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Abstract—We consider a distributed system modeled as a the sense that one can easily prove the existence of many
possibly large network of automata. Planning in this system splutions. The difficulty then amounts to finding the best
consists in selecting and organizing actions in order to rezh one in an efficient manner. where “best” means that some

a goal state in an optimal manner, assuming actions have a iteri hould b inimized. f le th b f
cost. To cope with the complexity of the system, we propose criterion shou € minimized, for example the number o

a distributed/modular planning approach. In each automatsn ~ a@ctions in the plan, or the total cost of the plan, assuming
or component, an agent explores local action plans that reac each action involves some cost. The present paper addresses
the local goal. The agents have to coordinate their search in this second family of problems.

order to select local plans that 1/ can be assembled into a In order to address planning problems of growing size and

valid global plan and 2/ ensure the optimality of this global . . .
plan. The proposed solution takes the form of a message complexity, several research directions have been recentl

passing algorithm, of peer-to-peer nature: no coordinatoris ~€xplored. They essentially try to make use of the locality of

needed. We show that local plan selections can be performey b actions,i.e. the fact that an action involves a small number

combining operations on weighted languages, and then proge  of variables. One can for example take advantage of the
a rlnorle practical implementation in terms of weighted autom#& o ncyrrency of actions: when two actions are simultangousl

calculus. . . . .

Index Terms—factored planning, distributed planning, op- firable and .|nvolve d|fferent sets pf variables, they neetd no
timal planning, discrete event system, distributed conswint D€ orderedin a plan. This results in search strategies #mat h
solving, distributed optimization, weighted automaton, K dle plans as partial orders of actions rather than sequences
automaton, string to weight transducer, formal language treory  which reduces the search space [2], [3]. A stronger trend is
known as “factored planning”, and aims at solving planning
problems by parts [5], [6], [7], [8]. Formally, one can imagi
) o ] ] that the action set is partitioned into subsets, each subset

A planning problem [1] consists in optimally selecting andepresenting an “agent” So each agent can only influence
organizing a set of actions in order to reach a goal stajgyr of the resource set. The idea is then that one should
from a given initial state. These "states” correspond t3eip ,iiq g plan for each agent, which corresponds to a smaller
(vi)ier of values, one per variable;, i € I, and the actions pjanning problem, and at the same time ensure that all such
read and write on subsets of these variables. Express!%qa| plans are compatiblé,e.can be assembled to form
in these “g_enera,I, terms, one easily guesses that a planningqig global plan. The difficulty is of course to obtain
problem “simply” amounts to finding a path from an initial s compatibility of local plans: this is where the sparse
state to a (set of) goal state(s) in an automaton. In reéi§y, ineraction graph of agents is exploited, and where one may
problem is more complex in several respects. First of &, thyptain a complexity gain.
underlying automaton that encodes the problem is generallythe results presented here elaborate on this idea, but adopt
huge: the state space explodes, due to its vector nature, aé“i'adically new perspective on the problem. Specifically,
actions operate on few components of the state vector, sQa assume that agents are sufficiently small to enable the
single action results in a huge number of transitions. T'her‘ﬁandling of all local plans. We then focus on this-
fore, finding a path to the goal in such a huge automaton {§y,,teq computations that 1/ will select local plans of each
not a trivial task and requires dedicated algorithms. S@on 55ent that can be extended into (or that are projection of)
there exist pIanmng problems of.dlfferer?t d|ﬁ|cultles.|"§e) a global plan, and 2/ will at the same time select the tuple
are more on the side of constraint solving: they admit fey¢ |ocal plans (one per agent) that corresponds to the best

complex solutions, or even none, and one should dedicglg, | plan. As a side-product, we also obtain global plans
his efforts to finding one solution, or to proving that thergy 5t gre partially ordered sets of actions.

is no solution at all. Other problems are more accessible, in 5, approach first encodes the planning problem as a
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I. INTRODUCTION



Il. PLANNING IN NETWORKS OF AUTOMATA we propose implements as well a distributed optimization
function that will compute (all) the optimal global plan(3p
our knowledge, this is the first approach to optimal factored

The definition of a planning problem assumes first a finitglanning.
set of state variable$V;};c; = V;, taking values in finite  We proceed by formalizing the notion of agent as a
domainsD;. The initial state is a specific tuple;);c; and weighted automaton, and the notion of plan as a word in
we assume here a set of goal states in product fefd@; the language of this automaton.
with G; C D,. The second ingredient is a finite collection ) )
of actions{ax }rex. An actiona; usually involves a small B. Weighted automata and their languages
subset of variabled’(ax) C V;. To be firable,a; must Let (K, ®, ®,0,1) denote the so-called tropical commuta-
read specific values on (some of) théay,), which form the tive semiring(R* U{+oc}, min, +, +oc, 0). Following [16],
preconditions ofa. The firing of a;, writes specific values a weighted automaton (WA), or equivalently a string to
on (some of) the variableB(ay), the so-called effect of,.  weight transducer, is a tuplé = (S, I, F, %, c;, cr, c) where
In this paper, to avoid non-central technical complication S is a finite set of states, among whi¢hF C S represent
we assume that eachy, both reads and writes on all its initial and final states respectively, is a finite alphabet
variables)(a;). Finding an optimal plan consists in selectingof actions,c; : I — K\ {0} andcr : F — K\ {0} are
and organizing actions to go from the initial stgtg);c;  weight/cost functions on initial and terminal states. Tast |
to one of the goal states off = x,c;G;, and at the parameter: Sx¥X xS — K is a weight or cost function over
same time minimize a criterion like the number of actionsll possible transitions ofd, with the convention that only
for example. This is made more formal below. Planningransitions inT" = ¢~*(K\{0}) are possible in4 (transitions
problems are generally expressed in different formalismsf infinite cost are impossible). Given a transitiore T,
STRIPS or PDDL assume binary variables, while SAS+ [5jve denote by(s™(¢),c(t),s™(¢)) its three components in
or the related notion of Domain Transition Graph [4] assum§ x 3 x S. A pathw = ¢;...t, is a sequence of transitions
multi-valued variables. Here we are closer to this secorslich thats™(t;) = s (t;41), 1 < i < n — 1. We define
family. s7(m) = s7(t1), sT(m) = st(tn), o(n) = o(t1)...0(tn)

To make this setting distributed, we partition the variablend for the cost of this path(n) = ¢(t1) ® ... ® c(tn),
set V; into subsetsi;, , with W, I,, = I, corresponding to i.e.the sum of transition costs. The pathis accepted by
the “agents”A,, (one could equivalently partition the action 4, denotedr = A, iff s=(7) € I ands™(x) € F. The
set). AgentA,, is provided with all the actions;, restricted language ofA is defined as the formal power series
to its variables/;, , ayy, , such thal’(ax)NV;, # 0. Agent
A,, represents the re‘s{ﬁction of the(glo)bal planning problem LA) = Z L(Au) u @)
to the subset of variable®;, . Since actions are now split uen®
into different agents, we introduce below a standard produwhere coefficients are given by

A. From planning to distributed planning

formalism that synchronizes agents on these shared action B N
and allows us to recover the global planning problem fron@EA’ u) = @ crfs™(m)] @ c(m) @ cp[s™(m)] (2)
its restrictions. This way of splitting a planning problem & ':EA)

u = o(m

into parts is standard and has been adopted by several
“factored planning” approaches [5], [6], [7], [8], [12]. i L(A,u) is the weight of the action sequence (or wotd)
generally used to build global plans by parts, starting bgnd it is thus obtained as the minimum weight over all
some agent, looking for a local plan in this agent, and theaccepted paths od that produce:, with the convention that
trying to progressively extend it with a compatible locampl L£(A,u) = +oo (i.e.0) when no such path exists. The word
of another agent, and so on. Here, the compatibility of local is said to belong to the language 4fiff £(A,u) # 0.
plans corresponds to an agreement to jointly perform octeje  One can associate a transition functidon S x ¥ — 29
some shared actions (this is formalized below). to A by §(s,0) = {s,3(s,0,¢,8') € T}, which extends

In this paper, we adopt a different perspective. First of alhaturally to state set§’ C S by union and to words, € X*
we look for a distributed planning approach and abandon th®y composition. We also denotés) = U,exd(s,0). A is
idea of a coordinator in charge of assembling the proposaaid to be deterministic wheff| = 1 and § is a partial
local plans into a global one. We rather assume that tHanction overS x ¥, i.e.from any states there is at most
agents themselves are in charge of computations, relyimge outgoing transition carrying a given lalel
on message exchanges, and that they only handle localA WA can be considered as an encoding of a planning
information (typically sets of local plans), not global one problem with action costs. Optimal planning then consists
Secondly, rather than a search fawme possible global plan in finding the word(s)u of minimal weight in the language
(which assumes many backtrackings in the assembling @f.4), or equivalently the optimal accepted path(s).ia
agent proposals), the method we propose is rather basetich can be solved by traditional graph search. In the se-
on a filtering idea: it exploresall local plans of an agent, quel, we examine the case whedés large, but obtained by
and removes those that can not be the restriction of a val@mbining smaller planning problems (called components),
global plan. Finally, beyond this filtering idea, the procesl one per agent.



C. From distributed planning to (networks of) automata non vanishing costs£(A;,u;) # 0. Let w; be an accepted

We represent an aged, as a WA. Its state space encode$ath inA; such thaw;(r;) = ;. By definition of A, x Ay,
all possible valueév;);c;. on its variables, and its transitions ©N€ can interleaver; and, into a pathr |~ A such that
define how actions modify these values. Transition cos@(T) = u. Conversely, letr |= A such thab () = u. Since
represent how much the agent must spend for a given actidfansitions of.A are pairs of transitions of; and A, the
The goal of agent is defined by its subgeof final states. Canonical restriction ofr to the A; part yields am; |= A;

The interaction of two agents is defined by sharing somgHCh thaw;(mi) = u;. As a consequence, the in (2) splits
actions, which formally takes the form of a product of WA.INto & product of two sums, one for each component, which
Let A;, A> be two WA, A; = (Si, I;, Fi, S, crfycpiyc;) YIRS L(A, u) = L{Ar, ur) © L(Asg, u2). o u
with T; as associated transition sets, their proddict A; x The second operation we need is the projection of a WL
Ay = (S,I,F, %, cr,cr,c) is defined byS = Sy x So, I = L defined on alphabeE on a subsg@’ C ¥ of action _
LxF=F xFS=%US,c=cilop @cr?o labels. As fo_r regular languages, this amounts to removing
po,cp = cpl op1 @ cp? o py where thep; : Si x So — S, the non desired labels, but here we combine it with a cost

denote the canonical projections. For transition costg orfPtimization operation over the discarded labels:

has Vo' €Y, Mg (L)) = B Lw 6
c((s1,82), 0, (5/158/2)) = UWED™, uypy =’
c1(s1,0,8)) ® ca(s2,0,85) If 0 € 1 NEy Proposition 2: Letu be an optimal word of, i.e. L(u) =
c1(s1,0,8)) if o € X9 andsy = s}, 3) D, cx- L(v), thenu' = w5y is an optimal word ofL" =
ca(s2,0,8%) if o €31 ands; = s Oy (L), i.e.L'(v') = @B, cxi- L'(v"). And conversely, an
0 otherwise optimal wordw’ of £ is necessarily the projection il of

ptimal wordu of L.

The first line corresponds to synchronized actions : the twd" © :
P y Proof: Direct consequence of (5). [ ]

agents must agree to perform shared action&pf 3o,

in which case action costs are added. By contrast, action ; . .
. . o y . gFannlng. Consider the set of global plaffi§.A) and its
carrying a private label remain in the product as privat ojectionsils, (£(A)) on the action sets of all components

actions, where only one agent changes state (next two .IinefﬁIen an optimal local plam; in T, (£(A)) is necessarily
We now model a distributed planning problem as a producﬁt1e projection of an optima:I globiil plam € £(A): u; =

A= A; x ... x Ay, which can be seen as a network of

) ; N ) .. And the latter induces optimal local plans = w5,
interacting agents. The objective is to find the/a pafiom "% . - 1%
I=1 x g ngn to the gloljaal objectivd” = F; x pax Fy in all the other projected languagés, (L(A)), j # i.

that has minimal cost il. Equivalently, we look for a word II\IAor?EE/jg’) 'fﬂt‘r; ?hpetlsTﬂlo::Oaﬁal Igrlwasm;rles nuer:;g:sealrirll et\r/:?efy o
u in the language ofd that has minimal weightC(A, u). i ' p y p

We will actually look for anN-tuple of words(us, .., ux ), jection of the same, i.e. they are compatible (by definition).

In summary, our objective is to compute the projections
one wordu; per componen#4;, where eachy; corresponds IIs,, (C(A)) on the action alphabets of componests and
to the canonical projection af on (the action alphabet of) .= > P b

agent A;. Such local pathsr; are said to becompatible then select the optimal words in these local languages. It

. . . turns out that these projected languages can be obtained
The next section explains how to compute an optimal tupl€. )

. . ; . without computingL(.A), as we show below.
of compatible local plans without computing optimal global

Proposition 2 has an important meaning for distributed

plans. B. Distributed planning
I1l. DISTRIBUTED OPTIMAL PLANNING BY (WEIGHTED) Theorem 1:Let £y, £, be weig/;hted languages A, %,
LANGUAGE CALCULUS respectively, and let; N3, C ¥/, then
A. Basic operations on weighted languages Os (L1 AN L2) = s (Ly) Alsr(L2) (6)

Let us first define the product of weighted languages
(WL). For a wordu € ¥* andX’ C X, we denote by
ujs+ the natural projection of, on the sub-alphabet’. Let
L1, Lo be two WL defined as formal power series Bp, X2
respectively, their product is given by

Proof: Again, the result is standard on languages when
weights are ignored [9]. To take weights into account, agsum
for simplicity that>’ = 3;NYs. The proof is then similar to
the one of Prop. 1: for any two words € L;,i = 1,2, such
thatuy s, = ugsy, one will have a joint word: in £y A Lo,

(L1 xp L2)(w) = Li(ups,)® La(yys,) (4) andvice-versalt is then sufficient to notice that in (6) the
N sum@ that removes the extra labels @f; U ¥3)\X' in the
Proposition 1: For A = A; x ... x Ay one hasf(A) =  |eft-hand side projection can be split into a product of two
L(A1) XL .. xp L(AN). independent sums, one removing label$ef\ ¥’ in the u;
Proof: The result is well known if weights are ig- terms, and another one removing labelShf\ ¥’ in the u,
nored [10], [14]. Regarding weights, let us consider théerms. This gives the right-hand side of (6). ]

case of two components, without loss of generality. Let Theorem 1 is central to derive distributed constraint solv-
u € (X1 U X2)* such that its projections; = ujy, have ing methods [12] (useful here to select compatibles local



plans), as well as distributed optimization methods [13jtrategy is triple: the procedure is fully distributed (no
(useful here to derive the local views of optimal globakoordinatoris needed), it only involves local informatiand
plans). These approaches are actually two facets of a matdas low complexity, in the sense that only two messages per
general theory developed in [9]. We combine them heredge are necessary (one in each direction). While the ptoduc
to design a distributed method for optimal planning. For generally increases the size of objects, one can expect the
matter of simplicity, we illustrate the concepts on a simplgrojection to reduce it, and thus save in complexity (this
example. still has to be quantified more precisely, however).

Consider a planning problem definedds= A; x As x A3 A full theory allows one to extend this simple example to
whereA4; is defined on the action alphak¥®t and such that systems which interaction graph is a tree (and beyond, with
31N X3 C X,. This assumption states that every interactiomore complications) [9].
of A; and A3 involves As, or equivalently thatd; and A3
have conditionally independent behaviors given a behafior
As. One can graphically represent this assumption by means

C. Example

of an interaction graph (Fig. 1). An interaction graph has Ay A
components4; as nodes; edges are obtained by recursively 5 O
removing redundant edges, starting from the complete graph, 1 B,1 a0 B,0 y

The edggA;, A;) is declared redundant iff eithél; NX; = ' d, y.C
@, or it is included in every, along an alternate path from ..@ & o

A; to A; in the (remaining) graph. ol ol

A A A

Fig. 1. The interaction graph oA = A; x.A2 x A3 whenX;NX3 C a. . . . .
Fig. 2. A network of 3 interacting weighted automata.
Consider the derivation ofly, [£(A)]. From Proposi-

tion 1, one hasC(A) = £(A1) x 1 £(As) x1, £(As). Then Consider the distributed systetd = A; x Ay x Aj

where the three components are WA depicted in Fig. 2

I, [£(A)] (assuminge; = cp = 0). A; and A, share actiong«, 3},
= g, [ L(A)) x1 L(As) x1 L(As3) ] and Ay, A; share action{~}, which corresponds to the
_ (;‘ ) x 1 Thss, [ £(As) %1 £(As) ] ineraction graph in Fig. 1. One h#&g.A;) =1-8+2-aa+

VAL e 2 2-0Bba+3-aaba+..., L(Az) =0-80y*+1-Byy*+... and
= L(A1) x g0, (A2) xr L(As) ] L(A3) = >_,>on - (dy)". Observe that the minimal words

[
L(A1) x5, nx, [ L(A2) x 1 U505, [L(A3)] ] (7)  in these language ar@, 33~* ande, respecively, and that
. they are not compatible.
The second equality uses Theorem 1 wih = %, 2 Let us follow (7) to computdls,[L(A)]. The message
N (2 U ¥3), arjd the fact thally, [£(A1)] = L(A1).  gopt by A; t0 Ay i oy [L(A)] = 16+ 3,0, (1 +
For the third equality, observe that language- L(A2) Xy 1 g)o", which will kill all solutions with two 3 in
£(As) is defined on the alphabét, U 5. Sollx, (£) = L(A,): at most one3 can be performed i, . Specifically,

s, Ms,0us, (£)] = s, As,us,) (£). This is where our d wit thi ields - . _
assumption comes into play to obtally N (3, U X3) = composed w hﬁ-(AQ-) IS Message yie (A@]Vi ;—tShe

) - aa(c+v)y*, which is alsolls, [£(A;) X1 £
21 N 3. For the fourth equality, one replaces fif$t, ns,  yision from A, of what A; and A, can perform together to

by HZ”‘E?OEZ?' The derivation ofly, [E(“g?)XLE(Af.)] — _reach their goals. Projected on this yields2 - w* +5-¢
f(A;) XL zzng[d (As)] dls aga;]n ‘3 irect ap[f) |(;]at|0rr]1 aqe message froml, to As. Observe that thé - yy* part is
of Theorem 1, and reproduces the derivation of the thir scarded by the optimization step. Finally, composing thi

equality. messa.
: . ge withC(A3) yields the desiredls, [C(A)] =5-e+
Equation (7) reveals that the desired projectibf [£(.A)] o o(7 +5n) (57),1“' This reveals ?Proposition 2) that

can be obtained by a message passing procedure, followi best plans or words ifi(A) have cost 5, and requirds
the edges of the interaction graph. The message figno - 4 nothing! '

“A% is sz”ﬁ?’ [E(A?’l)].' It is.comctj)ined WEith the kgowlec:]ge Following exactly (7) and (8) yields the other projections
of A, and the result is projected oy N Y, to produce the M, [£(A)] = 5-aoba + 7+ 5 andTls, [£(A)] = 3, [(5+

message fromd, to A;. A symmetric message propagation 5 2 1 m L
rule would yieldIIs,[£(.A)], and one can also prove that \E/)v?r dainc Z;ZJH?E)( f‘ﬁ —ﬁsFanTq?JZ), ;ng];”' Zrihtmlrgg\lle
IIs, [£(A)] cost 5, which yields the tripléaaba, a’c, ¢) as an optimal
— Tl [C(AD)] %1 £(As) x5 Tsyns, [£(A5)] (8) (factored) plan of cost 5. These three words are of course
v 2 compatible. Notice that component; has to go twice
So the two incoming messages &, are sufficient to through its local goal to helpd; and A3 reach their own
computelly, [L(A)]. The interest of this message passingoal.



V. IMPLEMENTATION INTO WEIGHTED AUTOMATA A, the accepted sequences arfn,b}*, and one either
CALCULUS pays for thea or for the b, according to the path selected
A. Recoding primitive operations for the first c. The weight of an accepted sequengeis

L £ WA llv infinite obiect h thus min(|w|,, |w|p). Intuitively, a deterministic automaton
anguages o are generally infinite objects, so e}[ecognizing this language must count thand theb in order
can not be handled as such in practice. Fortunately,

tart tai ith th lar | " d OB§ determine the weight of a word. And so it can not be finite.
starts computations with the reguiar anguag‘ff_ i).’ an A sulfficient conditionfor determinizability is the so-ocadl
the two primitive operations product; and projectionlI,

. ... twin property:
both preserve the regularity. Therefore one possibility to Definition 1: In A, two states. s’ € S are twins iff, either

e e e i 3 SUEh ik C (1), . ey can o e e
b yreg guage by P by the same label sequence from the initial statesywoe

WA. Specifically, one can choose to represent every regular, , ;
X L S : : s€d(s,u), s €4(s’,u), one has
language by its minimal deterministic weighted automaton

(MDWA), provided it exists. The minimality is interesting @ o(r) = @ o(n)
to reduce the complexity of products and projections, and ro(n) = u o o(r) = u
minimality is well defined for deterministic WA. Dealing - () — o+ (x) = s s (') = st(n) = o

with deterministic automata reduces as well the complexity
of basic operations. But it has another important advantagé has the twin property iff all pairs of states are twins.
for optimal planning applications: there is only one path In other words, when states s’ can be reached by the
representing a given word of the language, therefore all susame label sequence, if it is possible to loop arowrahd
optimal (and thus useless) paths for this word are removedounds’ with the same label sequenag then these loops
in the determinization step. must have identical weights.
Consider two minimal deterministic WA and A’. The The twin property can be tested in polynomial time [16].
product of their language3(A) x 1, £(A’) can be represented It is clearly preserved by product, but unfortunataiyt by
by Min(A x A’). One already ha£(A x A') = L(A) x;,  projection. See the counter-example above (Fig. 3) where
L(A") by Proposition 1, ant! x A’ is deterministic. There- one of the(c,0) would be a(d,0). Then.A would have the
fore only a minimization stepM{in) is necessary, and there twin property. But after projection ofia, b} the property is
exist polynomial minimization algorithms for determindst obviously lost. Therefore, in order to perform computasion
WA (not described here for a matter of space):One proceeds WA, we have to assume that the twin property is preserved
with a generic weight pushing procedure, followed by &y all projections.Otherwise there is no guarantee that the
standard minimization step [17]. determinization procedure would terminate. Notice howeve
Difficulties appear with the projection. Let be a de- that, strictly speaking, this is not an obstacle to comparnst
terministic WA on alphabet:, its projection onX’ C ¥  since the latter can be performed with any compact represen-
is obtained as for non-weighted automata, by first performative of a given WL. In an extended version of this work,
ing an epsilon-reduction, then determinizing the resufte T we show how to get rid of the twin property by a partial

epsilon-reduction collapses all transitions labeled3y=  determinization.
¥\Y'. Specifically, one obtaind’ = (S, I', F', X/, ¢}, cp, ) The determinization procedure of a WA elaborates on
where the new transition functiari satisfies the classical subset construction for the determinizatibn
L, standard automata, which may have an exponential complex-
c¢(s,0,8) = @ e(m)  (9) ity. Foru € ¥* ands € S, let us define
m:s(m)=s,sT(n)=4¢
o(m) € a'57" C(u,s) = P ci(s™(m) @ c(n), (10)
The initial and final cost functions are modified in a similar 7 oo(n) = u,
manner; again we refer the reader to [17] for details. sT(m)el,st(n)=s

and C(u) = @,.5C(u,s). So C(u,s) is the minimal
weight among paths that start ih, terminate ins and
produce the label sequenee States ofDet(A) take the
form ¢ = (A,\) where A C S is a subset of states, and
A: A — RM\{0}. The initial state ofDet(A) is go = (I, \o)
with Ao (s) = C(e, s)OC(e) = C(¢, s)—C(¢). Givenu € X*
Fig. 3. A weighted automatori that can not be determinized. accepted byA, the unique statg = (A, \) reached by in
Det(A) is such that:A = §(/,u), as usual, and one has
The true difficulty lies in the determinization stepot all  A(s) = C(u,s) ® C(u) = C(u,s) — C(u). So A(s) is the
weighted automata can be determiniz&dcounter-example (positive) residual over the best cost to producehen one
is provided in Fig. 3. The point is that in a deterministicwants also to terminate in. There is an obvious recursion
WA, a unique path (and therefore a unique and minimaletermining the new stat¢ = (A’,\’) obtained by firing
weight) is associated to any accepted sequencE*ofln o € X at stateq. The reader is referred to [16], [17] for




the complete details of the algorithm, and for a terminatioand finally representing the trajectory space as a product of
proof when the twin property is satisfied. local trajectory spaces is generally more compact.
The limitations we have mentioned, namely the potential
B. Example . . S .
exponential complexity of determinization, and the possi-
Let us reconsider the example in Fig. 2. Fig. 4 illustrategjlity that determinization could not be possible at allnca
the propagation of messages fromy to Az, that was easily be overcome. First of all because there is no negessit
described in terms of language computations in sectio@lll- to perform computations with the minimal deterministic
Observe that the message framy to A3 (3rd automaton) WA representing a weighted language: Any compact rep-
now has a termination cost &f at the initial state. This resentative of this |anguage can be used. Second|y, when
corresponds to the path’c, that yields the empty string determinization is not possible, one can perform a partial
e after projection on label. The rightmost automaton determinization (that will be described in an extendedioers
corresponds tdlx, [L£(A)]. Its optimal path to a terminal of this work). Another controversial aspect may be that we
state is the empty string and has cost 5, the cost of an optimai at all solutions, which may be impractical in some
global plan. cases. Again, classical approximations (handling subsfets

. . . . the most promising plans for example) can be designed.
Map @) A Mg &) MR B ) ) A (AT, 6y ) We are currently working on these aspects, on a detailed

&5 complexity analysis and on the validation of this approach
v.2 on classical benchmarks.
@ . .
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