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Abstract— We consider a distributed system modeled as a
possibly large network of automata. Planning in this system
consists in selecting and organizing actions in order to reach
a goal state in an optimal manner, assuming actions have a
cost. To cope with the complexity of the system, we propose
a distributed/modular planning approach. In each automaton
or component, an agent explores local action plans that reach
the local goal. The agents have to coordinate their search in
order to select local plans that 1/ can be assembled into a
valid global plan and 2/ ensure the optimality of this global
plan. The proposed solution takes the form of a message
passing algorithm, of peer-to-peer nature: no coordinator is
needed. We show that local plan selections can be performed by
combining operations on weighted languages, and then propose
a more practical implementation in terms of weighted automata
calculus.

Index Terms— factored planning, distributed planning, op-
timal planning, discrete event system, distributed constraint
solving, distributed optimization, weighted automaton, K-
automaton, string to weight transducer, formal language theory

I. I NTRODUCTION

A planning problem [1] consists in optimally selecting and
organizing a set of actions in order to reach a goal state
from a given initial state. These “states” correspond to tuples
(vi)i∈I of values, one per variableVi, i ∈ I, and the actions
read and write on subsets of these variables. Expressed
in these general terms, one easily guesses that a planning
problem “simply” amounts to finding a path from an initial
state to a (set of) goal state(s) in an automaton. In reality,the
problem is more complex in several respects. First of all, the
underlying automaton that encodes the problem is generally
huge : the state space explodes, due to its vector nature, and
actions operate on few components of the state vector, so a
single action results in a huge number of transitions. There-
fore, finding a path to the goal in such a huge automaton is
not a trivial task and requires dedicated algorithms. Secondly,
there exist planning problems of different difficulties. Some
are more on the side of constraint solving: they admit few
complex solutions, or even none, and one should dedicate
his efforts to finding one solution, or to proving that there
is no solution at all. Other problems are more accessible, in
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the sense that one can easily prove the existence of many
solutions. The difficulty then amounts to finding the best
one in an efficient manner, where “best” means that some
criterion should be minimized, for example the number of
actions in the plan, or the total cost of the plan, assuming
each action involves some cost. The present paper addresses
this second family of problems.

In order to address planning problems of growing size and
complexity, several research directions have been recently
explored. They essentially try to make use of the locality of
actions,i.e. the fact that an action involves a small number
of variables. One can for example take advantage of the
concurrency of actions: when two actions are simultaneously
firable and involve different sets of variables, they need not
be ordered in a plan. This results in search strategies that han-
dle plans as partial orders of actions rather than sequences,
which reduces the search space [2], [3]. A stronger trend is
known as “factored planning”, and aims at solving planning
problems by parts [5], [6], [7], [8]. Formally, one can imagine
that the action set is partitioned into subsets, each subset
representing an “agent.” So each agent can only influence
part of the resource set. The idea is then that one should
build a plan for each agent, which corresponds to a smaller
planning problem, and at the same time ensure that all such
local plans are compatible,i.e. can be assembled to form
a valid global plan. The difficulty is of course to obtain
this compatibility of local plans: this is where the sparse
interaction graph of agents is exploited, and where one may
obtain a complexity gain.

The results presented here elaborate on this idea, but adopt
a radically new perspective on the problem. Specifically,
we assume that agents are sufficiently small to enable the
handling of all local plans. We then focus on thedis-
tributed computations that 1/ will select local plans of each
agent that can be extended into (or that are projection of)
a global plan, and 2/ will at the same time select the tuple
of local plans (one per agent) that corresponds to the best
global plan. As a side-product, we also obtain global plans
that are partially ordered sets of actions.

Our approach first encodes the planning problem as a
reachability problem in a network of automata, one automa-
ton per agent (section II). We then make use of classical tools
in formal language theory, distributed constraint solving[10],
[11], [9], distributed optimization [13] (section III), and
weighted automata calculus [16], [17] (section IV) to solve
the problem. Taken separately, none of these tools is original,
but their assembling certainly is, and we believe this opens
a promising research direction about planning problems.



II. PLANNING IN NETWORKS OF AUTOMATA

A. From planning to distributed planning

The definition of a planning problem assumes first a finite
set of state variables{Vi}i∈I , VI , taking values in finite
domainsDi. The initial state is a specific tuple(vi)i∈I and
we assume here a set of goal states in product form×iGi

with Gi ⊆ Di. The second ingredient is a finite collection
of actions{ak}k∈K . An actionak usually involves a small
subset of variablesV(ak) ⊆ VI . To be firable,ak must
read specific values on (some of) theV(ak), which form the
preconditions ofak. The firing of ak writes specific values
on (some of) the variablesV(ak), the so-called effect ofak.
In this paper, to avoid non-central technical complications,
we assume that eachak both reads and writes on all its
variablesV(ak). Finding an optimal plan consists in selecting
and organizing actions to go from the initial state(vi)i∈I

to one of the goal states ofG = ×i∈IGi, and at the
same time minimize a criterion like the number of actions
for example. This is made more formal below. Planning
problems are generally expressed in different formalisms:
STRIPS or PDDL assume binary variables, while SAS+ [5]
or the related notion of Domain Transition Graph [4] assume
multi-valued variables. Here we are closer to this second
family.

To make this setting distributed, we partition the variable
set VI into subsetsVIn

, with ⊎nIn = I, corresponding to
the “agents”An (one could equivalently partition the action
set). AgentAn is provided with all the actionsak restricted
to its variablesVIn

, ak|VIn
, such thatV(ak)∩VIn

6= ∅. Agent
An represents the restriction of the global planning problem
to the subset of variablesVIn

. Since actions are now split
into different agents, we introduce below a standard product
formalism that synchronizes agents on these shared actions
and allows us to recover the global planning problem from
its restrictions. This way of splitting a planning problem
into parts is standard and has been adopted by several
“factored planning” approaches [5], [6], [7], [8], [12]. Itis
generally used to build global plans by parts, starting by
some agent, looking for a local plan in this agent, and then
trying to progressively extend it with a compatible local plan
of another agent, and so on. Here, the compatibility of local
plans corresponds to an agreement to jointly perform or reject
some shared actions (this is formalized below).

In this paper, we adopt a different perspective. First of all,
we look for a distributed planning approach and abandon the
idea of a coordinator in charge of assembling the proposed
local plans into a global one. We rather assume that the
agents themselves are in charge of computations, relying
on message exchanges, and that they only handle local
information (typically sets of local plans), not global one.
Secondly, rather than a search forone possible global plan
(which assumes many backtrackings in the assembling of
agent proposals), the method we propose is rather based
on a filtering idea : it exploresall local plans of an agent,
and removes those that can not be the restriction of a valid
global plan. Finally, beyond this filtering idea, the procedure

we propose implements as well a distributed optimization
function that will compute (all) the optimal global plan(s). To
our knowledge, this is the first approach to optimal factored
planning.

We proceed by formalizing the notion of agent as a
weighted automaton, and the notion of plan as a word in
the language of this automaton.

B. Weighted automata and their languages

Let (K,⊕,⊗, 0̄, 1̄) denote the so-called tropical commuta-
tive semiring(R+∪{+∞}, min, +, +∞, 0). Following [16],
a weighted automaton (WA), or equivalently a string to
weight transducer, is a tupleA = (S, I, F, Σ, cI , cF , c) where
S is a finite set of states, among whichI, F ⊆ S represent
initial and final states respectively,Σ is a finite alphabet
of actions,cI : I → K\{0̄} and cF : F → K\{0̄} are
weight/cost functions on initial and terminal states. The last
parameterc : S×Σ×S → K is a weight or cost function over
all possible transitions ofA, with the convention that only
transitions inT = c−1(K\{0̄}) are possible inA (transitions
of infinite cost are impossible). Given a transitiont ∈ T ,
we denote by(s−(t), σ(t), s+(t)) its three components in
S × Σ × S. A path π = t1...tn is a sequence of transitions
such thats+(ti) = s−(ti+1), 1 ≤ i ≤ n − 1. We define
s−(π) = s−(t1), s+(π) = s+(tn), σ(π) = σ(t1)...σ(tn)
and for the cost of this pathc(π) = c(t1) ⊗ . . . ⊗ c(tn),
i.e. the sum of transition costs. The pathπ is accepted by
A, denotedπ |= A, iff s−(π) ∈ I and s+(π) ∈ F . The
language ofA is defined as the formal power series

L(A) =
∑

u∈Σ∗

L(A, u) u (1)

where coefficients are given by

L(A, u) =
⊕

π |= A
u = σ(π)

cI [s
−(π)] ⊗ c(π) ⊗ cF [s+(π)] (2)

L(A, u) is the weight of the action sequence (or word)u,
and it is thus obtained as the minimum weight over all
accepted paths ofA that produceu, with the convention that
L(A, u) = +∞ (i.e. 0̄) when no such path exists. The word
u is said to belong to the language ofA iff L(A, u) 6= 0̄.

One can associate a transition functionδ : S × Σ → 2S

to A by δ(s, σ) = {s′, ∃(s, σ, c, s′) ∈ T }, which extends
naturally to state setsS′ ⊆ S by union and to wordsu ∈ Σ∗

by composition. We also denoteδ(s) = ∪σ∈Σδ(s, σ). A is
said to be deterministic when|I| = 1 and δ is a partial
function overS × Σ, i.e. from any states there is at most
one outgoing transition carrying a given labelσ.

A WA can be considered as an encoding of a planning
problem with action costs. Optimal planning then consists
in finding the word(s)u of minimal weight in the language
L(A), or equivalently the optimal accepted path(s) inA,
which can be solved by traditional graph search. In the se-
quel, we examine the case whereA is large, but obtained by
combining smaller planning problems (called components),
one per agent.



C. From distributed planning to (networks of) automata

We represent an agentAn as a WA. Its state space encodes
all possible values(vi)i∈In

on its variables, and its transitions
define how actions modify these values. Transition costs
represent how much the agent must spend for a given action.
The goal of agent is defined by its subsetF of final states.

The interaction of two agents is defined by sharing some
actions, which formally takes the form of a product of WA.
Let A1,A2 be two WA, Ai = (Si, Ii, Fi, Σi, cI

i, cF
i, ci)

with Ti as associated transition sets, their productA = A1×
A2 = (S, I, F, Σ, cI , cF , c) is defined byS = S1 × S2, I =
I1 × I2, F = F1 × F2, Σ = Σ1 ∪ Σ2, cI = cI

1 ◦ p1 ⊗ cI
2 ◦

p2, cF = cF
1 ◦ p1 ⊗ cF

2 ◦ p2 where thepi : S1 × S2 → Si

denote the canonical projections. For transition costs, one
has

c((s1, s2), σ, (s′1, s
′
2)) =















c1(s1, σ, s′1) ⊗ c2(s2, σ, s′2) if σ ∈ Σ1 ∩ Σ2

c1(s1, σ, s′1) if σ 6∈ Σ2 ands2 = s′2
c2(s2, σ, s′2) if σ 6∈ Σ1 ands1 = s′1
0̄ otherwise

(3)

The first line corresponds to synchronized actions : the two
agents must agree to perform shared actions ofΣ1 ∩ Σ2,
in which case action costs are added. By contrast, actions
carrying a private label remain in the product as private
actions, where only one agent changes state (next two lines).

We now model a distributed planning problem as a product
A = A1 × ... × AN , which can be seen as a network of
interacting agents. The objective is to find the/a pathπ from
I = I1 × ...× In to the global objectiveF = F1 × ...× FN

that has minimal cost inA. Equivalently, we look for a word
u in the language ofA that has minimal weightL(A, u).
We will actually look for anN -tuple of words(u1, ..., uN ),
one wordui per componentAi, where eachui corresponds
to the canonical projection ofu on (the action alphabet of)
agentAi. Such local pathsπi are said to becompatible.
The next section explains how to compute an optimal tuple
of compatible local plans without computing optimal global
plans.

III. D ISTRIBUTED OPTIMAL PLANNING BY (WEIGHTED)
LANGUAGE CALCULUS

A. Basic operations on weighted languages

Let us first define the product of weighted languages
(WL). For a word u ∈ Σ∗ and Σ′ ⊆ Σ, we denote by
u|Σ′ the natural projection ofu on the sub-alphabetΣ′. Let
L1,L2 be two WL defined as formal power series onΣ1, Σ2

respectively, their product is given by

(L1 ×L L2)(u) = L1(u|Σ1
) ⊗ L2(u|Σ2

) (4)

Proposition 1: For A = A1 × ... ×AN one hasL(A) =
L(A1) ×L ... ×L L(AN ).

Proof: The result is well known if weights are ig-
nored [10], [14]. Regarding weights, let us consider the
case of two components, without loss of generality. Let
u ∈ (Σ1 ∪ Σ2)

∗ such that its projectionsui = u|Σi
have

non vanishing costs :L(Ai, ui) 6= 0̄. Let πi be an accepted
path inAi such thatσi(πi) = ui. By definition ofA1 ×A2,
one can interleaveπ1 and π2 into a pathπ |= A such that
σ(π) = u. Conversely, letπ |= A such thatσ(π) = u. Since
transitions ofA are pairs of transitions ofA1 andA2, the
canonical restriction ofπ to theAi part yields aπi |= Ai

such thatσi(πi) = ui. As a consequence, the⊕ in (2) splits
into a product of two sums, one for each component, which
yieldsL(A, u) = L(A1, u1) ⊗ L(A2, u2).

The second operation we need is the projection of a WL
L defined on alphabetΣ on a subsetΣ′ ⊆ Σ of action
labels. As for regular languages, this amounts to removing
the non desired labels, but here we combine it with a cost
optimization operation over the discarded labels :

∀u′ ∈ Σ′∗, ΠΣ′ (L)(u′) =
⊕

u∈Σ∗, u|Σ′=u′

L(u) (5)

Proposition 2: Let u be an optimal word ofL, i.e.L(u) =
⊕

v∈Σ∗ L(v), then u′ = u|Σ′ is an optimal word ofL′ =
ΠΣ′(L), i.e.L′(u′) =

⊕

v′∈Σ′∗ L′(v′). And conversely, an
optimal wordu′ of L′ is necessarily the projection onΣ′ of
an optimal wordu of L.

Proof: Direct consequence of (5).
Proposition 2 has an important meaning for distributed

planning. Consider the set of global plansL(A) and its
projectionsΠΣi

(L(A)) on the action sets of all components.
Then an optimal local planui in ΠΣi

(L(A)) is necessarily
the projection of an optimal global planu ∈ L(A) : ui =
u|Σi

. And the latter induces optimal local plansuj = u|Σj

in all the other projected languagesΠΣj
(L(A)), j 6= i.

Moreover, if the optimal local planui is unique in every
ΠΣi

(L(A)), then these local plans are necessarily the pro-
jection of the sameu, i.e. they are compatible (by definition).
In summary, our objective is to compute the projections
ΠΣi

(L(A)) on the action alphabets of componentsAi, and
then select the optimal words in these local languages. It
turns out that these projected languages can be obtained
without computingL(A), as we show below.

B. Distributed planning

Theorem 1:Let L1,L2 be weighted languages onΣ1, Σ2

respectively, and letΣ1 ∩ Σ2 ⊆ Σ′, then

ΠΣ′(L1 ∧ L2) = ΠΣ′(L1) ∧ ΠΣ′ (L2) (6)

Proof: Again, the result is standard on languages when
weights are ignored [9]. To take weights into account, assume
for simplicity thatΣ′ = Σ1∩Σ2. The proof is then similar to
the one of Prop. 1 : for any two wordsui ∈ Li, i = 1, 2, such
thatu1|Σ′ = u2|Σ′ , one will have a joint wordu in L1 ∧L2,
and vice-versa. It is then sufficient to notice that in (6) the
sum⊕ that removes the extra labels of(Σ1 ∪Σ2)\Σ′ in the
left-hand side projection can be split into a product of two
independent sums, one removing labels ofΣ1\Σ′ in the u1

terms, and another one removing labels ofΣ2\Σ′ in the u2

terms. This gives the right-hand side of (6).
Theorem 1 is central to derive distributed constraint solv-

ing methods [12] (useful here to select compatibles local



plans), as well as distributed optimization methods [13]
(useful here to derive the local views of optimal global
plans). These approaches are actually two facets of a more
general theory developed in [9]. We combine them here
to design a distributed method for optimal planning. For a
matter of simplicity, we illustrate the concepts on a simple
example.

Consider a planning problem defined asA = A1×A2×A3

whereAi is defined on the action alphabetΣi and such that
Σ1 ∩Σ3 ⊆ Σ2. This assumption states that every interaction
of A1 andA3 involvesA2, or equivalently thatA1 andA3

have conditionally independent behaviors given a behaviorof
A2. One can graphically represent this assumption by means
of an interaction graph (Fig. 1). An interaction graph has
componentsAi as nodes; edges are obtained by recursively
removing redundant edges, starting from the complete graph.
The edge(Ai,Aj) is declared redundant iff eitherΣi∩Σj =
∅, or it is included in everyΣk along an alternate path from
Ai to Aj in the (remaining) graph.

1 A2 A3A

Fig. 1. The interaction graph ofA = A1×A2×A3 whenΣ1∩Σ3 ⊆ Σ2.

Consider the derivation ofΠΣ1
[L(A)]. From Proposi-

tion 1, one hasL(A) = L(A1) ×L L(A2) ×L L(A3). Then

ΠΣ1
[L(A)]

= ΠΣ1
[ L(A1) ×L L(A2) ×L L(A3) ]

= L(A1) ×L ΠΣ1
[ L(A2) ×L L(A3) ]

= L(A1) ×L ΠΣ1∩Σ2
[ L(A2) ×L L(A3) ]

= L(A1) ×L ΠΣ1∩Σ2
[ L(A2) ×L ΠΣ2∩Σ3

[L(A3)] ] (7)

The second equality uses Theorem 1 withΣ′ = Σ1 ⊇
Σ1 ∩ (Σ2 ∪ Σ3), and the fact thatΠΣ1

[L(A1)] = L(A1).
For the third equality, observe that languageL = L(A2)×L

L(A3) is defined on the alphabetΣ2 ∪ Σ3. So ΠΣ1
(L) =

ΠΣ1
[ΠΣ2∪Σ3

(L)] = ΠΣ1∩(Σ2∪Σ3)(L). This is where our
assumption comes into play to obtainΣ1 ∩ (Σ2 ∪ Σ3) =
Σ1 ∩ Σ2. For the fourth equality, one replaces firstΠΣ1∩Σ2

by ΠΣ1∩Σ2
◦ΠΣ2

. The derivation ofΠΣ2
[L(A2)×LL(A3)] =

L(A2) ×L ΠΣ2∩Σ3
[L(A3)] is again a direct application

of Theorem 1, and reproduces the derivation of the third
equality.

Equation (7) reveals that the desired projectionΠΣ1
[L(A)]

can be obtained by a message passing procedure, following
the edges of the interaction graph. The message fromA3 to
A2 is ΠΣ2∩Σ3

[L(A3)]. It is combined with the knowledge
of A2 and the result is projected onΣ1 ∩Σ2 to produce the
message fromA2 to A1. A symmetric message propagation
rule would yieldΠΣ3

[L(A)], and one can also prove that

ΠΣ2
[L(A)]

= ΠΣ1∩Σ2
[L(A1)] ×L L(A2) ×L ΠΣ2∩Σ3

[L(A3)] (8)

So the two incoming messages atA2 are sufficient to
computeΠΣ2

[L(A)]. The interest of this message passing

strategy is triple: the procedure is fully distributed (no
coordinator is needed), it only involves local information, and
it has low complexity, in the sense that only two messages per
edge are necessary (one in each direction). While the product
generally increases the size of objects, one can expect the
projection to reduce it, and thus save in complexity (this
still has to be quantified more precisely, however).

A full theory allows one to extend this simple example to
systems which interaction graph is a tree (and beyond, with
more complications) [9].

C. Example

γ,1

α,0

α,1 β,0

c,1

γ,1

γ,0

3A

d,5 γ,0b,0
a,1

α,1

β,1

A1 A2

β,0

Fig. 2. A network of 3 interacting weighted automata.

Consider the distributed systemA = A1 × A2 × A3

where the three componentsAi are WA depicted in Fig. 2
(assumingcI = cF = 0). A1 andA2 share actions{α, β},
and A2,A3 share action{γ}, which corresponds to the
ineraction graph in Fig. 1. One hasL(A1) = 1 ·β +2 ·aα+
2 ·βbα+3 ·aαbα+ ..., L(A2) = 0 ·ββγ∗+1 ·βγγ∗+ ... and
L(A3) =

∑

n≥0 n · (dγ)n. Observe that the minimal words
in these language areβ, ββγ∗ and ǫ, respecively, and that
they are not compatible.

Let us follow (7) to computeΠΣ3
[L(A)]. The message

sent byA1 to A2 is Π{α,β}[L(A1)] = 1 · β +
∑

n≥1(1 +
n) · (ǫ + β)αn, which will kill all solutions with two β in
L(A2): at most oneβ can be performed inA1. Specifically,
composed withL(A2) this message yields2 · βγγ∗ + 5 ·
αα(c + γ)γ∗, which is alsoΠΣ2

[L(A1) ×L L(A2)], i.e. the
vision fromA2 of whatA1 andA2 can perform together to
reach their goals. Projected onγ, this yields2 · γγ∗ + 5 · ǫ,
the message fromA2 to A3. Observe that the5 · γγ∗ part is
discarded by the optimization step. Finally, composing this
message withL(A3) yields the desiredΠΣ3

[L(A)] = 5 · ǫ+
∑

n≥0(7 + 5n) · (dγ)n+1. This reveals (Proposition 2) that
the best plans or words inL(A) have cost 5, and requireA3

to do... nothing!
Following exactly (7) and (8) yields the other projections

ΠΣ1
[L(A)] = 5 ·aαbα+7 ·β andΠΣ2

[L(A)] =
∑

n≥0[(5+
5n) ·α2c + (7 + 5n) ·βγ + (10 + 5n) ·α2γ]γn. The minimal
word in eachΠi[L(A)] is unique, and all of them have
cost 5, which yields the triple(aαbα, α2c, ǫ) as an optimal
(factored) plan of cost 5. These three words are of course
compatible. Notice that componentA1 has to go twice
through its local goal to helpA2 and A3 reach their own
goal.



IV. I MPLEMENTATION INTO WEIGHTED AUTOMATA

CALCULUS

A. Recoding primitive operations

Languages of WA are generally infinite objects, so they
can not be handled as such in practice. Fortunately, one
starts computations with the regular languagesL(Ai), and
the two primitive operations product×L and projectionΠ.

both preserve the regularity. Therefore one possibility to
perform the distributed computations of section III is to
replace every regular language by its finite representationas a
WA. Specifically, one can choose to represent every regular
language by its minimal deterministic weighted automaton
(MDWA), provided it exists. The minimality is interesting
to reduce the complexity of products and projections, and
minimality is well defined for deterministic WA. Dealing
with deterministic automata reduces as well the complexity
of basic operations. But it has another important advantage
for optimal planning applications: there is only one path
representing a given word of the language, therefore all sub-
optimal (and thus useless) paths for this word are removed
in the determinization step.

Consider two minimal deterministic WAA andA′. The
product of their languagesL(A)×LL(A′) can be represented
by Min(A×A′). One already hasL(A×A′) = L(A) ×L

L(A′) by Proposition 1, andA×A′ is deterministic. There-
fore only a minimization step (Min) is necessary, and there
exist polynomial minimization algorithms for deterministic
WA (not described here for a matter of space):One proceeds
with a generic weight pushing procedure, followed by a
standard minimization step [17].

Difficulties appear with the projection. LetA be a de-
terministic WA on alphabetΣ, its projection onΣ′ ⊆ Σ
is obtained as for non-weighted automata, by first perform-
ing an epsilon-reduction, then determinizing the result. The
epsilon-reduction collapses all transitions labeled byΣ” =
Σ\Σ′. Specifically, one obtainsA′ = (S, I ′, F ′, Σ′, c′I , c

′
F , c′)

where the new transition functionc′ satisfies

c′(s, σ′, s′) =
⊕

π : s−(π) = s, s+(π) = s′

σ(π) ∈ σ′Σ”∗

c(π) (9)

The initial and final cost functions are modified in a similar
manner; again we refer the reader to [17] for details.

a,1

c,0

c,0

b,1
a,0

b,0

Fig. 3. A weighted automatonA that can not be determinized.

The true difficulty lies in the determinization step :not all
weighted automata can be determinized.A counter-example
is provided in Fig. 3. The point is that in a deterministic
WA, a unique path (and therefore a unique and minimal
weight) is associated to any accepted sequence ofΣ∗. In

A, the accepted sequences arec{a, b}∗, and one either
pays for thea or for the b, according to the path selected
for the first c. The weight of an accepted sequencew is
thus min(|w|a, |w|b). Intuitively, a deterministic automaton
recognizing this language must count thea and theb in order
to determine the weight of a word. And so it can not be finite.

A sufficient conditionfor determinizability is the so-called
twin property:

Definition 1: In A, two statess, s′ ∈ S are twins iff, either
∄u ∈ Σ∗ such thats, s′ ∈ δ(I, u), i.e. they can not be reached
by the same label sequence from the initial states, or∀u ∈
Σ∗ : s ∈ δ(s, u), s′ ∈ δ(s′, u), one has

⊕

π, σ(π) = u

s−(π) = s+(π) = s

c(π) =
⊕

π′, σ(π′) = u

s−(π′) = s+(π′) = s′

c(π′)

A has the twin property iff all pairs of states are twins.
In other words, when statess, s′ can be reached by the

same label sequence, if it is possible to loop arounds and
arounds′ with the same label sequenceu, then these loops
must have identical weights.

The twin property can be tested in polynomial time [16].
It is clearly preserved by product, but unfortunatelynot by
projection. See the counter-example above (Fig. 3) where
one of the(c, 0) would be a(d, 0). ThenA would have the
twin property. But after projection on{a, b} the property is
obviously lost. Therefore, in order to perform computations
on WA, we have to assume that the twin property is preserved
by all projections.Otherwise there is no guarantee that the
determinization procedure would terminate. Notice however
that, strictly speaking, this is not an obstacle to computations
since the latter can be performed with any compact represen-
tative of a given WL. In an extended version of this work,
we show how to get rid of the twin property by a partial
determinization.

The determinization procedure of a WAA elaborates on
the classical subset construction for the determinizationof
standard automata, which may have an exponential complex-
ity. For u ∈ Σ∗ ands ∈ S, let us define

C(u, s) =
⊕

π : σ(π) = u,

s−(π) ∈ I, s+(π) = s

cI(s
−(π)) ⊗ c(π), (10)

and C(u) =
⊕

s∈S C(u, s). So C(u, s) is the minimal
weight among paths that start inI, terminate in s and
produce the label sequenceu. States ofDet(A) take the
form q = (A, λ) where A ⊆ S is a subset of states, and
λ : A → R+\{0̄}. The initial state ofDet(A) is q0 = (I, λ0)
with λ0(s) = C(ǫ, s)⊙C(ǫ) = C(ǫ, s)−C(ǫ). Givenu ∈ Σ∗

accepted byA, the unique stateq = (A, λ) reached byu in
Det(A) is such that :A = δ(I, u), as usual, and one has
λ(s) = C(u, s) ⊙ C(u) = C(u, s) − C(u). So λ(s) is the
(positive) residual over the best cost to produceu when one
wants also to terminate ins. There is an obvious recursion
determining the new stateq′ = (A′, λ′) obtained by firing
σ ∈ Σ at stateq. The reader is referred to [16], [17] for



the complete details of the algorithm, and for a termination
proof when the twin property is satisfied.

B. Example

Let us reconsider the example in Fig. 2. Fig. 4 illustrates
the propagation of messages fromA1 to A3, that was
described in terms of language computations in section III-C.
Observe that the message fromA2 to A3 (3rd automaton)
now has a termination cost of5 at the initial state. This
corresponds to the pathα2c, that yields the empty string
ǫ after projection on labelγ. The rightmost automaton
corresponds toΠΣ3

[L(A)]. Its optimal path to a terminal
state is the empty string and has cost 5, the cost of an optimal
global plan.

γ,2

 A3 A1

γ,0

5

A2

γ,2
d,5

γ,0

α,2 β,1

α,1

 A1

γ,0

c,1
γ,1

γ,1

β,1α,2

A2A1

d,5

A A21

5

α,2

Π (                      )α,βΠ    (    ) α,βΠ    (    )α,βΠ    (    ) α,βΠ    (    )γ γΠ (                      )

Fig. 4. Propagation of messages fromA1 to A3.

Performing (7) and (8) in terms of WA computations
completes the derivation of the MDWA representing the
projected languagesΠΣi

[L(A)] (Fig. 5). The optimal path in
each of them appears in bold lines. These paths are unique,
are associated to the same optimal cost of 5 (Proposition 2),
and yield the triple(aαbα, ααc, ǫ) as best factored plan.

α,2

Ac d
A

a,1

γ,2

β,1
5

6
α,1

b,0

A

α,2

a,b

1

d,5

d,5

γ,0

α,2

γ,6 γ,5

γ,6
c,1

β,1

α,β,Π          (   ) α,β,γ,Π          (   ) γ,Π     (   )

Fig. 5. The 3 MDWA representing the projected languagesΠΣi
[L(A)].

V. CONCLUSION

We have described a distributed optimal planning proce-
dure, based on a message passing strategy and on weighted
automata calculus. To our knowledge, this is the first ap-
proach combining distributed planning to distributed op-
timization. The standpoint adopted here is unusual with
respect to the planning literature, in the sense that one does
not look for a single solution, but for all (optimal) solutions.
This is made possible by several ingredients: working at
the scale of small components makes computations tractable,
looking for plans as tuples of local plans introduces a partial
order semantics that implicitly reduces the trajectory space,

and finally representing the trajectory space as a product of
local trajectory spaces is generally more compact.

The limitations we have mentioned, namely the potential
exponential complexity of determinization, and the possi-
bility that determinization could not be possible at all, can
easily be overcome. First of all because there is no necessity
to perform computations with the minimal deterministic
WA representing a weighted language : Any compact rep-
resentative of this language can be used. Secondly, when
determinization is not possible, one can perform a partial
determinization (that will be described in an extended version
of this work). Another controversial aspect may be that we
aim at all solutions, which may be impractical in some
cases. Again, classical approximations (handling subsetsof
the most promising plans for example) can be designed.
We are currently working on these aspects, on a detailed
complexity analysis and on the validation of this approach
on classical benchmarks.

Acknowledgement : The authors would like to thank
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