets semantics
(multiple tokens on places and weighted arcs),

A Discrete Network gathers a finite number of components i ∈ {1, · · · , n}
having a discrete finite domain Fi that we note Fi = {0, · · · , li}, li being the
maximum level for the component i. For each component i ∈ {1, · · · , n}, a map
f i : F → Fi is defined, where F = F1 × · · · × Fn, giving the next value of the
component with respect to the global state of the network. Typically f i depends
on a subset of components (its regulators) that we denote dep(f i). In the case of
Asynchronous Discrete Networks (ADN), a transition relation →ADN⊆ F×F is
defined such that x→ADN x′ if and only if there exists a unique i ∈ {1, · · · , n}
such that x′[i] = f i(x) and ∀j ∈ {1, · · · , n}, j 6= i, x′[j] = x[j], i.e. one and only
one component has been updated. This is formalised in Def. 8.

Definition 8 (Asynchronous Discrete Network (ADN)). An ADN is de-
fined by a couple (F, 〈f1, . . . , fn〉) where F = F1× · · · ×Fn, and ∀i ∈ {1, · · · , n},
f i : F → Fi with Fi = {0, · · · , li}. Given two states x, x′ ∈ F, the transition
relation →ADN is given by

x→ADN x′ ⇐⇒ ∃i ∈ {1, · · · , n}, f i(x) = x′[i]∧∀j ∈ {1, · · · , n}, j 6= i, x[j] = x′[j] ,

where x[i] is the i-th component of x. We note dep(f i) ⊆ {1, · · · , n} the set
of components on which the value of f i depends: ∀x, x′ ∈ F such that ∀j ∈
dep(f i), x[j] = x′[j], necessarily f i(x) = f i(x′).

In the scope of an ADN (F, 〈f1, . . . , fn〉), we use cond(x) to map a state to
the set of literals for the presence of the components at the corresponding state,

e.g., cond(〈1, 0, 1〉) = {11, 20, 31}: cond(x)
∆
= {iu | i ∈ {1, · · · , n}, x[i] = u}.

Given a component i at a state u, we note condsiu+ and condsiu− the set
of conditions where i can respectively increase or decrease. This set of condi-
tions can be read as a disjunctive normal form expressing the possibility of the

transition: condsiu+
∆
= simplify({cond(x)|dep(i) | x ∈ F, x[i] = u, f i(x) > u});



condsiu−
∆
= simplify({cond(x)|dep(i) | x ∈ F, x[i] = u, f i(x) < u}); where simplify

is an operator to reduce the number of conditions, and cond(x)|dep(i) restricts
the literals to those corresponding to components influencing i.

Finally, given an ADN (F, 〈f1, . . . , fn〉) and an initial state x0 ∈ F, the
corresponding safe Petri net is defined by (P, T, F,M0) where P = {iu | i ∈
{1, · · · , n}, u ∈ {0, · · · , li}}, M0 = cond(x0), and T and F are the smallest sets
(w.r.t. inclusion) such that ∀i ∈ {1, · · · , n}, ∀u ∈ {0, · · · , li}, ∀Φ ∈ condsiu+ ∪
condsiu−, ∃t ∈ T : •t = Φ ∪ {ai} ∧ t• = (Φ \ {ai}) ∪ {aj}. By construction, the
Petri net is safe and for each i ∈ {1, · · · , n}, the places i0, · · · , ili are mutually
exclusive.

A.2 Encoding with multiple initial states

When studying the dynamics of a qualitative network, one may want to con-
sider several initial states, chosen nondeterministically. Using the construction
depicted in the previous section, one can encode this indeterministic choice by
adding a place, initially marked, per (independent) indeterministic choice, and
a transition per corresponding (local) state. Fig. 4 illustrate this construction
with either an indeterministic initial state for one component, or for several
components.

10 11 20 21 10 11 20 21

Fig. 4. (left) Encoding of the indeterministic choice between the initial state of 1;
(right) indeterministic choice between the initial state of the couple 1 and 2: either
〈0, 0〉 or 〈1, 1〉.


