
Distributed monitoring of concurrent

and asynchronous systems ∗

Eric Fabre Albert Benveniste Stefan Haar

Claude Jard †

21st September 2004

Abstract

In this paper we study the diagnosis of distributed asynchronous sys-
tems with concurrency. Diagnosis is performed by a peer-to-peer dis-
tributed architecture of supervisors. Our approach relies on Petri net
unfoldings and event structures, as means to manipulate trajectories of
systems with concurrency.

This article is an extended version of the paper with same title, which
appeared as a plenary address in the Proceedings of CONCUR’2003.

Keywords: asynchronous, concurrent, distributed, unfoldings, event
structures, fault diagnosis, fault management.

∗This work was supported by the RNRT project MAGDA2, funded by the Ministère de la
Recherche ; other partners of the project are FranceTelecom R&D, Alcatel, Ilog, and Paris-
Nord University.

†Corresponding author: A. Benveniste. AB, SH, EF are with IRISA/INRIA, Cam-
pus de Beaulieu, 35042 Rennes cedex, France, and CJ is with IRISA/ENS-Cachan,
Campus de Ker-Lann. Corresponding author for this paper: Albert.Benveniste@inria.fr,
http://www.irisa.fr/sigma2/benveniste/

1

Contents

1 Introduction 4

2 Discussing distributed diagnosis using a toy example 7
2.1 Prerequisites on safe Petri nets 7
2.2 Presenting the running example, and the problem 8
2.3 Unfoldings: a data structure to represent all runs 10
2.4 Asynchronous diagnosis with a single sensor and supervisor . . . 13
2.5 Asynchronous diagnosis with two concurrent sensors and a single

supervisor . 15
2.6 Distributed diagnosis with two concurrent sensors and supervisors 16

3 Event structures and their use in asynchronous diagnosis 18
3.1 Prime event structures . 18
3.2 Labeled event structures and trimming 20
3.3 Event structures obtained from unfoldings 23

4 Distributed diagnosis: formal problem setting 24
4.1 Global diagnosis . 24
4.2 Distributed diagnosis . 24
4.3 The need for a higher-level “orchestration” 25

5 Event structures and their use in distributed diagnosis 25
5.1 Composition of labeled event structures 26

5.1.1 Parallel composition of event structures without labels . . 27
5.1.2 Parallel composition of event structures with labels 28
5.1.3 Continuations . 29
5.1.4 Trimmed composition . 30

5.2 Extended unfoldings . 31
5.3 Detailed implementation of the primitives 32

6 Orchestration of distributed diagnosis 34
6.1 Off-line orchestration of distributed diagnosis 34
6.2 On-line orchestration of distributed diagnosis 36

7 Related work 38
7.1 Distributed diagnosis . 38
7.2 Event structures . 39

8 Conclusion 40

A Appendix: Collecting important properties of primitive opera-
tors 41
A.1 Properties of the continuation . 41
A.2 Properties of labeled event structures and their parallel composition 41
A.3 Properties of event structures related to unfoldings 42

2

B Appendix: Proofs 44
B.1 Proof of Proposition 1 . 44
B.2 Proof of Proposition 2 . 46
B.3 Proof of Proposition 3 . 47
B.4 Proof of Theorem 2 . 48

3

1 Introduction

In this paper we consider fault diagnosis of distributed and asynchronous Dis-
crete Event Systems (DES). The type of system we consider is depicted in Fig. 1.
It consists of a distributed architecture in which each supervisor is in charge of

lo
ca

l t
im

e

lo
ca

l t
im

e

lo
ca

l t
im

e

Figure 1: Three domains with cooperating supervisors.

its own domain, and the different supervisors cooperate at constructing a set of
coherent local views for their respective domains. Each domain is a networked
system, in which alarms are collected and processed locally by the supervisor
(shown as a larger gray circle). The different domains are interconnected by a
network, represented by the “IP-cloud”. The situation is summarized as follows:

Requirements 1

1. The overall system is composed of several subsystems. Each subsystem has
its own supervisor.

2. The communications between the subsystems, and within each subsystem,
are asynchronous.

3. Each supervisor has knowledge of the local model of its subsystem, together
with relevant information regarding the interface with adjacent subsystems.

4. Each supervisor collects data from sensors that are local to its subsystem.
Sensors from different sites are not synchronized.

5. The duty of each supervisor is to construct a “local projection” of the global
diagnosis, for the overall system.

6. To this end, the different supervisors act as peers, by exchanging informa-
tion, asynchronously, with the other supervisors.

4

The above requirements were motivated by our application to distributed fault
management in telecommunications networks and services [3, 4, 5, 1]. Since
faults in this context are typically transient, providing explanations in the
form of “correlation scenarios” showing the causal relations between faults and
alarms, is essential. Therefore, we concentrate on constructing such scenarios,
leaving aside the additional questions of fault isolation and diagnosability.

To serve as a background for the reader, here are some figures that are
borrowed from our realistic example reported in [1]: each subsystem is an asyn-
chronous network of automata, each automaton has a handful of states, and
there are from hundreds to thousands of such automata in the network. Each
root fault can cause hundreds of correlated alarms that travel throughout each
subsystem and are collected by the corresponding local supervisor. Supervised
domains may very well be orders of magnitude larger in the future. Thus, scala-
bility is a major concern. It is important that the type of algorithm we develop
takes this context into account. Never constructing the overall diagnosis but
rather only their local projections, ensures scalability, from subsystems to the
overall system. This motivated Requirement 1.5.

In this paper, we address the problem of distributed monitoring of DES
according to Requirements 1. Our approach has the following features:

• We follow a model-based approach, that is, our algorithms use a model
of the underlying system. In this direction, the diagnoser approach by
Lafortune et al. [27, 28] is a very elegant technique that consists in “pre-
computing” all possible diagnoses, for each possible history of events, in
the form of an enriched observer of the system for monitoring. Diagnosers
provide the fastest on-line algorithms for diagnosis, at the price of excessive
memory requirements. Given our context, we do not adopt this approach.
We follow instead a more “interpreted” approach, in which the set of all
possible “correlation scenarios” relating hidden faults and the observed
alarms are computed, on-line. Thus, we trade off speed for memory. The
closest approach to ours we know of in this respect is that of Lamperti
and Zanella [22].

• An asynchronous network of automata can be seen and handled as a single
automaton. However, the resulting automaton has an infinite number of
states unless we assume bounded buffering of the communications. Even
so, its size is exponentially larger than its components and becomes quickly
unacceptable. An important source of reduction in the size of the objects
handled consists in taking advantage of the concurrency that is typically
exhibited between the different components. To this end, in a given history
of the system, events that are not causally related are simply not ordered.
Thus, a history is a partial order of events.

• Histories can share prefixes. To reduce the data structures handled by the
algorithms, it is desirable to represent shared prefixes only once. Unfold-
ings and event structures were concepts introduced in the early eighties

5

by Winskel et al. [32] for this purpose. An impressive theoretical appa-
ratus has been developed since then [33, 34] to provide proper notions of
parallel composition, based on tools from category theory. Our algorithms
represent both the system for supervision, and the “correlation scenarios”
relating faults and alarms, by means of unfoldings and event structures.
The mathematical framework that comes with this was essential in for-
mally proving our algorithms.

Less importantly, we use safe Petri nets to model of asynchronous systems
with concurrency. Executions of safe Petri nets are naturally represented
by means of unfoldings or event structures.

• In the algorithms we develop, the different supervisors act as peers, with
no overall synchronization or scheduling. They read local alarms, receive
messages from and send messages to other peers, using fully asynchronous
communications.

• Limitations of our approach are the following:

– We do not address fault tolerance, i.e., the loss of alarms or com-
munication messages between peers. This extension is a mild one,
however.

– We assume that a model of the system is at hand. Given our context,
such a model cannot be constructed by hand. How to construct
“automatically” such a model in the context of telecommunications
network and service management, is reported in [4].

– We assume that our model is valid. Overcoming this limitation is a
more difficult and less classical problem.

– Last but not least, we do not address dynamic reconfiguration, i.e.,
the fact that the system structure itself is subject to changes. Clearly,
this is a needed extension for our motivating application. Clearly
also, pre-compiled approaches such as that of diagnosers cannot han-
dle this. In contrast, our more “interpreted” approach is better suited
at addressing dynamic reconfiguration.

The paper is organized as follows. The problem of distributed diagnosis is ex-
tensively discussed in Section 2, based on a toy example. In particular, we
introduce the architecture of our distributed algorithm and motivate the math-
ematical apparatus on event structures that we introduce in Section 3. Using
this framework, we formally set the problem of distributed diagnosis of asyn-
chronous systems in Section 4. To overcome the sophistication of distributed
diagnosis, we structure it into a higher level orchestration based on a small set
of primitive operations on event structures. These primitives are introduced
and studied in Section 5. Then, the orchestration is presented in Section 6, and
the overall algorithms for both off-line and on-line distributed diagnosis are for-
mally analysed. Finally, related work is discussed in Section 7 and conclusions
are drawn.

6

2 Discussing distributed diagnosis using a toy
example

In this study we consider a distributed system with asynchronous communi-
cations and concurrency, both between and within the different subsystems.
Several mathematical frameworks could be considered for this purpose, and in-
deed used to develop our approach. We have chosen safe Petri nets as our
mathematical framework, for the following reasons: 1/ safe Petri nets are a
natural model of systems with local states, asynchronous communications, and
internal concurrency, 2/ safe Petri nets can be composed, 3/ unfoldings and
event structures have been extensively studied to represent executions of safe
Petri nets with concurrency, and 4/ safe Petri nets are a convenient support for
the intuition. In this section, we present and discuss a toy illustrative exam-
ple used throughout the paper. Also, we introduce the minimal mathematical
framework on safe Petri nets and their unfoldings that is needed to properly
understand this example.

2.1 Prerequisites on safe Petri nets

Basic references are [10, 13, 26]. A net is a triple N = (P, T,→), where P and
T are disjoint sets of places and transitions, and → ⊆ (P × T) ∪ (T × P) is
the flow relation. Let � and ≺ denote the reflexive and irreflexive transitive
closures of the flow relation →, respectively. Places and transitions are called
nodes, generically denoted by x. For x ∈ P ∪ T , we denote by •x = {y : y → x}
the preset of node x, and by x• = {y : x→ y} its post-set. For X ⊂ P ∪ T , we
write •X =

⋃
x∈X

•x and X• =
⋃
x∈X x

•.
For N a net, a marking of N is a multi-set M of places, i.e., a map M :

P 7→ {0, 1, 2, . . .}. A Petri net is a pair P = (N ,M0), where N is a net having
finite sets of places and transitions, and M0 is an initial marking. A transition
t ∈ T is enabled at marking M if M(p) > 0 for every p ∈ •t. Such a transition
can fire, leading to a new marking M ′ = M − •t+ t•, denoted by M [t〉M ′. Petri
net P is safe if M(P) ⊆ {0, 1} for every reachable marking M . Throughout this
paper, we consider only safe Petri nets, hence marking M can be regarded as
a subset of places. The language LP of labeled Petri net P is the subset of A∗

consisting of the words λ(t1), λ(t2), λ(t3), . . ., where M0[t1〉M1[t2〉M2[t3〉M3 . . .
ranges over the set of finite firing sequences of P . Note that LP is prefix closed.

For N = (P, T,→) a net, a labeling is a map λ : T 7→ A, where A is some
finite alphabet. A net N = (P, T,→, λ) equipped with a labeling λ is called
a labeled net. For Ni = {Pi, Ti,→i, λi}, i ∈ {1, 2}, two labeled nets, their

7

synchronous product (or simply “product”, for short) is defined as follows:

N1 ×N2 =def (P, T,→, λ), where:

P = P1] P2, where] denotes the disjoint union

T =




{t =def t1 ∈ T1 | λ1(t1) ∈ A1 \A2} (i)
∪ {t =def (t1, t2) ∈ T1 × T2 | λ1(t1) = λ2(t2)} (ii)
∪ {t =def t2 ∈ T2 | λ2(t2) ∈ A2 \A1} , (iii)

p→ t iff




p ∈ P1 and p→1 t1 for case (i)
∃i ∈ {1, 2} : p ∈ Pi and p→i ti for case (ii)

p ∈ P2 and p→2 t2 for case (iii)

and t→ p is defined symmetrically. In cases (i,iii) only one net fires a transition
and this transition has a private label, while the two nets synchronize on tran-
sitions with identical labels in case (ii). Petri nets and occurrence nets inherit
the above notions of labeling and product.

For Ni = {Pi, Ti,→i}, i ∈ {1, 2}, two nets such that T1 ∩ T2 = ∅, their
parallel composition is the net

N1 ‖N2 =def (P1 ∪ P2, T1 ∪ T2,→1 ∪ →2). (1)

Petri nets and occurrence nets inherit this notion. For Petri nets, we adopt
the convention that the resulting initial marking is equal to M1,0 ∪M2,0, the
union of the two initial markings. Note that any safe Petri net is the parallel
composition of its elementary nets consisting of a single transition together with
its pre- and post-set.

2.2 Presenting the running example, and the problem

Our running example involves two interacting components. Both components
can fail, independently. In addition, the 2nd component uses the services of
the 1st one, therefore it fails delivering its service when the 1st component
fails. Alarms reported do not distinguish between a true failure and a failure to
delivery service due to the other component. Thus, nondeterminism results in
the interpretation of alarm messages.

Our example is shown in Fig. 2, in the form of a labeled Petri net with
two components interacting via parallel composition (1); these components are
numbered 1 and 2. Component 2 uses the services of component 1, and therefore
may fail to deliver its service when component 1 is faulty. The two components
interact via their shared places 3 and 7, represented by the gray zone; note that
this Petri net is safe.

Component 1 has two private states: safe, represented by place 1, and faulty,
represented by place 2. Upon entering its faulty state, component 1 emits an
alarm β. The fault of component 1 is temporary, thus self-repair is possible and
is represented by the label ρ. Component 2 has three private states, represented
by places 4, 5, 6. State 4 is safe, state 6 indicates that component 2 is faulty,
and state 5 indicates that component 2 fails to deliver its service, due to the
failure of component 1. Fault 6 is permanent and cannot be repaired.

8

component 2

component 1

2 3

αβ

Setup S , S

αβα

β

ρ

α

Setup S

6 β

7

ραα

ββρ

1

42 3

5

1

ρ

ρ ρ

sensor 2sensor 1

Figure 2: Running example in the form of a Petri net P .

The failure of component 2 caused by a fault of component 1 is modeled
by the shared place 3. The monitoring system of component 2 only detects
that component 2 fails to deliver its service, it does not distinguish between
the different reasons for this. Hence the same alarm α is attached to the two
transitions posterior to 4. Since fault 2 of component 1 is temporary, self-repair
can also occur for component 2, when in faulty state 5. This self-repair is not
synchronized with that of component 1, but bears the same label ρ. Finally,
place 7 guarantees that fault propagation, from component 1 to 2, is possible
only when the latter is in safe state.

The initial marking consists of the three states 1, 4, 7. Labels (alarms α, β
or self-repair ρ) attached to the different transitions or events, are generically
referred to as alarms in the sequel.

Three different setups can be considered for diagnosis, assuming that mes-
sages are not lost:

Setup S1: The successive alarms are recorded in sequence by a single supervi-
sor, in charge of fault monitoring. The sensor and communication infras-
tructure guarantees that causality is respected: for any two alarms such
that α causes α′, α is recorded before α′.

Setup S2: Each sensor records its local alarms in sequence, while respect-
ing causality. The different sensors perform independently and asyn-
chronously, and a single supervisor collects the records from the differ-
ent sensors. Thus any interleaving of the records from different sensors is
possible, and causalities among alarms from different sensors are lost.

Setup S3: The fault monitoring is distributed, with different supervisors co-
operating asynchronously. Each supervisor is attached to a component,
records its local alarms in sequence, and can exchange supervision mes-
sages with the other supervisors, asynchronously.

9

A simple solution?

For setup S1, there is a simple solution. Call A the recorded alarm sequence.
Try to fire this sequence in the Petri net from the initial marking. Each time
an ambiguity occurs (two transitions may be fired explaining the next event
in A), a new copy of the trial (a new Petri net) is instantiated to follow the
additional firing sequence. Each time no transition can be fired in a trial to
explain a new event, the trial is abandoned. Then, at the end of A, all the
behaviors explaining A have been obtained. Setup S2 can be handled similarly,
by exploring all inter-leavings of the two recorded alarm sequences. However,
this direct approach does not represent efficiently the set of all solutions to the
diagnosis problem.

In addition, this direct approach does not work for Setup S3. In this case,
no supervisor knows the entire net and no global interleaving of the recorded
alarm sequences is available. Maintaining a coherent set of causally related local
diagnoses becomes a difficult problem for which no straightforward solution
works. The approach we propose in this paper addresses both the Setup S3 and
the efficient representation of all solutions, for all setups. In the next section,
we discuss this special representation, called unfolding.

2.3 Unfoldings: a data structure to represent all runs

Running example, continued. Fig. 3, 1st diagram, shows a variation of

i

7

511

4

32

11

2

4

3

6

2

1

711

ii

3

3

57

iii

11

3 4

71

i

2

6

7

viviv

iiiii i

6

7

5

4

1

i

42 3

2

i

4

5 iv

iii iv v

vi

iii iv v

iii
#

Figure 3: A Petri net (left), and representing its runs in a branching process. Petri
nets are drawn by using directed arrows. Since occurrence nets are acyclic, we draw
them using non-directed branches to be interpreted as implicitly directed toward
bottom. Symbol # on the 3rd diagram indicates a source of conflict.

the net P of Fig. 2. The labels α, β, ρ have been discarded, and transitions are
i, ii, iii, iv, v, vi. Places constituting the initial marking are indicated by thick

10

circles.
To allow for a compact representation of all runs of a Petri net, the two

following key ideas are used: 1/ represent each run as a partial oder (rather
than a sequence) of events, and 2/ represent only once shared prefixes of different
runs. This we explain next.

The mechanism of constructing a run of P in the form of a partial order
is illustrated in the 1st and 2nd diagrams. Initialize any run of P with the
three conditions labeled by the initial marking (1, 7, 4). Append to the pair
(1, 7) a copy of the transition (1, 7) → i → (2, 3). Append to the new place
labeled 2 a copy of the transition (2) → iii → (1). Append, to the pair (3, 4),
a copy of the transition (3, 4) → iv → (7, 5) (this is the step shown). We have
constructed (the prefix of) a run of P . Now, all runs can be constructed in this
way. Different runs can share some prefix.

In the 3rd diagram we show (prefixes of) all runs, by superimposing their
shared parts. The gray part of this diagram is a copy of the run shown in
the 2nd diagram. The alternative run on the extreme left of this diagram (it
involves successive transitions labeled ii, iii, i) shares only its initial places with
the run in gray. On the other hand, replacing, in the gray run, the transition
labeled iv by the one labeled v yields another run which shares with the gray
one its transitions respectively labeled by i and by iii. This 3rd diagram is a
branching process of P , we denote it by B; it is a net without cycle, in which
the preset of any condition contains exactly one event. Nodes of B are labeled
by places/transitions of P in such a way that the two replicate each other,
locally around transitions. Branching processes can be extended, by inductively
continuing the process of Fig. 3. The resulting limit is called the unfolding of
P , denoted by UP .

Causality, conflict, concurrency. When dealing with unfoldings, to dis-
tinguish from the corresponding concepts in Petri nets, we shall from now on
refer to conditions/events instead of places/transitions. Conditions or events
are generically called nodes. Since unfoldings represent executions of Petri nets,
they satisfy some particular properties:

• Causality. Unfoldings possess no cycle. Thus the transitive closure of the
→ relation is a partial order, we denote it by � and call it the causality
relation. For example, the branch (1)→ (ii)→ (2) sitting on the top left
of the fourth diagram of Fig. 3 yields the causality (1) � (2). Causality is
the proper concept of “time” for executions of Petri nets.

• Conflict. Unfoldings are such that the preset of any condition contains
exactly one event. However, its post-set can contain two or more different
events, as shown by the subnet (1) → (ii, i) sitting on the top left of the
fourth diagram of Fig. 3. This indicates that the initial condition labeled
by (1) can be followed, in one execution, by an event labeled by ii, or, in a
different execution, by an event labeled by i. A condition having a post-set
with two events or more indicates the branching of different executions,

11

from the considered condition. Conditions or events belonging to different
executions are called in conflict. The conflict relation is denoted by the
symbol #. Clearly, the conflict relation is closed under causality: if x#x′

holds for two nodes, and x � y, x′ � y′, then y#y′ follows. Thus sources
of conflict are important, Fig. 3 shows an example.

• Concurrency. Executions are represented by maximal sets of nodes in-
volving no conflict. In an execution, nodes can be either causally related,
or concurrent. Thus two nodes x, y are concurrent iff none of the fol-
lowing conditions hold: x#y, x � y, y � x. Thus concurrency is an
ancillary relation, derived from knowing both the causality and conflict
relations. Concurrent nodes model “independent progress” within an ex-
ecution. Concurrency is an important concept in distributed systems.

As the above introduced concepts are subtle, we formalized them now.

Occurrence nets, homorphisms, and unfoldings: formal definition.
Two nodes x, x′ of a net N are in conflict, written x#x′, if there exist distinct
transitions t, t′ ∈ T , such that •t ∩ •t′ 6= ∅ and t � x, t′ � x′. An occurrence net
is a net O = (B,E,→) satisfying the following additional properties:

(i) ∀x ∈ B ∪ E : ¬[x#x] (no node is in conflict with itself);
(ii) ∀x ∈ B ∪ E : ¬[x ≺ x] (� is a partial order);
(iii) ∀x ∈ B ∪ E : |{y : y ≺ x}| <∞ (� is well founded);
(iv) ∀b ∈ B : |•b| ≤ 1 (each place has at most one input transition).

We will assume that the set of minimal nodes of O is contained in B, and
we denote by min(B) or min(O) this minimal set. Specific terms are used to
distinguish occurrence nets from general nets. B is the set of conditions, E is
the set of events, ≺ is the causality relation.

Nodes x and x′ are concurrent, written x⊥⊥x′, if neither x � x′, nor x �
x′, nor x#x′ hold. A co-set is a set X of pairwise concurrent conditions. A
configuration is a sub-net κ of O, which is conflict-free (no two nodes are in
conflict), causally closed (if x′ � x and x ∈ κ, then x′ ∈ κ), and contains
min(O). In the sequel, we will only consider well-formed configurations, i.e.,
configurations κ such that every event contained in κ has its entire post-set also
contained in κ—this will not be mentioned any more.

A homomorphism from a net N to a net N ′ is a map ϕ : P ∪ T 7→ P ′ ∪ T ′

such that: (i) ϕ (P) ⊆ P ′, ϕ (T) ⊆ T ′, and (ii) for every transition t of N , the
restriction of ϕ to •t is a bijection between •t and •ϕ (t), and the restriction of
ϕ to t• is a bijection between t• and ϕ (t)•. Reverting the dashed curved arrow
relating the 1st and 2nd diagrams of Fig. 3 yields an illustration of this notion.

A branching process of Petri net P is a pair B = (O, ϕ), where O is an
occurrence net, and ϕ is a homomorphism from O to P regarded as nets, such
that: (i) the restriction of ϕ to min(O) is a bijection between min(O) and
M0 (the set of initially marked places), and (ii) for all e, e′ ∈ E, •e = •e′ and
ϕ (e) = ϕ (e′) together imply e = e′. By abuse of notation, we shall sometimes

12

write min(B) instead of min(O). The set of all branching processes of Petri net
P is uniquely defined, up to an isomorphism (i.e., a renaming of the conditions
and events), and we shall not distinguish isomorphic branching processes. For
B,B′ two branching processes, B′ is a prefix of B, written B′ v B, if there exists
an injective homomorphism ψ from B′ into B, such that ψ(min(B′)) = min(B),
and the composition ϕ ◦ψ coincides with ϕ′, where ◦ denotes the composition
of maps. By theorem 23 of [14], there exists (up to an isomorphism) a unique
maximum branching process according to v,

we denote it by UP and call it the unfolding of P . (2)

Maximal configurations of UP are called runs of P . The unfolding of P pos-
sesses the following universal property: for every occurrence net O, and every
homomorphism φ : O 7→ P such that φ(min(O) ⊆ M0, there exists an injective
homomorphism ι : O 7→ UP , such that: φ = ϕ ◦ ι, where ϕ denotes the homo-
morphism associated to UP . This decomposition expresses that UP “maximally
unfolds” P . If P is itself an occurrence net and M0 = min(P) holds, then UP
identifies with P . Fig. 3 illustrates the incremental construction of the unfolding
of a Petri net.

Having this material at hand, in the next subsections we discuss diagnosis
under the three setups S1, S2, and S3.

2.4 Asynchronous diagnosis with a single sensor and su-
pervisor

Here we consider setup S1, and our discussion is supported by Fig. 4 and Fig. 5.
The 1st diagram of Fig. 4 is the alarm sequence β, α, ρ, ρ, β, α recorded at the
unique sensor. It is represented by a cycle-free, linear Petri net, whose conditions
are not labeled—conditions have no particular meaning, their only purpose is to
indicate the ordering of alarms. Denote by A′ = β → α→ ρ the shaded prefix
of A.

The 2nd diagram of Fig. 4 shows the net UA′×P , obtained by unfolding
the product A′ × P using the procedure explained in the figure 3. The net
UA′×P shows how successive transitions of P synchronize with transitions of
A′ having identical label, and therefore explain them. The curved branches
of this diagram indicate the contribution of A′ to this unfolding, whereas the
straight branches indicate the contribution of P . This unfoldings reveals that
three different explanations exist for A′. Note the source of conflict (marked
by #) that is attached to a condition labeled by ii ; this conflict propagates, by
causality, to the conflict between the two events labeled by ρ that is marked by
a larger #.

We are not really interested in showing the contribution of A′ to this un-
folding. Thus we project it away. The result is shown on the 1st diagram of
Fig. 5. The dashed line labeled # originates from the corresponding conflict
in UA′×P that is due to two different conditions explaining the same alarm ρ,
cf. above. Thus we need to remove, as possible explanations of the prefix,

13

#

#

11

ρ ρ

4

ρ

57 66

αα

1 7

2 2 3 4

α

iii

i

ii

i

α

ρ

α

β

β

ββ

ii ii

iii iii iii

ρ

4

iv

iviviv

Figure 4: Asynchronous diagnosis with a single sensor: showing an alarm sequence
A (1st diagram) and the explanation of the prefix A′ = β → α→ ρ in the form of
the unfolding UA′×P (2nd diagram).

all runs of the 3rd diagram that contain the #-linked pair of events labeled ρ.
All remaining runs are valid explanations of the subsequence β, α, ρ. However,
the reader will notice the duplicated path 4 → α → 6. As this duplication is
unnecessary, we fuse the two isomorphic paths of the form 4 → α → 6. The
latter “trimming” operation will be systematically applied from now on when
discussing our example.

Finally, the net shown in the 2nd diagram of Fig. 5 contains a prefix consist-
ing of the nodes filled in dark gray. The white nodes correspond to runs that
can explain the prefix A′ but not the entire A. The gray prefix is the union of
the two runs κ1 and κ2 of P , that explain A entirely, namely 1:

κ1 =




(1, 7)→ β → (2, 3)
∪ (3, 4)→ α→ (7, 5)
∪ (2)→ ρ→ (1)
∪ (5)→ ρ→ (4)
∪ (1, 7)→ β → (2, 3)
∪ (3, 4)→ α→ (7, 5)

κ2 =




(1, 7)→ β → (2, 3)
∪ (3, 4)→ α→ (7, 5)
∪ (2)→ ρ→ (1)
∪ (5)→ ρ→ (4)
∪ (1)→ β → (2)
∪ (4)→ α→ (6)

(3)

Warning: a flash forward to event structures. The reader is kindly asked
to confront the diagrams of Fig. 5 with the formal definition of occurrence nets
as provided in section 2.3. She or he will recognize that these diagrams are
not occurrence nets: the additional conflict shown on the 1st diagram is not

1Strictly speaking, our projection operation creates two respective clones of κ1 and κ2

by exchanging, in (3), the two lines explaining the ρ-alarms. But the two resulting pairs of
isomorphic configurations are fused by our “trimming” operation, hence we did not show these
clones.

14

ρ

6

2

5

ρ

2

4

β

4

ρ

3

1

4

1

7

3

2

α

κ

α

7

5

α

1

κ2

β

2
fused

βto be

α

β

1

6

α

6

α

β

2 3

1 7

2 4

44

571111

ρ

αρ

κ

2

ρ

7

6

β

1

Figure 5: Erasing the places related to the alarm sequence A′ in the 2nd diagram
of Fig. 4 yields the 1st diagram of this figure. A full explanation of A is given in
the 2nd diagram of this figure.

explained by the topological structure of the net, since the two conflicting events
share in their past an event, not a condition. The same remark holds for the
2nd diagram.

We kindly ask our gentle reader to wait until Section 3.1, where the ade-
quate notion of event structure is introduced to properly encompass the last
two diagrams—for the moment, we shall continue to freely use diagrams of this
kind.

Finally, referring to the 1st diagram, it seems reasonable to fuse the two
isomorphic paths of the form 4→ α→ 6. This is indeed what our operation of
event structure trimming will perform, see Section 3.2.

2.5 Asynchronous diagnosis with two concurrent sensors
and a single supervisor

Focus on setup S2, in which alarms are recorded by two independent sensors,
and then collected at a single supervisor for explanation. Fig. 6 shows the same
alarm history as in Fig. 4, except that it has been recorded by two independent
sensors, respectively attached to each component. The supervisor knows the
global model of the system, we recall it in the 1st diagram of Fig. 6.

The two “repair” actions are now distinguished since they are seen by differ-
ent sensors, this is why we use different labels: ρ1, ρ2. This distinction reduces
the ambiguity: in Fig. 6 we suppress the white filled path (2) → ρ → (1) that
occurred in Fig. 5. On the other hand, alarms are recorded as two concurrent

15

component 1

component 2

5

32 4

1

α α

ρ1

ρ2

β β

6

7

αβ

αβ

ρ1 ρ2

κ1
κ2

6

α

β

11

ρ1

1

β

2

7

2

β

β

2 3

β

2 3 2

κ2

4

α

57

ρ2

3 44

α α

65

α

57

ρ2

44

α

6

ρ1

2

β

κ3

7

11

Figure 6: Asynchronous diagnosis with two independent sensors: showing an alarm
pattern A (middle) consisting of two concurrent alarm sequences, and its explana-
tion (right).

sequences, one for each sensor, call the whole an alarm pattern. Causalities
between alarms from different components are lost. This leads to further ambi-
guity, as shown by the additional configuration κ3 that can explain the alarm
pattern in Fig. 6, compare with Fig. 5. The valid explanations for the entire
alarm pattern are the three configurations κ1, κ2 and κ3 filled in dark gray in
the 3rd diagram. To limit the complexity and size of the figures, we will omit
the “long” configuration κ3 in the sequel.

2.6 Distributed diagnosis with two concurrent sensors and
supervisors

Consider setup S3, in which alarms are recorded by two independent sensors,
and processed by two local supervisors which can communicate asynchronously.
Fig. 7 shows two branching processes, respectively local to each supervisor. For
completeness, we have shown the information available to each supervisor. It
consists of the local model of the component considered, together with the locally
recorded alarm pattern. The process constructed by supervisor 1 involves only
events labeled by alarms collected by sensor 1, and places that are either local
to component 1 (e.g., 1, 2) or shared (e.g., 3, 7); and similarly for the process
constructed by supervisor 2.

The 3rd diagram of Fig. 6 can be recovered from Fig. 7 in the following

16

component 1

component 2

supervisor 1 supervisor 2

κ2

6

α

κ1

7 5 6

α

3 44

α

7

ρ2

5

α

3 4

7

κ1

κ2

11

ρ1

2

β

2

β

71

β

2 3

ρ1

11 7

ββ

2 2 3

7

β

β

ρ1

α

α

ρ2

32

1

β β

5

4

α α

3

7

ρ2

6

7

ρ1

Figure 7: Distributed diagnosis: constructing two coherent local views of the
branching process UP,A of Fig. 6 by two supervisors cooperating asynchronously
(for simplicity, configuration κ3 of Fig. 6 has been omitted.)

way: glue events sitting at opposite extremities of each thick dashed arrow,
identify adjacent conditions, and remove the thick dashed arrows. These dashed
arrows indicate a communication between the two supervisors, let us detail the
first one. The first event labeled by alarm β belongs to component 1, hence
this explanation for β has to be found by supervisor 1. Supervisor 1 sends an
abstraction of the path (1, 7)→ β → (2, 3) by removing the local conditions 1, 2
and the label β since the latter do not concern supervisor 2. Thus supervisor
2 receives the path (7) → [] → (3) to which it can append its local event
(3, 4)→ α→ (7, 5); and so on.

Discussion: handling asynchronous communications. The cooperation
between the two supervisors needs only asynchronous communication. Each
supervisor can simply “emit and forget.” Diagnosis can progress concurrently
and asynchronously at each supervisor.

For example, supervisor 1 can construct the branch [1 → β → 2 → ρ1 →
1→ β → 2] as soon as the corresponding local alarms are collected, without ever
synchronizing with supervisor 2. Assume some (finite but possibly unbounded)
communication delay between the two supervisors. Consider the explanations
of the second occurrence of alarm β by the 1st supervisor (there are three of
them). The left most two do not require any synchronization with the supervi-
sor 2. Thus they can be produced as soon as the local alarm sequence β, ρ1, β
has been observed, independently from what supervisor 2 is doing, i.e., con-
currently with supervisor 2. In contrast, the right most explanation needs to
synchronize with supervisor 2, since it waits for the abstraction (3)→ []→ (7)
sent by supervisor 2. Thus this third explanation may suffer from some (finite

17

but possibly unbounded) communication delay. However this will not impact
the production of the first two explanations. This perfectly illustrates how a
concurrency approach allows to handle asynchronous communications. This
should be compared with the approaches proposed by Lafortune et al. [12][21]
where essentially synchronous communications, from sensors to supervisors and
between the different supervisors, is required.

3 Event structures and their use in asynchronous
diagnosis

In section 2.4 we announced the need to consider event structures. This section
is devoted to their introduction for the purpose of asynchronous diagnosis.

3.1 Prime event structures

Running example, continued. Fig. 8 shows in (a) the 1st diagram of Fig. 5.

#

#

#
##

(c)(b)(a)

1 7

2 2 3

44

6

4

β

57111

β

1

ρ

ααρρ

Figure 8: The informal labeled occurrence net (a), taken from Fig. 4, 3rd diagram
(conditions are figured by circles and events are figured by boxes). Erasing the
labels of events and adding an initial event yields the net (b). The resulting event
structure is shown in diagram (c).

Focus for the moment on the topological structure of this diagram by ignoring
labels, and add an initial event: this yields the net (b). In net (b), sources of
conflicts are either mentioned explicitly, or inferred from the graph topology by
searching for downward branching conditions. This dual way of indicating con-
flict is not elegant. Thus, we prefer to omit conditions and represent explicitly
all sources of conflicts between events—conflict will be inherited by causality.
Performing this yields the event structure depicted in (c), where the down-going
branches indicate causality, and sources of conflict are explicitly indicated. In

18

this structure, the information regarding labels has been lost. We shall show
later how to add it properly to diagram (c). �
We are now ready to introduce the mathematics of event structures.

Prime event structures: formal definition. Event structures have been
introduced in [24], and further extensively studied by G. Winskel [32, 34] and
several authors since then. Several classes of event structures have been pro-
posed, by relaxing the conditions required on the conflict relation and/or ex-
changing the causality relation for a more general “enabling” relation. Equip-
ping prime event structures with parallel composition has been recognized quite
complex. An inductive definition is presented in [11]. Indirect, non inductive,
definitions have been proposed by G. Winskel in [34]. F. Vaandrager [31] has
proposed a simple direct, non inductive, definition, in categorical style. This def-
inition suits our needs. Here we summarize the results from [31], with minimal
changes in the notations.

A prime event structure 2 is a triple E = (E,�,#), where E is a set of events,
� is a partial order on E such that for all e ∈ E, the set {e′ ∈ E | e′ � e} is
finite, and # is a symmetric and irreflexive relation on E such that for all
e1, e2, e3 ∈ E, e1#e2 and e2 � e3 imply e1#e3. 3 Each subset of events F ⊆ E
induces a substructure E|F = (F,�F ,#F), by restricting to F the relations �
and #.

As usual, we write e ≺ e′ for e � e′ and e 6= e′. We write dee for the set {e′ ∈
E|e′ � e} and we call it the configuration generated by e. For E = (E,�,#)
an event structure, a subset X of E is called causally closed if e ∈ X implies
dee ⊆ X . Subset X is called conflict-free if no pair of elements of X are in
conflict, i.e., X ×X ∩# = ∅. A configuration is a causally closed conflict-free
subset of E. Each event structure E = (E,�,#) induces a concurrency relation
defined by e⊥⊥e′ iff neither e � e′ nor e′ � e nor e#e′ holds. A subset X of
concurrent events is called a co-set.

Morphisms. We will use partial functions. We indicate that ψ is a partial
function from X to Y by writing ψ : X 7→? Y . The domain of ψ is denoted by
dom(ψ). Since ψ(x) may not be defined for x ∈ X , we indicate this by writing
ψ(x) = ?, thus symbol “?” is to be interpreted as “undefined”.

For ψ : X 7→? Y and X ′ ⊆ X , set ψ(X ′) =def {ψ(x) | x ∈ X ′}. (4)

A morphism from E1 to E2 is a partial function ψ : E1 7→? E2 such that:

∀(e1, e2) ∈ E1 × E2 : e2 ≺2 ψ(e1)⇒ ∃e′1 ∈ E1, e
′
1 ≺1 e1 and ψ(e′1) = e2 (5)

∀e1, e′1 ∈ E1 : ψ(e1)#2ψ(e′1) or ψ(e1) = ψ(e′1)⇒ e1#1e
′
1 or e1 = e′1 (6)

2From now on, when referring to prime event structures, we shall omit the term “prime”,
unless it is required for the point being discussed.

3Obviously, restricting an occurrence net to its set of events yields a prime event structure.
This is the usual way of associating nets and event structures, and explains the name.

19

Conditions (5,6) state that morphisms can erase but cannot create causalities
and conflicts. Condition (5) can be equivalently reformulated as follows:

∀e1 ∈ E1 : ψ(e1) defined ⇒ dψ(e1)e ⊆ ψ (de1e) (7)

and the following result is proved in [31]:

X is a configuration of E1 ⇒ ψ(X) is a configuration of E2, (8)

it shows that morphisms are indeed a natural notion. In [31] it is proved that
prime event structures with morphisms of event structures form a category E
with the usual composition of partial functions as composition and the identity
functions on events as identity morphisms.

3.2 Labeled event structures and trimming

As discussed at the end of Section 2, we are mainly interested in event structures
originating from net unfoldings. The homomorphism ϕ mapping unfolding UP
to P yields a natural labeling of the events of UP in terms of transitions of
P . Thus, net unfoldings induce naturally event structures in which events are
labeled by transitions of P .

However, as seen from the illustrative example of Section 2, interactions
between components and supervisors occur via shared places, and diagnosis is
naturally expressed in terms of sequences of markings. Therefore transitions
of the underlying Petri nets play little role in distributed diagnosis. Hence, we
shall rather label events of UP by the post-set of their associated transition.
Formally,

we label event e ∈ UP by ϕ (e)• ∈ Pow (P), (9)

where Pow denotes the power set.

Running example, continued. Diagram (c) of Fig. 9 shows how labels of
the form (9) can be inserted in our case. The reader is invited to reconsider
Fig. 4 – Fig. 7 by making systematically the changes (a)7→(b)7→(c). �
The above discussion motivates the special kind of labeling we formally intro-
duce now.

Labeling. For E = (E,�,#) an event structure, a labeling is a map

λ : E 7→ Pow (P) \ {∅} (10)

where P is some finite alphabet; we extend (10) by convention by putting λ(?) =
∅. Labeled event structures are denoted by E = (E,�,#, λ, P), and P is called
the label set, by abuse of notation—the reader is kindly asked to remember
that labels are subsets, not elements of label set P . We shall not distinguish
labeled event structures that are identical up to a bijection that preserves labels,
causalities, and conflicts; such event structures are considered equal, denoted
by the equality symbol =. The notions of substructure and morphism need to
be revisited to accommodate for labeling.

20

(a) (b) (c)

#
#

#

#ρ ρ α α

ρ

11 11 7 5 6

44

42

71

32

β

11 11 7 5 6

44

42

71

32

1,7,4

6

2β 2,3

4

7,511

Figure 9: Adding labels to event structures. Following (9), the event structure of
Fig. 5 has been enriched with the labels of the postset of each event.

Substructure. Let E = (E,�,#, λ, P) be a labeled event structure, and let
F ⊆ E and Q ⊆ P . Pair (F,Q) induces the substructure

E|F,Q (11)

having EF,Q =def {e ∈ F | λ(e)∩Q 6= ∅} as set of events, and λF,Q(e) = λ(e)∩Q
as labeling map. The causality and conflict relations are inherited by restriction.

Morphisms. For Ei = (Ei,�i,#i, λi, Pi), i ∈ {1, 2} two labeled event struc-
tures such that P2 ⊆ P1, a morphism is a partial function ψ : E1 7→? E2

satisfying conditions (5,6), plus the following monotonicity condition regarding
labels:

∀e1 ∈ E1 ∩ dom(ψ) : λ2(ψ(e1)) = λ1(e1) ∩ P2. (12)

By (12) and since events different from ? must have a non empty label, we know
that dom(ψ) ⊆ {e1 ∈ E1 | λ1(e1) ∩ P2 6= ∅}. A morphism satisfying

dom(ψ) = {e1 ∈ E1 | λ1(e1) ∩ P2 6= ∅} (13)

is called a strong morphism. Strong morphisms compose. Thus we can consider
two categories of labeled event structures, namely:

• The category E
s

of labeled event structures equipped with strong mor-
phisms.

• The category E
w

of labeled event structures equipped with weak mor-
phisms, i.e., morphisms satisfying (12) but not necessarily (13).

Most results we give below apply to both categories. To avoid mentioning
systematically “strong” or “weak”, we will simply refer to the category of labeled

21

event structures E equipped with morphisms. This will refer either to E
s

or to
E
w
, in a consistent manner. A few results will hold for only one of these two

categories; we will make this explicit in each case.

Trimming and reduction. When discussing our example, we have indicated
that unnecessary replicas of parts of the diagnosis can occur. Here we discuss
how to remove these. Fig. 10 shows in (a) a replica of 1st diagram of Fig. 5 with

(a)

#
#

#

(c)

#

#

#

#

(b)

#

7 511

7

α

1

4

3

4

2

ρ

1ρ

11

α

2

6

7,5

4

α 1

6

4

2,3

to be
fused

2

6

1,7,4

fused
to be

1 1 7,5

4

2,3

6

β 2

6

β

1,7,4

ρ

Figure 10: Illustrating trimming.

its suggestion for “trimming”. Diagram (b) shows the labeled event structure
corresponding to (a). Finally, diagram (c) shows the result of applying, to (b),
the trimming operator defined next. �
Let E = (E,�,#, λ, P) be a labeled event structure. Denote by→ the successor
relation, i.e., the transitive reduction of the relation �. For e ∈ E, we denote
by •e the preset of e in (E,→). Then, E is called trimmed iff it satisfies the
following condition:

∀e, e′ ∈ E :
•e = •e′

and λ (e) = λ (e′)

}
⇒ e = e′. (14)

Informally, E is trimmed iff any two configurations that have produced identical
label histories are identical. Any labeled event structure E = (E,�,#, λ, P) can
be made trimmed as explained next. Consider the following equivalence relation
on configurations:

κ ∼ κ′ iff
{
κ and κ′ are isomorphic,
when seen as labeled partial orders. (15)

The equivalence class of κ modulo ∼ is denoted by κ∼ ; it represents the label
history of the configuration κ. Define the function trim by:

trim : E 3 e 7→ dee∼

22

Informally, trim(e) is the label history causing event e to occur. Define:

trim(E) = (Ede ,�de ,#de , λde , P), (16)

where

Ede = trim(E)

�de = ⊆
f1#def2 iff e1#e2 holds ∀(e1, e2) such that

fi = trim(ei) holds, for i ∈ {1, 2}
λde(f) = λ(e) iff f = trim(e).

(17)

Informally, trim(E) is obtained by inductively superimposing events that satisfy
the conditions listed on the left hand side of the bracket in (14); trim(E) is a
trimmed event structure, and trim is a (total) morphism from E onto trim(E).
The map trim satisfies the following self-reproducing property on labels:

dfe ∼ dee if f = trim(e), (18)

meaning that configurations dfe and dee possess identical label histories.
For E = (E,�,#, λ, P) a labeled event structure and Q ⊆ P , we write by

abuse of notation (cf. (11))

E|Q =def E|EQ,Q (19)

where EQ = {e ∈ E | λ(e) ∩Q 6= ∅}. Define the reduction of E over Q by:

RQ(E) =def trim
(E|Q)

. (20)

3.3 Event structures obtained from unfoldings

Let P = (P, T,→,M0) be a Petri net, UP its unfolding, and ϕ the associated
net homomorphism. Denote by

EP = (E,�,#, λ, P) (21)

the trimmed event structure obtained by

1. labeling the events e of UP by λ(e) =def ϕ (e•);

2. erasing the conditions in UP and restricting relations� and # accordingly;

3. adding an extra event e0 such that e0 � e for each event e of UP and
labeling e0 by λ(e0) = M0;

4. trimming the so obtained labeled event structure.

23

4 Distributed diagnosis: formal problem setting

We are now ready to formally state the problem of distributed diagnosis. We
are given the following labeled Petri nets:

P = (P, T,→,M0, λ) : the underlying “true” system. P is subject to faults,
thus places from P are labeled by faults, taken from some finite alphabet
(the non-faulty status is just one particular “fault”). The labeling map
λ associates, to each transition of P , a label belonging to some finite
alphabet A of alarm labels. For its supervision, P produces so-called
alarm patterns, i.e., sets of causally related alarms.

Q = (P
Q
, T

Q
,→,MQ

0 , λ
Q
) : Q represents the behavior of P , as observed via the

sensor system. Thus we require that: (i) The labeling maps of Q and P
take their values in the same alphabet A of alarm labels, and (ii) LQ ⊇ LP ,
i.e., the language of Q contains the language of P . In general, however,
Q 6= P . For example, if a single sensor is assumed, which collects alarms
in sequence by preserving causalities, then Q is the net which produces all
linear extensions of runs of P . In contrast, if several independent sensors
are used, then the causalities between events collected by different sensors
are lost. Configurations of Q are called alarm patterns.

4.1 Global diagnosis

Consider the map: A 7→ UA×P , where A ranges over the set of all finite alarm
patterns. This map filters out, during the construction of the unfolding UP ,
those configurations which are not compatible with the observed alarm pattern
A. We can replace the unfolding UA×P by the corresponding event structure
EA×P . Then, we can project away, from EA×P , the events labeled by places
from A (see [7]–Theorem 1 for details). Thus we can state:

Definition 1 Global diagnosis is represented by the following map:

A 7−→ RP (EA×P), (22)

where A ranges over the set of all finite configurations of Q.

4.2 Distributed diagnosis

Assume that Petri net P decomposes as P = ‖i∈IPi. The different subsystems
Pi interact via some shared places, and their sets of transitions are pairwise dis-
joint. In particular, the alphabet A of alarm labels decomposes as A =

⋃
i∈I Ai,

where the Ai are pairwise disjoint. Next, we assume that each subsystem Pi
possesses its own local sets of sensors, and the local sensor subsystems are in-
dependent, i.e., do not interact. Thus Q also decomposes as Q = ‖i∈IQi, and
the Qi possess pairwise disjoint sets of places. Consequently, in (22), A decom-
poses as A = ‖i∈IAi, where the Ai, the locally recorded alarm patterns, possess
pairwise disjoint sets of places too.

24

As stated in the introduction, distributed diagnosis consists in computing
the local view, by each supervisor, of global diagnosis. This is formalized next.

Definition 2 Distributed diagnosis is represented by the following map:

A 7−→ [RPi(EA×P)]i∈I , (23)

where A ranges over the set of all finite prefixes of runs of Q. Our objective is
therefore to compute [RPi(EA×P)]i∈I without performing global diagnosis, i.e.,
without computing EA×P .

As advocated in the introduction, in order to scale up to large distributed sys-
tems, it is requested that computing the local view, by each supervisor, of the
global diagnosis, is performed without computing the global diagnosis. In other
words, we want to compute RPi(EA×P) without computing EA×P . The reader
should notice that, in general, RPi(EA×P) 6= EAi×Pi , expressing the fact that
the different supervisors must cooperate at establishing a coherent distributed
diagnosis.

4.3 The need for a higher-level “orchestration”

The distributed diagnosis algorithm illustrated in Fig. 7 is easy to understand,
for our running example. But this running example is very simple, for the fol-
lowing reasons: firstly, it involves only two components, and, second, interaction
occurs through the two alternating places 3 and 7 and the interaction pattern
7→ β → 3→ α→ 7→ β → 3 . . . involves no concurrency and no conflict.

Now, distributed diagnosis with several supervisors and more complex inter-
action than in our toy example, results in a really messy algorithm. To scale up,
we need to better structure our algorithm. In Section 6 we provide a high-level
orchestration of distributed diagnosis. In this orchestration, details are hidden
in the form of a set of primitive operations on certain event structures. The or-
chestration will be formally analyzed and proved correct. Before this, in section
5 we formally introduce our set of primitive operations.

5 Event structures and their use in distributed
diagnosis

Running example, continued. Fig. 11 shows three prefixes of the mid dia-
gram of Fig. 7. Diagram (a) illustrates local diagnosis performed by supervisor
1 and 2, independently, based on the observation of A1 = {β; ρ1} and A2 = {α};
it consists in computing E1,1 =def EA1×P1 , at supervisor 1, and E2,1 =def EA2×P2

at supervisor 2. In (b) a message M1,2 = RP1∩P2(E1,1) is sent by supervisor 1
to supervisor 2; it consists of the graph (7)→ []→ (3) sitting at the extremity of
the thick right going arrow; this graph is “composed” with E2,1, this yields the
result E2,2 shown in (b). Using E2,2, supervisor 2 can now reuse its alarm pattern
A2 and further extend E2,2; the result is shown in (c), call it E2,3. Finally, (d)

25

β

1

2,3

2

β

2,3

1

1

1

β

11

2

1 7

3

ρ1

1,1

2

1,2

1

β

6

1

7

α

ρ1

61,1 2,1

ρ1 ρ1

3

71

2

11

β

6

(a)

2

β

11 1

7

2

α

1 7

3 3

5

ρ1

4

ρ1ρ1

2

7

1

3

1

ρ1

β

7

432

7

α

α

4

6

1

α

7

7

3

5

4

α

7

(c)

1

(d)

β

(b)

1,1 2,2

Figure 11: The detailed mechanism of off-line diagnosis—compare with Fig. 7.

is the mirror of (b): a messageM2,1 = RP1∩P2(E2,3) is sent by supervisor 2 to
supervisor 1; it consists of the longer graph (7)→ []→ (3)→ []→ (7) sitting at
the extremity of the double thick left going arrow; this message is “composed”
with E1,1 by supervisor 1, by glueing the common prefix (7) → [] → (3); this
yields E1,2 shown in (d). �
Throughout this discussion, we have used two operations: 1/ the “composition”
of a received messageM with the diagnosis currently available at the receiver,
and 2/ the “extension” of a prefix of local diagnosis by re-unfolding the alarms,
e.g., from E2,1 to E2,2. The first operation will be formalized by considering the
trimmed composition of labeled event structures, studied in Section 5.1. The
second operation, we call it the “extended unfolding”, will be studied in Section
5.2. As we shall see, they are sufficient to express and formally study distributed
diagnosis in all cases.

5.1 Composition of labeled event structures

Focus again on Fig. 11, diagrams (c) and (d). The update, from (c) to (d),
shows the kind of composition operator we need to formally specify our algo-
rithm. This operator performs two things. First, it glues the two isomorphic
graphs (7)→ [] → (3) occurring in thick in the left and right parts of diagram
(c): this is a parallel composition in which isomorphic parts are glued together
by synchronizing events with same label and isomorphic causes. This parallel
composition will be formally introduced below under the name of “strong par-
allel composition”, denoted by ×s. Next, concentrate on diagram (d). Besides

26

glueing together the two isomorphic graphs (7) → [] → (3), it extends it by
appending the thick path (3) → [] → (7) to the condition (3). This is a differ-
ent kind of parallel composition that performs a “continuation” of the strong
parallel composition by configurations that exist only in one component. Such
continuations will be formally defined below. Finally, combining these elemen-
tary operations will yield a primitive, called the “trimmed composition” and
denoted by the symbol ‖ .

5.1.1 Parallel composition of event structures without labels

This is a classical notion, first introduced by Winskel [32]. We follow closely [31]
with minimal changes in the notations. Let Ei = (Ei,�i,#i), i ∈ {1, 2}, be two
labeled event structures. Set

E1 ×? E2 =def {(e1, ?) | e1 ∈ E1}
∪ {(?, e2) | e2 ∈ E2}
∪ {(e1, e2) | e1 ∈ E1 and e2 ∈ E2}

where ? denotes a special event undefined. Denote by π1 and π2 the projections
given by πi(e1, e2) = ei for i ∈ {1, 2}, respectively. Call a subset κ of E1 ×? E2

a pre-configuration iff:

(i) For i ∈ {1, 2}, πi(κ) is a configuration of Ei;
(ii) �κ, the transitive closure of relation ≤ ∩(κ× κ), is a partial order, where
≤ ⊆ (E1 ×? E2) is defined by:

f ≤ f ′ ⇔ π1(f) �1 π1(f ′) or π2(f) �2 π2(f ′). (24)

If κ moreover has a unique maximal element w.r.t. �κ, then κ is called a
complete prime. Then, the parallel composition of E1 and E2, denoted by E1×E2,
is the structure (E,�,#) with:

E = {κ | κ is a complete prime},
κ � κ′ ⇔ κ ⊆ κ′,
κ#κ′ ⇔ κ ∪ κ′ is not a pre-configuration.

(25)

It is proved in [31] that the so defined E1 × E2 is also a prime event structure.
To conform with the usual notation for events, we shall denote by e the events
of E1 × E2 (instead of κ as in (25)). With this updated notation, two canonical
projections are associated with the parallel composition: the first projection

Π1 : E 7→? E1 is defined by ∀e ∈ E : Π1(e) =def π1(max(e)), (26)

and the second projection Π2 is defined similarly. Note that this definition is
consistent since κ is a complete prime.

27

Comments. The intuition behind (25) is that the product event structure is
defined indirectly through its configurations. If E1 and E2 execute in parallel,
then events of E1 and E2 can either occur in isolation (this corresponds to pre-
events of the form (e1, ?) or (?, e2)), or an event of E1 can synchronize with
an event of E2 (in which case we have a pre-event of the form (e1, e2)). Now,
at any stage of the execution of E1 × E2, a set of pre-events has occurred; the
notion of pre-configuration gives a characterization of these sets. Condition (i)
says that if we project a pre-configuration onto one of the two components, the
result must be a configuration of this component. Condition (ii) says that the
events of the component may occur only once and that both components must
agree on the causal relations between events in the parallel composition. Once
the finite configurations of the parallel composition have been defined, then
a standard procedure can be used to turn this into a prime event structure,
namely by identifying events of the composition with configurations having a
unique maximal element. �
The following results are borrowed from [31]. They express that the parallel
composition of event structures is the proper notion of composition:

1. The two projections Πi, i ∈ {1, 2} associated with the parallel composition
of event structures are morphisms.

2. The parallel composition (E1, E2) 7→ E1×E2 with projections Π1 and Π2 is
a product in the category E of event structures. This product is associative
and commutative.

Statement 2 means that the parallel composition satisfies the following universal
property:

∀E , ψ1, ψ2 :
E

ψ1↙ ↘ψ2

E1 E2
⇒ ∃ψ :

E
ψ1↙ ↓ψ ↘ψ2

E1 ←Π1
E1 × E2 Π2

→ E2
(27)

In (27), symbols ψi,Πi, for i ∈ {1, 2}, and ψ, denote morphisms, Π1 and Π2

are the two projections associated with the composition E1×E2, and the second
diagram commutes.

5.1.2 Parallel composition of event structures with labels

As explained in Section 3.2, formulas (12,13), two categories E
s

and E
w

can
be considered, depending on the classes of morphisms. Each category has its
associated product that we defined next.

Define the strong and the weak parallel composition of two labeled event
structures Ei = (Ei,�i,#i, λi, Pi), i ∈ {1, 2}, denoted by E1×s E2 and E1 ×w E2,
respectively. Both are variations of the case without labels. Two events ei ∈

28

Ei, i ∈ {1, 2} are called strongly, resp. weakly compatible, respectively written

e1 ./s e2
resp. e1 ./w e2

}
iff:




{
resp. λ1(e1) ⊆ P1\P2 and e2 = ?
resp. λ1(e1) ⊆ P1\P2 and e2 = ?

or {
resp. λ2(e2) ⊆ P2\P1 and e1 = ?
resp. λ2(e2) ⊆ P2\P1 and e1 = ?

or
λ1(e1) ∩ P1 ∩ P2 = λ2(e2) ∩ P1 ∩ P2 6= ∅.

(28)

The first two cases correspond to an event that involves a single component,
whereas the third case corresponds to two non silent events synchronizing (their
labels agree on the shared places). Note the difference in the rules for ./s and
./w: for ./s, a component can progress alone by means of a private event only,
whereas, for ./w, the event does not need to be private. Define

E1 ×s E2 =def {(e1, e2) ∈ E1 ×? E2 | e1 ./s e2} ,
E1 ×w E2 =def {(e1, e2) ∈ E1 ×? E2 | e1 ./w e2} , (29)

with the convention λ(?) = ∅. Then the two parallel compositions E1 ×s E2 and
E1×wE2 are defined via (25), but with E1×sE2 and E1×wE2 replacing E1×?E2,
respectively, and, for both cases:

λ(e) = λ1(Π1(e)) ∪ λ2(Π2(e)), (30)

where the projections Πi are defined in (26). The parallel composition is illus-
trated on Fig. 12. By construction,

E1 ×s E2 v E1 ×w E2, and Πi (E1 ×w E2) = Ei, for i ∈ {1, 2}. (31)

Universal property (27) adapts for ×s with strong morphisms, and for ×w with
weak morphisms.

5.1.3 Continuations

Consider an event structure E = (E,�,#, λ, P), a prefix F v E having F as its
set of events, and Q ⊆ P . The continuation of F by E through Q, written

F •Q E , (32)

is the prefix of E consisting of the following set of events: 1/ the events of F , 2/
the events e of E such that the restriction dee|F,Q is a maximal configuration of
F|Q (see (11)). By definition F v (F •Q E) v E .

The continuation is illustrated in Fig. 12. For this discussion, call F the
bottom left diagram, E the bottom right one, and take Q = {3, 7}. Then,
F|Q is depicted in thick in the two bottom diagrams (except that we did not
adjust the labels). The configuration of E in light gray is a continuation of the
configuration {7} of F|Q ; since configuration {7} is not maximal in F|Q , the
configuration of E in light gray is discarded in constructing F •Q E , shown on
the top right diagram.

29

5.1.4 Trimmed composition

Our final primitive operation for use in orchestrations will be the trimmed com-
position of an indexed family Ei, i ∈ I, of labeled event structures, defined by:

‖i∈IEi =def trim
([∏s

i∈I Ei
]

•Q
[∏w

i∈I Ei
])
, (33)

where
∏s and

∏w refer to the ×s and ×w compositions, respectively, and

Q = interact(Pi)i∈I =def

⋃
(i,j)∈I×I : i6=j (Pi ∩ Pj). (34)

Note that ‖ , regarded as a binary operator, is not associative. This is why we
define the trimmed composition as an n-ary operator directly.

2

2 2

1

1

2

#

2,3

2 2

1

component 2component 1

#

4

#

7,5

s

4

2

1

2

6

2

1,7,4

1

#

1

1,7,4

7,5

6

4

2,3

6

3

7,5

4

2,3

1,7,4

7,5

3

6

7,4

#

11

22

2,32

1,7

#

#

#

w

Figure 12: Parallel composition of labeled event structures. The first two dia-
grams show two components that are prefixes of the ones of Fig. 7. The two
diagrams sitting on the bottom show the ×s- and ×w- compositions. The resulting
‖ -composition is shown on the top right diagram.

Running example, continued. Construction E1 ‖ E2 is illustrated in Fig. 12.
Recall that 3 and 7 are the shared places. The third diagram of this figure shows

30

the ×s-composition; the branch [3]→ [7, 5] that is offered by component 2 finds
no counterpart in component 1, hence it does not appear in the ×s-composition.
For the ‖ trimmed composition, it is allowed to continue maximal configurations
of the ×s-composition with configurations that exist in the more permissive ×w-
product. Now, the branch [3] → [7, 5] → [4] that is offered by component 2
contributes to the ×w-product. It continues the configuration [7] → [3] that
is maximal in the restriction (E1 ×s E2)|P1∩P2

. Therefore it gives raise, in the
‖ -composition, to the extension [2, 3]→ [7, 5]→ [4] of the ×s-product.

Note that, projecting away, from this ‖ -composition, the labels 5, 6, 4 that
are private to the 2nd component yields exactly the left diagram of Fig. 11-(d).

Star closure. Consider again Fig. 11. In (d), diagram E1,1 is receiving κ =def

(7)→ []→ (3) as an “echo” of its own message sent in (b). This means that, in
(d), a composition κ ‖ κ occurs. And this scheme is repeated throughtout the
different steps of the informal algorithms shown in Fig. 7. Therefore, we need
to pay attention to how E ‖ E relates to E , for E an arbitrary event structure.

Despite the notation that seems to refer to the conjunction in logic, the
operator ‖ is not idempotent: we do have E v E ‖ E , but equality does not hold
in general. The reason is the following: assume that E contains two different
configurations κ1 and κ2 such that there exists a bijective map ι, from the set
of events of κ1 to the set of events of κ2, which is label preserving and such that
[(ι, ι)(�|κ1)] ∪ �|κ2 generates a partial order—said differently, the two orders
on each configuration do not contradict each other. Then, κ =def {(e1, ι(e1)) |
e1 ∈ κ1} is a preconfiguration of E ×s E that has no counterpart in E . Thus,
as soon as such pathological pairs of non-contradictory configurations exist in
E , we have E 6= E ×s E and thus also E 6= E ‖ E . The above discussion also
reveals that the gap between E and E ‖ E is indeed small, since it consist only in
“reshuffling” pairs of non-contradictory configurations to form new ones. This
leads to considering the star closure of event structures we introduce next.

Write En =def E ‖ . . . ‖ E (n times). The sequence (En)n≥1 is increasing for
the prefix order, and converges to a unique event structure,

we denote it by E∗ and call it the star closure of E . (35)

The star closure E∗ is the minimal (for prefix order) solution of the fixpoint
equation X = E ‖X . It satisfies (E∗)n = E∗ for each n ≥ 1, and, for each event
structure F , we have F v E ‖F iff F v E∗. �
Important properties of event structures and their composition are collected in
Appendices A.1 and A.2.

5.2 Extended unfoldings

In section Section 3.3 we have introduced the event structure EP associated to
the unfolding of a Petri net P . In this section we generalize EP to situations
in which the considered Petri net P is unfolded, starting from a given initial
labeled event structure I. This construction was used in step (c) of Fig. 11.

31

Let P = (P, T,→,M0) be a Petri net. ForM ⊆ P , call PM the Petri net P in
which M has been substituted for the initial marking M0 of P (note that we do
not require that M shall be reachable from M0). Write for short EM =def EPM .
Each event e ∈ EM represents some set Te of transitions of P (Te may not be a
singleton, due to the trimming performed when mapping UP to EP). For each
t ∈ Te, t• = λ(e).

Let I be a labeled event structure having Q ⊇ P as label set. Denote by
λ the labeling map of I. For I a co-set of I such that λ(i) ∩ P 6= ∅ holds for
each event i ∈ I, set M =def

⋃
i∈I(λ(i) ∩ P). A total map ρ : M 7→ I such that

p ∈ λ(ρ(p)) is called a representation of M by I. Denote by M ↪→λ I the set of
all such representations. We shall “append” EM to I via ρ as follows.

Denote by e0,M the minimal event of EM . Denote by EI,ρ,M the event struc-
ture obtained by taking the disjoint union of I and EM \ {e0,M}, and adding
the following causalities: For each event i of I and each event e of EM such that
e ∈ e•0,M , set

e ∈ i• in EI,ρ,M iff ∃t ∈ Te, ∃p ∈ •t, such that i = ρ(p).

Let I be the set of all co-sets I of I such that λ(i) ∩P 6= ∅ holds for each event
i ∈ I. The unfolding of P from I, written EIP , is defined by:

EIP =def trim


I ∪


 ⋃
I∈I , ρ∈M↪→λI

EI,ρ,M




 , where M =def

⋃
i∈I

λ(i) (36)

Note that the trimming is essential here, since the expression in parentheses in
formula (36) exhibits lots of redundancies. The extended unfolding satisfies the
following properties, where S denotes an arbitrary label set:

I v I ′ and ∃P ′′ : P ′ = P ‖P ′′ ⇒ I v EIP v EI
′

P′ (37)

RS(EIP) = RS(ERS(I)
P) (38)

Running example, continued. The right hand side of diagram (c) of Fig. 11
shows E2,3 = EIP for I ← E2,2 and P ← A2,1 × P2, where symbol ← denotes
substitution. �
Important properties of extended unfoldings are found in Appendix A.3.

5.3 Detailed implementation of the primitives

In this section, we provide effective implementations of our primitives by means
of pattern matching rules.

Parallel compositions ×s and ×w. Recall that the parallel compositions ×s
and ×w of labeled event structures is defined via formulas (25,29,30). Write
X`e if X ⊇ •e, and say that X enables e. The parallel composition E1 ×s E2

32

is constructed by inductively applying the following rule, in which X denotes a
(possibly empty) co-set of E1 ×s E2:

Π1(X)` e1 and Π2(X)` e2
e1 ./s e2

X is minimal having the above properties


 ⇒ X = •(e1, e2), (39)

meaning that event (e1, e2) is a new extension of E1×s E2 beyond co-set X . The
rule for ×w is identical, except that ./s is replaced by ./w.

Trimming. The event structure trim(E) is constructed by inductively apply-
ing the following rule, in which Xi, i ∈ {1, 2} denote (possibly empty) co-sets of
trim(E):

trim(X1) = trim(X2)
∀i ∈ {1, 2} : Xi = •ei

λ(e1) = λ(e2)


 ⇒ trim(e1) = trim(e2) (40)

The following canonical form can be considered for a labeled trimmed event
structure. Its events have the special inductive form (X, `), where X is a co-set
of E and ` ∈ Pow (P). The causality relation � is simply encoded by the preset
function •(X, `) = X , and the labeling map is ϕ (X, `) = `. Events with empty
preset have the form (nil , `). The conflict relation is specified separately.

Trimmed composition ‖ . The trimmed composition E1 ‖ E2 is constructed
by inductively applying the following two rules, in which X denotes a (possibly
empty) co-set of E1 ‖ E2:

Π1(X)` e1 and Π2(X)` e2
e1 ./s e2

X is minimal having the above properties


 ⇒ X = •(e1, e2), (41)

Π1(X)` e1 and Π2(X)` e2
e1 ./w e2

X is minimal having the above properties


 ⇒ X = •(e1, e2), (42)

As the reader can easily check, rules (41) and (42) overlap. To ensure that only
maximal configurations obtained by using ×s are further extended by means of
×w, we give higher priority to rule (41), thus making the choice between the
two rules deterministic.

Extended unfolding. The extended unfolding EIP is constructed by induc-
tively applying the following rule, where I is the initial condition and X denotes
a co-set of EIP :

λ(X) ⊇ m
m = •t in Petri net P
t• = ` in Petri net P

X is minimal having the above properties



⇒ X = •(X, `), (43)

33

6 Orchestration of distributed diagnosis

We are now ready to state our orchestration. Throughout this section, we
assume the setup of Section 4.2. Petri net P = (P, T,→,M0) decomposes as
P = ‖i∈IPi, where Pi = (Pi, Ti,→,Mi,0).

Completeness. Let P = (P, T,→,M0) be a safe Petri net, and let Q ⊆ P .
P is called Q-complete if, for every place p ∈ Q such that •p ∪ p• 6= ∅, there
exists a place p ∈ Q such that (i) p• = •p \ p•, (ii) •p = p• \ •p, and (iii)
M0(p) + M0(p) = 1, where M0 denotes the initial marking. We say that P is
complete if it is P -complete. If P is not Q-complete, we can make it Q-complete
by adding the missing places and arcs. The so obtained completion P produces
an event structure EP such that (EP)|P = EP , i.e., erasing the place p from

the event structure generated by P yields the event structure generated by P ,
see Section 3.3. Informally said, completion does not change the behaviour of
the Petri net. Our example P = P1 ‖P2 of Fig. 2 satisfies this property with
Q = {3, 7}, since places 3 and 7 are complementary.

Distributed conflict. We say that P1 ‖P2 has no distributed conflict if:

∀p ∈ P1 ∩ P2, ∃i ∈ {1, 2} : p• ⊆ Ti. (44)

Note that our example of Fig. 2 satisfies (44). This is a reasonable assumption
in our context, since shared places aim at representing the propagation of faults
between components; having distributed conflict would have little meaning in
this case. The following assumption will be used in the sequel:

Assumption 1 Decomposition P = ‖i∈IPi involves no distributed conflict and
P is complete.

For ‖i∈IPi a parallel composition of safe Petri nets satisfying Assumption 1,
then

∀p ∈ Pi ∩ Pj , then p• ⊂ Ti ⇒ •p ⊂ Tj. (45)

6.1 Off-line orchestration of distributed diagnosis

In this section we study off-line diagnosis, meaning that some finite alarm pat-
tern A is given for diagnosis. The structure of the interaction between the dif-
ferent components Pi, for i ∈ I, will play an important role for our distributed
diagnosis algorithm. This is captured by the notion of interaction graph we
introduce next.

Equip I × I with the following undirected graph structure: draw a branch
(i, j) iff Pi∩Pj 6= ∅, i.e., the ith and jth subsystems interact directly via shared
places. Denote by GI the resulting interaction graph. For i ∈ I, denote by N(i)
the neighborhood of i, composed of the set of j’s such that j 6= I and (i, j) ∈ GI .
Note that N(i) does not contain i.

34

Algorithm 1 shown in Fig. 13 performs distributed diagnosis (see (23)). It
consists of a chaotic, unsupervised, cooperation between the different supervi-
sors acting as peers. It is expressed in terms of the primitives EIP (to continue
local diagnosis), RQ (to model the relevant information for the interfaces of a
subsystem), and ‖ (to compose messages from other supervisors with current
local diagnosis). This algorithm is analysed in the following two theorems.

Algorithm 1 Each site i maintains and updates, for each neighbor j, a mes-
sage Mi,j toward j. Thus there are two messages per edge (i, j) of GI , one in
each direction. The algorithm consists of chaotic iterations as follows:

1. Initialization:

(a) for each i ∈ I, set Ei := {ei,0}, where λ(ei,0) = Mi,0;

(b) for each edge (i, j) ∈ GI , set Mi,j := RPi∩Pj (1).

2. Chaotic iteration: until the Ei’s become constant whatever choice (a), (b),
or (c) is made, choose nondeterministically:

(a) select i ∈ I update message Ei by extending local diagnosis:

Ei := EIP with the substitutions
{ I ← Ei
P ← Ai × Pi

(b) select an edge (i, j) ∈ GI and update message Mi,j sent by i to j:

Mi,j := RPi∩Pj (Ei ‖
[
‖k∈N(i)\jMk,i

]
). (46)

(c) select i ∈ I update message Ei by using incoming messages:

Ei := Ei ‖
[
‖k∈N(i)Mk,i

]
.

Figure 13: Algorithm 1. Symbol := denotes assignment.

Theorem 1 Algorithm 1 is monotonic (i.e., the Ei’s andMi,j’s are increasing
w.r.t. the prefix order), confluent, and converges in finitely many iterations.

Proof. The monotony of Algorithm 1 results from the following properties: 1/
I v EIP , by (37), and 2/ monotony of ‖ , by (60) from Corollary 1 of Appendix
A.2. For the proof of the confluence, it will be convenient to encode schedulings
of the three possible choices (2b), (2c), and (2a) by words. To this end, consider
the alphabet

Σ = {ai | i ∈ I} ∪ {bi,j, bj,i | (i, j) ∈ Gκ} ∪ {ci | i ∈ I}, (47)

35

where a, b, c refer to the three different steps of Algorithm 1, and the index
refers to the edge (i, j) or the node i that is selected in the corresponding step.
Σ∗ denotes the Kleene closure of Σ. Denote by E(σ) the collection (Ei)i∈I
obtained after having applied scheduling σ ∈ Σ∗. Clearly, E(σ) v E(σ.σ′) and
E(σ′) v E(σ.σ′), where the prefix relation is taken componentwise and σ.σ′ is
the concatenation of σ and σ′. From this, the confluence follows immediately.
This proves the theorem. �
So far we did not use the structure of the interaction between the different
components. The next theorem makes deeper use of this structure. For this
result we use the notion of star closure of the ‖ composition, introduced in
(35).

Theorem 2 Assume Assumption 1 is in force and the interaction graph GI is
a tree. Then, if (Ei)i∈I denotes the limit of Algorithm 1, we have

∀i ∈ I : RPi(EA×P) v Ei v RPi(E∗A×P). (48)

Proof. See Appendix B.4. �
Theorem 2 expresses that Algorithm 1 computes all solutions (23) of distributed
diagnosis, plus some extra configurations that are obtained by re-shuffling non
contradictory solutions as explained in (35).

Note that hierarchical architectures satisfy the assumptions of Theorem 2,
but this result covers more architectures than just hierarchical ones. When GI
is not a tree, further “echoes” result from messages conflueing through different
routes the resulting case is studied, in a more abstract context, in [19].

6.2 On-line orchestration of distributed diagnosis

Now, instead of our local alarm patterns (Ai)i∈I being given once and for all, we
are given, for each i ∈ I, a local set Ai of alarm patterns. We assume that Ai

is totally ordered by the prefix relation. In the sequel, the statement “update
Ai” means that we take the next alarm pattern of Ai, for the prefix order.

Running example, continued. Referring to Fig. 6 or Fig. 7, the total or-
dering of alarm patterns is depicted by regarding the partially ordered alarm
pattern as a labeled graph directed downward. Fig. 14 shows three prefixes of
the mid diagram of Fig. 7. Diagram (a) illustrates local diagnosis performed by
supervisor 1 and 2, independently, based on the observation of A1,1 = {β} and
A2,1 = {α}; it consists in computing EA1,1×P1 , at supervisor 1, and EA2,1×P2

at supervisor 2. In (b) a messageM1,2 is sent by supervisor 1 to supervisor 2.
Using this message, supervisor 2 can now reuse its A2,1 and extend EA2,1×P2 ;
the result is shown in (c), it is equal to RP2(EA1×P), namely the local view, by
supervisor 2, of the global diagnosis having observed A1 =def A1,1 ‖A2,1. �
To adjust for this situation, Algorithm 1 is modified as Algorithm 2 of Fig. 15.
Algorithm 2 is said to be fairly executed if it is applied in such a way that each

36

1

(a)

11

2

ρ1

β

β

7

4

α

6

3

2 3

71

2

β

ρ1

(b)

(d) (c)

α

β

22

1

6

7

4 3

1

23

β

7

α

7

4

α

5

3

1

7

5 7

β

α

6

β

6

α

7

3 4

β

2 3

71

2

Figure 14: Illustrating on-line diagnosis. The four diagrams are prefixes of the mid
diagram of Fig. 7; referring to Algorithm 2, (a) illustrates case 1, (b) illustrates
the transmission of a message, and (c) illustrates case 2, and (d) illustrates once
more case 1.

of the three cases (a), (b), or (d), with every node i, and case (c) with every
edge (i, j), are selected infinitely many times.

Theorem 3 Assume Assumption 1 is in force, GI is a tree, and Algorithm 2
is fairly executed. Then, for any given A = ‖i∈IAi, where Ai ∈ Ai, after
sufficiently many iterations, one has ∀i ∈ I : Ei w RPi(EA×P).

Theorem 3 expresses that, modulo a fairness assumption and with some delay,
Algorithm 2 provides, as a prefix of the current event structure it computes, the
diagnosis RPi(EA×P) of any given alarm pattern A.

Proof. Monotony of Algorithm 2 is proved in the same way as for Algorithm
1. To study the confluence of Algorithm 2, we reuse the method and notations of
the proof of Theorem 1. In particular, we adapt in an obvious way, to Algorithm
2, the coding (47) used for the schedulings of Algorithm 1.

Denote by E(σ) the collection (Ei)i∈I obtained after having applied schedul-
ing σ ∈ Σ∗. Clearly, E(σ) v E(σ.σ′) and E(σ′) v E(σ.σ′), where the prefix
relation is taken componentwise and σ.σ′ is the concatenation of σ and σ′. This
is a kind of confluence property for our on-line algorithm.

Using this property, we can chose any particular scheduling. If we system-
atically apply (2a) until Ai has been read for each i ∈ I. Then, switch to the
other cases. The resulting scheduling just yields the batch Algorithm 1. Hence,
for this scheduling, Theorem 3 is just Theorem 2. �

37

Algorithm 2

1. Initialization:

(a) for each i ∈ I, set Ai := 1, and Ei := {ei,0}, where λ(ei,0) = Mi,0;

(b) for each edge (i, j) ∈ GI , set Mi,j := RPi∩Pj (1).

2. Chaotic non terminating iteration: repeatedly choose nondeterministically:

(a) select i ∈ I and update alarm pattern Ai;
(b) select i ∈ I and update message Ei by extending local diagnosis:

Ei := EIP with the substitutions
{ I ← Ei
P ← Ai × Pi

(c) select an edge (i, j) ∈ GI and update message Mi,j sent by i to j:

Mi,j := RPi∩Pj (Ei ‖
[
‖k∈N(i)\jMk,i

]
). (49)

(d) select i ∈ I update message Ei by using incoming messages:

Ei := Ei ‖
[
‖k∈N(i)Mk,i

]
.

Figure 15: Algorithm 2.

7 Related work

This paper provides contributions to two different topics: distributed diagnosis,
and event structures. For each topic we discuss related work.

7.1 Distributed diagnosis

Fault diagnosis in discrete event systems has attracted significant attention, see
Lafortune et al. [12] and [27] for the diagnoser approach. Distributed diag-
nosis has been less investigated. A first class of studies consider synchronous
communications. In [21] distributed diagnosis for Petri nets with synchronous
communication is studied. Trading local computations for communications is
analysed in [9]. In [29, 30], distributed diagnosis with synchronous product is
studied in the linguistic framework of Wonham and Ramadge. Global and local
consistency are introduced; global consistency means that local diagnoses are
projected versions of global diagnosis, whereas local consistency only requires
that local diagnoses agree on their mutual interfaces—the latter is an interesting
concept, not considered in our paper.

In [25], Pencolé et al. study a more hybrid architecture consisting of syn-
chronously communicating automata and a supervisor that communicates with

38

the subsystems asynchronously. The solutions computed involve additional non-
determinism due to the asynchrony of the communications with the supervisor.

The book [22] proposes a different approach, more in the form of a simulation
guided by the observed alarms, for a model of communicating automata, see
also [6]. The considered systems are networks of automata interconnected by
finitely buffered communications. The problem addressed is that of constructing
all correlation scenarios that causally relate faults and observed alarms, for
given finite alarm sequences. Monolithic and distributed diagnosis are both
considered. This approach shares similarities with ours. In particular, the active
spaces resemble our unfoldings, without, however, the handling of concurrency.
A very interesting idea is proposed to handle unobservable transitions (which
we did not consider here): cast in our framework, it consists in not unfolding
unobservable loops in the executions of the systems. This allows to keep active
spaces finite, even in the presence of loops of unobservable transitions. This is a
nice idea that could be reused in our framework. Also, the modular construction
of active spaces is studied. The associated architecture is not peer-to-peer but
fully hierarchical: there is a single coordinator that communicates with the
local diagnosers and performs the fusion of local diagnoses. Even though this
is a simpler situation than ours, distributed algorithms are (and have to be)
complicated. Still, they are described at a fine grain level, and not by using
higher level primitives as we did.

Our results were announced in [3]. Asynchronous diagnosis using unfoldings
was presented in [7]. Modeling and diagnosis of distributed systems was first
introduced in [17, 16, 18]. Diagnosability for systems with concurrency is dis-
cussed in [20]. A systematic study of chaotic algorithms such as used in this
paper is performed in [19], including the case of GI not being a tree. A first
version of this paper was given in [2].

7.2 Event structures

Event structures and unfoldings were first introduced by Glynn Winskel in his
thesis, see also [24] and the seminal paper [32]. Unfoldings were subsequently
studied in [23, 14, 15], with applications to model checking.

Equipping prime event structures with parallel composition has been rec-
ognized difficult. An inductive definition is presented in [11]. Indirect, non
inductive, definitions have been proposed by G. Winskel in [34]. F. Vaandrager
[31] has proposed a simple direct, non inductive, definition, in categorical style.
This is the construction we used here.

Categorical properties of event structures and unfoldings were given in [33].
In particular, the mapping P 7→ UP is shown to satisfy UP1×P2 = UP1 ×s UP2 ,
expressing that P 7→ UP is a functor. Unfortunately, there exists no simple
way to compute UP1 ‖P2 , as we have seen. That unfoldings are functors w.r.t.
the synchronous product of nets and unfoldings suggests another approach to
distributed diagnosis, in which subystems interact via shared transitions, not
places. This gives raise to a different distributed algorithm, in which local di-
agnosers “over-estimate” solutions, and peer-to-peer cooperations between su-

39

pervisors aim at keeping only local solutions that “synchronize well”, i.e., agree
on their interfaces. In contrast, in our distributed algorithm, local diagnosers
“under-estimate” solutions (see (66)), and peer-to-peer cooperations between
supervisors aim at extending local solutions to reach global consistency. Such
an approach by synchronous product is precisely studied in [18]. Despite the
use of synchronous products, we insist that the approach of [18] assumes asyn-
chronous communication, since partial order models are considered.

Regarding event structures per se, this paper has introduced the following
new special constructs: the ×w-composition (the ×s-composition is classical
and simply denoted ×), the continuation, the ‖ -composition, the generalized
unfolding, and the reduction. These special operations were needed to overcome
the fact that no simple “categorical” way of computing UP1 ‖P2 exist.

8 Conclusion

For the context of fault management in SDH/SONET telecommunications net-
works, a prototype software implementing the method was developed in our
laboratory, using Java threads to emulate concurrency. This software was sub-
sequently deployed at Alcatel on a truly distributed experimental management
platform. No modification was necessary to perform this deployment. A more
detailed presentation of this industrial context is found in [4, 5].

To ensure that the deployed application be autonomous in terms of syn-
chronization and control, we have relied on techniques from true concurrency.
Regarding concurrency theory, we have adapted to our needs the existing com-
positional theory of event structures. Event structures form a category equipped
with morphisms, projections, and parallel compositions. They provide the ad-
equate mathematical framework and data structures to support distributed di-
agnosis. We believe that they can be also useful for other distributed problems
of observation or control.

The application area which drives our research raises a number of additional
issues for further investigation. Getting the model (the net P) is the major
one: building the model manually is simply not acceptable. A solution to gen-
erate the model automatically is presented in [4]. From the theoretical point of
view, the biggest challenge is to extend our techniques to dynamically chang-
ing systems. This requires moving from safe Petri nets to the more powerful
framework of graph grammars, and is the subject of ongoing research. Then,
various robustness issues need to be considered: messages or alarms can be lost,
the model can be approximate, etc. Probabilistic aspects are also of interest,
to resolve nondeterminism by performing maximum likelihood diagnosis. Paper
[8] proposes a mathematical framework for this.

Acknowledgments. The authors are deeply indebted to Philippe Darondeau
for continuing discussions, fruitful suggestions, and gentle tutoring inside the
categorical jungle of event structures.

40

A Appendix: Collecting important properties
of primitive operators

In this appendix we collect the properties needed to analyse the orchestration.
These properties are of interest per se in the context of event structures.

A.1 Properties of the continuation

Lemma 1 The continuation defined in (32) satisfies the following property:

Q′ ⊇ Q ⇒ RQ′(F •Q E) = [RQ′(F)] •Q [RQ′(E)]. (50)

Proof. The inclusion v in (50) is immediate. To show the converse inclusion
w, pick an event e′ of [RQ′(F)] •Q [RQ′(E)] that is not an event of RQ′(F).
Denote by FQ′ the set of events of RQ′(F). By definition of the continuation,

de′e|FQ′ ,Q is a maximal configuration of RQ′(F)|Q . (51)

On the other hand, there exists an event e of E such that e′ = RQ′(e). Using
(51) and the assumption that Q′ ⊇ Q, we deduce that dee|F,Q is a maximal
configuration of F|Q , which proves (50).

A.2 Properties of labeled event structures and their par-
allel composition

Proposition 1 For the following statements, E = (E,�,#, λ, P) denotes a
labeled event structure, and Ei = (Ei,�i,#i, λi, Pi), i ∈ {1, 2} denote two labeled
event structures. The following formulas hold:

∀Q ⊆ P : RQ(trim(E)) = RQ(E) (52){
trim [trim(E1)×s trim(E2)] = trim (E1 ×s E2)
trim [trim(E1)×w trim(E2)] = trim (E1 ×w E2) (53)

∀Q ⊇ P1 ∩ P2 :
{

RQ(E1 ×s E2) = trim [RQ(E1)×s RQ(E2)]
RQ(E1 ×w E2) = trim [RQ(E1)×w RQ(E2)] (54)

Proof. See Appendix B.1. �
Corollary 1 In the following statements, symbol 1 =def ∅ denotes the empty
event structure. E , E ′, E ′′, Ei denote arbitrary trimmed event structures with re-
spective label sets P, P ′, P ′′, Pi. Label set Q is arbitrary unless otherwise speci-
fied. The following properties hold:

E ‖ 1 = E (55)
RP (E) = E (56)

RP1(RP2(E)) = RP1∩P2(E) (57)

41

Q ⊇ interact(Pi)i∈I ⇒ RQ(‖i∈IEi) = ‖i∈IRQ(Ei) (58)
1 v E (59)

P ′ = P ′′ and E ′ v E ′′ ⇒ E ′ ‖ E v E ′′ ‖ E (60)
E v E ′ ⇒ ∀Q : RQ(E) v RQ(E ′) (61)

Proof. To prove (55), note that E ×s 1 = E ×w 1 = E . Property (56) is imme-
diate. For (57), note that RP1∩P2(E) =def trim(EP1∩P2) = trim((EP2)P1) =def

RP1(EP2) = RP1(RP2(E)), by Proposition 1, formula (52). For (58), note that
RQ(‖i∈IEi) =def RQ([

∏s
i∈I Ei] •Q′ [

∏w
i∈I Ei]), where Q′ = interact(Pi)i∈I . Us-

ing (50) and the assumption that Q ⊇ Q′, we get RQ([
∏s
i∈I Ei] •Q′ [

∏w
i∈I Ei]) =

RQ([
∏s
i∈I Ei]) •Q′ RQ([

∏w
i∈I Ei]). Now, by formula (54) of Proposition 1,

RQ(
∏s
i∈I Ei) = trim

[∏s
i∈I RQ(Ei)

]
, and similarly with

∏w instead of
∏s .

This proves (58). Finally, monotonicity properties (59)–(61) are immediate. �
Lemma 2 The following properties hold:

∀j ∈ I : Πj

(‖i∈IEi) = Ej and RPj (‖i∈IEi) w Ej . (62)

Proof. Let κj be a maximal configuration of Ej . Let Cs
κj

be the set of maximal
configurations of

∏s
i∈I Ei such that Πj(κ) v κj . The following two exclusive

cases can occur.

1. There exists a maximal configuration κ of
∏s
i∈I Ei that satisfies Πj(κ) =

κj and is also a maximal configuration of
∏w
i∈I Ei. Then, κ is also a

configuration of ‖i∈IEi and Πj(κ) = RPj (κ) = κj holds.

2. For each κ ∈ Cs
κj

, Πj(κ) 6= κj . Then κ+
j =def κj \ Πj(κ) is non empty,

and co-set min(κ+
j) satisfies: ∀e ∈ min(κ+

j) ⇒ λ(e) ∩ Q 6= ∅. Thus,
configuration κ cannot be extended at all in the ×s-product. Hence, κ|Q
is maximal in

∏s
i∈I Ei|Q . Thus, while performing the ‖ -composition, κ|Q

can be further extended by any maximal configuration κ̄ of
∏w
i∈I Ei having

κ as its prefix. It remains to chose κ̄ such that Πj(κ̄) = κj , and κ̄ also
satisfies RPj (κ̄) = κj . This finishes the proof. �

A.3 Properties of event structures related to unfoldings

In this paragraph we collect important properties involving the parallel compo-
sition of event structures obtained from unfoldings.

Proposition 2 Let P = P1 ‖P2. We have

EP v trim (RP1(EP)×s RP2(EP)) . (63)

42

Proof. See Appendix B.2. �
Corollary 2 Let P = ‖i∈IPi be a Petri net, and let Pi be the set of places of
Pi. The following property holds:

EP v ‖i∈IRPi(EP) (64)

Proof. To show (64), note that Proposition 2 generalizes to more than two
components, whence EP v trim(

∏s
i∈I RPi(EP)). Then, Proposition 3 used

with substitution I ← EP , together with the fact that trim(
∏s
i∈I Ei) v ‖i∈IEi,

proves (64). �
Proposition 3 Assume that decomposition P = ‖i∈IPi satisfies assumption 1.
Let I be a prefix of EP , and assume that Ii =def RPi(I) satisfies ‖i∈IIi v EP .
For i ∈ I consider Ei = EIi

Pi
, the unfolding of Pi from Ii. Then, we have:

‖i∈IEi v EP . (65)

Note that, for I = ∅, (65) boils down to

‖i∈IEPi v EP . (66)

Proof. See Appendix B.3. �

component 2

component 1

2

1

#

2

β

1

2,3

1

β

2

1

α

4

7,55 6 6

α

1

4

7

#

1,7,4

7,5 #

2

5 β

3

1

2

2,3

4

2

1

6α

ρ1

α

2
ρ1

3

ρ2

α

β

β

β

6

6 β

7

α

443

ρ2

7 5

α

1

β

2

ρ1

7

2

β

ρ2

#

α

ρ1

Figure 16: Illustrating Proposition 3.

Running example, continued. Proposition 3 is illustrated in Fig. 16. The
first two diagrams are taken from Fig. 6; they show the two components to-
gether with the alarm pattern recorded with two independent sensors. The 3rd
diagram is a copy of the last diagram of Fig. 6 in which we discarded the long
configuration κ3, for readibility purposes. The prefix filled in grey in this dia-
gram shows the part of the diagnosis that can be inferred by each supervisor
locally, i.e., by observing its own alarms, knowing its local model only, and

43

without cooperating with the other supervisor. In contrast, the white suffix
requires the two supervisors to cooperate. The last diagram shows an event
structure translation of the third one, by showing RP (EA×P), and its prefix
RP1(EA1×P1) ‖RP2(EA2×P2) (in grey). �

B Appendix: Proofs

B.1 Proof of Proposition 1

Proof of formula (52). By expanding the definition of the reduction, this
formula is rewritten

trim
(F|Q

)
= trim

(E|Q)
, where F =def trim(E) (67)

For this proof we need to make precise the context in which we consider trimming
and configurations: trimE , deeE , and κ∼E , shall respectively denote the trimming
function, the configuration generated by event e, and the equivalence class of
configuration κ modulo ∼, in the context of E . The reader is referred to (19)
for the definition of E|Q .

Set EQ = {e ∈ E | λ (e) ∩ Q 6= ∅}. Then E|Q possesses EQ as event set,
λQ = λ ∩ Q as labeling map, and inherits the causality and conflict relations
from E , by restriction. For e ∈ EQ, write e =def trimE|Q (e). Write EQ =def

trim(E|Q). Using the self-reproducing property (18), we get

deeEQ
∼ deeEQ

. (68)

On the other hand, for e ∈ E, we have f =def trimE(e) = (deeE)∼E
, f has label

λ(e), and F has its causality and conflict relations defined by (17). Thus F|Q
has FQ =def {trimE(e) | e ∈ EQ} as set of events, and inherits the causality and
conflict relations from F , by restriction. Then, by (17), the label of trimE(e)
in the context of F|Q is equal to λ(e) ∩ Q = λQ(e). For f ∈ FQ, set g =def

trimF|Q (f) and G =def trim(F|Q). Using twice the self-reproducing property
(18)—once for each trimming operation—we get

dgeG ∼ dfeF|Q , dfeF ∼ deeE (69)

Restrict to Q the 2nd equivalence in (69), this yields dfeFQ
∼ deeEQ

. Combining
the latter formula with (68) and (69) yields dgeG ∼ deeEQ

, which proves (67).

Proof of formula (53). We only prove the ×s case, the ×w case is proved in
exactly the same way.

Events e of E =def E1 ×s E2 are defined by (25,28), and (29). Write e =def

trimE(e) and E =def trim(E). Using (25,28), and (29), and the self-reproducing
property (18), yields

deeE ∼ deeE , Πi(deeE) = deieEi
, for i ∈ {1, 2}. (70)

44

On the other hand, write Ei =def trim(Ei) and ei =def trimEi(ei) for i ∈ {1, 2}.
Next, write F =def E1 × E2 and F =def trim(F); for f an event of F , write
f =def trimF(f). We have

dfeF ∼ dfeF , Πi(dfeF) = deieEi
∼ deieEi

, for i ∈ {1, 2}. (71)

Formulas (70) and (71) together yield dfeF ∼ deeE, which proves formula 53.

Proof of formula 54. We only prove the ×s case, the ×w case is proved in
exactly the same way.

Assume the following formula is proved:

(E1 ×s E2)|Q = (E1)|Q ×s (E2)|Q . (72)

Then, using formula (53), we get

RQ(E1 ×s E2) = trim
(
(E1 ×s E2)|Q

)

= trim
(
(E1)|Q ×s (E2)|Q

)

= trim
(
trim((E1)|Q)×s trim((E2)|Q)

)
= trim (RQ(E1)×s RQ(E2))

which proves (54). Thus it remains to prove (72).
The reader is referred to the definition (25,28,29,30) for the parallel compo-

sition of labeled event structures. For i ∈ {1, 2}, denote by Ei,Q the restric-
tion of Ei to the subset of events ei such that λi(ei) ∩ Q 6= ∅, and define, for
ei ∈ Ei: λi,Q(ei) =def λi(ei) ∩ Q. Similarly, we denote by EQ the restriction
of E to the subset of events e such that λ(e) ∩ Q 6= ∅, and define, for e ∈ E:
λQ(e) =def λ(e) ∩Q.

We first focus on labels. We can equip Ei,Q with labeling map λi,Q, or
alternatively with labeling map λi, for i ∈ {1, 2}. By the definition (28) of
./s, and using the special condition that Q ⊇ P1 ∩ P2, we get, for every pair
(e1, e2) ∈ E1,Q ×? E2,Q:

e1 ./s e2 w.r.t. labeling maps (λ1,Q, λ2,Q), written e1 ./s,Q e2
m

e1 ./s e2 w.r.t. labeling maps (λ1, λ2), simply written e1 ./s e2

Consequently,

E1,Q ×s,Q E2,Q = [E1 ×s E2]Q (73)

where ×s,Q and ×s are defined in (29) by using ./s,Q and ./s, respectively, and
[.]Q denotes the restriction to events having a label that intersects Q.

We then focus on (24,25). Pre-configurations associated to the right hand
side of (72) are the subsets κ of E1,Q ×s,Q E2,Q satisfying the two conditions
(i,ii) stated before (25), where πQi denotes the projection from E1,Q ×s,Q E2,Q

onto Ei,Q. We explicit these two conditions next:

45

(i)Q For i ∈ {1, 2}, πQi (κ) is a configuration of (Ei)|Q ;

(ii)Q �Qκ , the transitive closure of relation ≤Q ∩(κ×κ), is a partial order, where
the relation ≤Q ⊆ E1,Q ×s,Q E2,Q is defined by:

e ≤Q e′ ⇔ πQ1 (e) �Q1 πQ1 (e′) or πQ2 (e) �Q2 πQ2 (e′),

where �Qi denotes the causality relation on (Ei)|Q .

On the other hand, pre-configurations associated to E1×sE2 are the subsets κ of
E1×sE2 satisfying the two conditions (i,ii) stated before (25), where πi denotes
the projection from E1 ×s E2 onto Ei. We repeat these two conditions next:

(i) For i ∈ {1, 2}, πi(κ) is a configuration of Ei;
(ii) �κ, the transitive closure of relation ≤ ∩(κ× κ), is a partial order, where

the relation ≤ ⊆ E1 ×s E2 is defined by:

e ≤ e′ ⇔ π1(e) �1 π1(e′) or π2(e) �2 π2(e′).

Thus, the configurations of (E1 ×s E2)|Q have the form κQ =def κ ∩ EQ, where
κ satisfies the above two conditions (i,ii). Now, with κ as above, we have
πQi (κ ∩ EQ) = πi(κ) ∩ Ei,Q, and thus:

πQi (κQ) is a configuration of (Ei)|Q
iff πi(κ) is a configuration of Ei. (74)

Similarly, the two relations ≤Q and ≤ coincide on E1,Q×s,QE2,Q = [E1 ×s E2]Q
(cf. (73)). Thus:

κQ is a pre-configuration of (E1 ×s E2)|Q
iff it is a pre-configuration of (E1)|Q ×s (E2)|Q . (75)

Finally, (73), (74), and (75) together with conditions (i)Q, (ii)Q, (i), and (ii),
prove (72). This in turn proves (54).

B.2 Proof of Proposition 2

Equivalently, it is enough to show that

∀κ configuration of EP ,
∃κ′ configuration of RP1(EP)×s RP2(EP) such that κ′ ∼ κ. (76)

This is shown by structural induction. Assume that (76) holds for each configu-
ration κ contained in some finite prefix F such that F v EP . Select e ∈ EP such
that e 6∈ F and e ∈ •F . Since e is an event of the unfolding of P , it represents
a unique transition t of this Petri net, and λ(e) = t•. Furthermore, if X =def

•e

46

is the preset of e in EP , then λ(X) ⊇ •t. Since transitions are private, we can
assume, say, that t is a transition of P1 only.

Set κ =def dee|F , we have X = max(κ). Let κ′ satisfy (76), such a κ′ exists
by induction hypothesis. Set X ′ =def max(κ′), we have X ′ ∼ X .

Denote by Πi the canonical projections RP1(EP) ×s RP2(EP) 7→ RPi(EP),
for i ∈ {1, 2}, and set Xi =def Πi(X). The following cases can occur (recall that
t is a transition of P1 only):

(a) t• ∩ P2 = ∅.
Equivalently, λ(e) = t• ∩ (P1 ∩ P2) = ∅. Then, e′ =def (RP1(e), ?) is an
event of RP1(EP)×s RP2(EP) such that κ′ ∪ {e′} ∼ κ ∪ {e}.

(b) t• ∩ P2 6= ∅.
Note that λ(d•ee) ∩ (P1 ∩ P2) 6= ∅ holds, since EP has a unique minimal
event labeled by the initial marking. Therefore, there exists some maximal
event f ∈ d•ee such that λ(f) ∩ (P1 ∩ P2) 6= ∅. Let Y be the co-set
consisting of those f ’s, set κ =def dY e, and let κ′ satisfy (76), such a κ′

exists by induction hypothesis. Set Y ′ =def max(κ′), we have Y ′ ∼ Y .
Denote by [Y, e] the postfix of dee consisting of the events posterior to
or included in Y , and set]Y, e[=def [Y, e] \ (Y ∪ {e}). By construction,
[Y, e]|P2

= Y|P2 ∪ {e}|P2
, and [Y, e]|P1

=]Y, e[∪Y|P1 ∪ {e}|P1
, see (19) for

the definition of the restriction E|Q . Thus

κ′′ =def κ′

∪ {(RP1(e1), ?) | e1 ∈]Y, e[}
∪ {e}

is a preconfiguration of E1×sE2, where Ei is the set of events of RPi(EP),
for i ∈ {1, 2}. This pre-configuration κ′′ is a complete prime that is, by
construction, ∼-equivalent to dee.

This shows (76).

B.3 Proof of Proposition 3

Let us prove first the following property, where symbol × denotes equally ×s or
×w:

∀κ configuration of E1 × E2,
∃ κ′ configuration of EP1 ‖P2 such that κ′ ∼ κ. (77)

This is shown by structural induction. Assume that (77) holds for each config-
uration κ contained in some finite prefix F such that F v E1×E2. With no loss
of generality we can also assume I v F . Select e 6∈ F such that X =def

•e ⊆ F ,
and denote by κ the smallest configuration that containsX . Using the induction
hypothesis, let κ′ be a configuration of EP1 ‖P2 such that κ′ ∼ κ.

Decompose e as e = (e1, e2), where ei = Πi(e) for i ∈ {1, 2} (see (26) for
the definition of Πi). Apply rule (39). We must have, say, Π1(X) = •e1 and

47

Π2(X) ⊇ •e2. There exists a transition t1 of net P1 such that •t1 = λ(•e1) and
t•1 = λ(e1). Then, the following cases can occur:

(a) e2 = ? and thus •e2 = ∅. Hence firing t1 alone yields a valid transition of
P1 ‖P2, and t1 can be fired from •e and yields e = (e1, ?).

(b) e2 6= ?. Then there exists a transition t2 of net P2 such that •t2 = λ(•e2)
and t•2 = λ(e2). Since events e1 and e2 are compatible (see (28)), we must
have λ(e1)∩P1∩P2 = λ(e2)∩P1∩P2 6= ∅. Pick p ∈ λ(e2)∩P1∩P2. Since
there is no distributed conflict (see (44)), we must have either p• ⊂ T1 or
p• ⊂ T2. If the former occurs, then, by (45), •p ⊂ T2 must occur. But
this contradicts the assumption that p ∈ λ(e2) ∩ P1 ∩ P2. Hence case (b)
cannot occur.

Therefore, κ ∪ {e} is ∼-equivalent to a configuration of EP1 ‖P2 , which shows
(77) by induction.

Now, by definition of the ‖ operator, each configuration of E1 ‖ E2 is ∼-
equivalent to some configuration of E1 ×w E2. Since both ×s and ×w are as-
sociative, property (77) is valid for more than two components. This proves
Proposition 3.

B.4 Proof of Theorem 2

Since we already know that Algorithm 1 is confluent, we can choose any partic-
ular scheduling of the steps (2b), (2c), or (2a), of Algorithm 1. To specify the
particular scheduling we use for our analysis, we use the following notational
conventions: (ai) shall denote the application of step (2a) where node i is se-
lected. Same convention holds regarding notation (ci); finally, (bi,j) shall denote
the application of step (2b) where directed edge (i, j) is selected.

Select one node i0 and regard it as the origin of the tree GI . Since GI is a
tree, we can label its nodes by the length `i of the unique path linking node i ∈ I
to the particular node i0. Using ` and the alphabet Σ defined in (47), define the
special scheduling σG shown in Fig. 17, and illustrated in Fig. 18. The expert
reader will recognize the scheduling used for on-line smoothing algorithms in
control.

The proof proceeds according to four successive steps. Our analysis of Al-
gorithm 1 applied with scheduling σG proceeds by induction over the successive
rounds (1;2;3). For each considered round, call E−i and Ei the ith event struc-
tures before and after the considered round, respectively. Also, E∞i denotes the
limit of Algorithm 1.

Step 1 The following invariant holds at the end of each round (1;2;3) of Algo-
rithm 1, applied with scheduling σG : for all i ∈ I,

RPi(‖k∈IEIk

Ak×Pk
) v Ei v RPi(‖k∈I [EIk

Ak×Pk
]2), where Ik =def E−k . (78)

48

Repeat round (1;2;3) below, until convergence:

1. Local diagnosis: perform (ai) once for each i ∈ I in some arbitrary order;

2. Inward iteration: repeat for ` = `max − 1, `max − 2, . . . , 0

• For every j such that `j = `, repeat

(i) ∀i : (i, j) ∈ GI and `i = `j + 1 ⇒ perform (bi,j);
(ii) perform (cj);

3. Outward iteration: repeat for ` = 0, 1, . . . , `max − 1

• For every j such that `j = `, repeat

– ∀i : (j, i) ∈ GI and `i = `j + 1 ⇒ perform (bj,i); perform (ci).

Figure 17: Special scheduling σG . Symbol “;” indicates sequencing.

κ
j

i
0

G

1

1

1

2
3

3

2
3

3

j
0

Figure 18: Illustrating the “inward iteration” of the scheduling of Fig. 17. The
numbers shown give the ` distance.

Proof. The proof of (78) is by induction. Applying round 1 of σG yields

E+
i =def EIP with the substitutions

{ I ← E−i
P ← Ai × Pi

Next, apply round 2 of σG . While performing this, mark Mi,j in formula (46)
with a running multiset Ji,j ∈ (I 7→ N), initialized with ∀k ∈ I : Ji,j(k) = 0,
and updated as follows:

Mi,j := RPi∩Pj (E+
i ‖

[
‖k∈N(i)\jMk,i

]
)

Ji,j := Ji,j + δi +
∑

k∈N(i)\j Jk,i,
where δi(k) =def 1 iff k = i, and = 0 otherwise.

(79)

After having completed round (2.i) of scheduling σG , we have:

Ji,j(k) = 1 if k is a vertex of GiI , = 0 otherwise, (80)

where GiI denotes the subtree of GI comprising the nodes k ∈ I such that `k ≥ `i
and i belongs to the path linking k to the origin i0, see Fig. 18. We claim that

49

the following invariant holds throughout round 2 of σG :

Mi,j = RPj (‖k∈supp(Ji,j)
E+
k), where supp(Ji,j) =def {k | Ji,j(k) > 0}. (81)

Property (81) holds if i is a leaf of the tree GI , since Ji,j = δi in this case.
Assume that (81) holds for all nodes i sitting at a distance `i ≥ n, we shall
prove that it also holds for all nodes i sitting at a distance `i ≥ n − 1; this
will prove the invariance of (81) by inward induction. Select such a node i, and
denote by k− the unique node of GI that sits next to any node k in the path
linking node k to the origin i0. We have

Mi,j

= RPi∩Pj (E+
i ‖

[
‖k∈N(i)\jMk,i

]
) (by (46))

= RPi∩Pj (E+
i ‖

[
‖k∈N(i)\jRPi(‖k∈supp(Jk,k−) E+

h)
]
) (b)

= RPi∩Pj (E+
i ‖

[
RPi(‖k∈N(i)\j(‖k∈supp(Jk,k−) E+

h))
]
) (by (58))

= RPi∩Pj (RPi(E+
i) ‖

[
RPi(‖k∈N(i)\j(‖k∈supp(Jk,k−) E+

h))
]
) (by (56))

= RPi∩Pj (RPi(‖h∈supp(Ji,j)
E+
h)) (e)

= RPi∩Pj (‖h∈supp(Ji,j)
E+
h) (by (57))

= RPj (‖h∈supp(Ji,j)
E+
h) (g)

where (b) follows from the induction hypothesis, (e) follows from the identity
Ji,j = δi +

∑
k∈N(i)\j Jk,k− , and (g) follows from the fact that, for each h such

that Ji,j(h) > 0, the label set of E+
h has empty intersection with Pj \ Pi. Thus

(81) is proved by inward induction over the set of nodes of the tree GI .
The reader should have noticed that the assumption that GI is a tree has

been used in applying (58) for proving the third equality: the label set of
‖k∈supp(Jk,k−) E+

h is equal to P k =def

⋃
k∈supp(Jk,k−) Ph, and P k ∩ P k′ ⊆ Pi

for k 6= k′ belonging both to N(i) \ j.
Using (81), we deduce that performing step (2.ii) after round (2.i) of schedul-

ing σG yields at site j an updated event structure such that

Ej = E+
j ‖

[
‖i∈N(j)Mi,j

]

= E+
j ‖

[
‖i∈N(j)\j− RPj (‖k∈supp(Ji,j)

E+
k)

]

= E+
j ‖

[
RPj (‖i∈N(j)\j− (‖k∈supp(Ji,j)

E+
k))

]
(by (58))

= RPj (E+
j) ‖

[
RPj (‖i∈N(j)\j− (‖k∈supp(Ji,j)

E+
k))

]
(by (56))

= RPj (E+
j ‖

[
‖i∈N(j)\j− (‖k∈supp(Ji,j)

E+
k)

]
) (by (58))

= RPj (‖k∈supp(Jj,j−)
E+
k),

(82)

50

since Jj,j− = δj +
∑

k∈N(j)\j− Jk,k− . Again, in applying (58) we have used the
assumption that GI is a tree. Taking j = i0 in (82) yields in particular

Ei0 = RPi0
(‖k∈IE+

k).

So far each vertex of GI was visited only once, thus all encountered multisets
had multiplicity 0 or 1. Performing the “outward” round 3 of scheduling σG
yields multisets Ji,j with multiplicity 1 or 2. Using the convention E0 =def 1,
rewrite (82) as follows:

Ej = RPj (‖k∈I [E+
k]Jj,j− (k)). (83)

This new form (83) for the invariant also holds for the “outward” round 3 of
scheduling σG (the proof is identical to that performed for the inward round).
Since 1 ≤ Jj,j−(k) ≤ 2 holds at the end of round 3, (78) follows. �
Step 2 For each i ∈ I,

RPi(EA×P) v E∞i (84)

(Recall that E∞i denotes the limit of Algorithm 1.)

Proof. By (78), and since (E∞i)i∈I is a fixpoint of Algorithm 1, we get

∀i ∈ I : E∞i = RPi(‖k∈GI
EIk

Ak×Pk
), where Ik =def E∞k (85)

Let F be the maximal prefix of E∞A×P such that RPi(F) v E∞i holds for each
i ∈ I. F is not trivial since it contains at least the minimal co-set of EA×P .
Assume that F is a strict prefix of EA×P . Then, there exists an event e ∈ EA×P
such that e 6∈ F but •e ⊆ F . Event e represents some transition ti of component
Pi, for some i ∈ I. Consequently, λ(e) ⊆ Pi. Therefore:

• e ∈ EFAi×Pi
holds, whence RPi(e) ∈ E∞i follows, by construction of E∞i .

• For k ∈ I such that λ(e)∩Pk = ∅, we have RPk
(e) = ?, whence RPk

(e) ∈
E∞k trivially holds in this case.

• Pick j ∈ I such that λ(e) ∩ Pj 6= ∅. Since e ∈ EFAi×Pi
holds, then

RPj (e) ∈ RPj (EFAi×Pi
). But (38) implies RPj (EFAi×Pi

) = RPj (E
RPj

(F)

Ai×Pi
) v

RPj (E
E∞

j

Ai×Pi
), which implies RPj (e) ∈ RPj (‖k∈IEE

∞
k

Ak×Pk
), by (62).

Thus, e ∈ F holds, a contradiction. This proves (84). �
Step 3 The following invariant holds at the end of each round (1;2;3) of Algo-
rithm 1, applied with scheduling σG : for each i ∈ I:

Ei v RPi(E∗A×P). (86)

51

Proof. By (66), (86) holds after the first round (without the need for taking
the star closure). Assume it holds after some given round, we shall prove that
it also holds after the next round. To this end, we reuse the notations of step
1. By step 1, we know that, ∀i ∈ I,

Ei v RPi(‖k∈I [EIk

Ak×Pk
]2), where Ik =def E−k .

By induction hypothesis, E−i v RPi(E∗A×P). Denoting by |I| the cardinal of I,
we have

∀i ∈ I : Ei v RPi(‖k∈I
[
ERPi

(E∗
A×P)

Ak×Pk

]2

) (by (37))

= RPi(‖k∈I
[
EE

∗
A×P

Ak×Pk

]2

) (by (38))

= RPi([E∗A×P]2×|I|),

since EE
∗
A×P

Ak×Pk
= E∗A×P holds, for each k. Finally, since the trimmed composition

is idempotent when applied to star closures, [E∗A×P]2×|I| = E∗A×P holds, which
proves (86). �
Step 4 Setting, for all i ∈ I, Emax

i =def RPi(E∗A×P) yields a stationary point
of Algorithm 1.

Proof. We only provide an outline, since the detailed arguments are similar
to some arguments used in previous steps. First, as seen just before, note that
round 1 will not modify Emax

i . Then, just repeat the calculations performed in
step 1 and note that powers of E∗A×P appear, which are equal to E∗A×P . �
Steps 1 – 4 together prove Theorem 2.

52

References

[1] E. Fabre, A. Benveniste, S. Haar, C. Jard. Distributed monitoring of con-
current and asynchronous systems. Extended version of this paper. IRISA
Res. rep. 1636, also INRIA Res. Rep. 4842, version 2, July 2004.

[2] E. Fabre, A. Benveniste, S. Haar, C. Jard. Distributed monitoring of con-
current and asynchronous systems. In Proc. of 14th Int. Conf. on Con-
currency Theory, CONCUR’2003, R. Amadio and D. Lugiez, Eds., LNCS
2761, 1–26, 2003.

[3] A. Aghasaryan, C. Dousson, E. Fabre, Y. Pencolé, A. Os-
mani. Modeling Fault Propagation in Telecommunications Net-
works for Diagnosis Purposes. XVIII World Telecommunica-
tions Congress 22-27 September 2002 - Paris, France. Available:
http://www.irisa.fr/sigma2/benveniste/pub/topic distribdiag.html

[4] A. Aghasaryan, C. Jard and J. Thomas, UML Specification of a Generic
Model for Fault Diagnosis of Telecommunication Networks, 2004 Interna-
tional Conference on Telecommunications, August 2-7, 2004, Fortalezza,
Brasil.

[5] E. Fabre, A. Benveniste, S. Haar, C. Jard and A. Aghasaryan, Algorithms
for Distributed Fault Management in Telecommunications, 2004 Interna-
tional Conference on Telecommunications, August 2-7, 2004, Fortalezza,
Brasil.

[6] P. Baroni, G. Lamperti, P. Pogliano, and M. Zanella. Diagnosis of large
active systems. Artificial Intelligence 110: 135-183, 1999.

[7] A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis of asyn-
chronous discrete event systems, a net unfolding approach. IEEE Trans.
on Automatic Control, 48(5), May 2003. Preliminary version available from
http://www.irisa.fr/sigma2/benveniste/pub/IEEE TAC AsDiag 2003.html

[8] A. Benveniste, S. Haar, and E. Fabre. Markov Nets: probabilistic Models
for Distributed and Concurrent Systems. IEEE Trans. on Automatic Con-
trol, November 2003. Extended version available as IRISA Report 1538,
may 2003; available electronically at ftp://ftp.irisa.fr/techreports/2003/PI-
1538.ps.gz

[9] R.K. Boel and J.H. van Schuppen. Decentralized Failure Diagnosis for
Discrete-Event Systems with Costly Communication between Diagnosers.
In Proc. of 6th Int. Workshop on Discrete Event Systems, WODES’2002.
175–181, 2002.

[10] C. Cassandras and S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

53

[11] P. Degano, R. De Nicola, and U. Montanari. On the Consistency of “Truly
Concurrent” Operational and Denotational Semantics. Proc. 3rd Symp. on
Logics in Computer Science, IEEE 1988, pp.133-141.

[12] R. Debouk, S. Lafortune, and D. Teneketzis. Coordinated decentralized
protocols for failure diagnosis of discrete event systems. Discrete Event
Dynamic Systems: theory and application. 10(1/2), 33-86, 2000.

[13] J. Desel, and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, 1995.

[14] J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica 28, 1991,
pp 575–591.

[15] J. Esparza, S. Römer. An unfolding algorithm for synchronous products
of transition systems. in proc. of CONCUR’99, LNCS Vol. 1664, Springer
Verlag, 1999.

[16] E. Fabre, A. Benveniste, C. Jard. Distributed diagnosis for large discrete
event dynamic systems. In Proc of the IFAC congress, Jul. 2002.

[17] E. Fabre. Compositional models of distributed and a synchronous dynami-
cal systems. In Proc of the 2002 IEEE Conf. on Decision and Control, 1–6,
Dec. 2002, Las Vegas, 2002.

[18] E. Fabre. Monitoring distributed systems with distributed algorithms. In
Proc of the 2002 IEEE Conf. on Decision and Control, 411–416, Dec. 2002,
Las Vegas, 2002.

[19] E. Fabre. Convergence of the turbo algorithm for systems defined by local
constraints. IRISA Res. Rep. 1510, 2003.

[20] S. Haar, A. Benveniste, E. Fabre, C. Jard. Partial order diagnosability of
discrete event systems using Petri net unfoldings. In Proceedings of the 42nd
Int. IEEE Conference on Decision and Control, Maui, Dec. 9-12, 2003.

[21] S. Genc and S. Lafortune. Distributed diagnosis of discrete-event systems
using Petri nets. In Proc. of ICATPN 2003, W.M.P. van der Aalst and E.
Best Eds., LNCS 2679, 316–336, 2003.

[22] G. Lamperti and M. Zanella. Diagnosis of active systems. Kluwer Academic
Publishers, 2003.

[23] K. McMillan. Using Unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In: 4th Workshop on Computer Aided
Verification, pp. 164–174, 1992.

[24] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and
domains. Part I. Theoretical Computer Science 13: 85–108, 1981.

54

[25] Y. Pencolé, M-O. Cordier, and L. Rozé: A decentralized model-based diag-
nostic tool for complex systems. International Journal on Artificial Intel-
ligence Tools, World Scientific Publishing Company, 11(3), 327–346, 2002.

[26] W. Reisig. Petri nets. Springer Verlag, 1985.

[27] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D.
Teneketzis. Diagnosability of discrete-event systems. IEEE Trans. Autom.
Control 40(9), 1555-1575, 1995.

[28] M. Sampath, R. Sengupta, K. Sinnamohideen, S. Lafortune, and
D. Teneketzis. Failure diagnosis using discrete event models. IEEE Trans.
on Systems Technology, 4(2),105–124, March 1996.

[29] Su, R., Wonham, W.M., Kurien, J., and Koutsoukos, X., ”Distributed Di-
agnosis for Qualitative Systems”, 6th International Workshop on Discrete
Event Systems (WODES’02), Zaragoza, Spain, pp. 169-174, October 2-4,
2002.

[30] Su, R., ”Distributed Diagnosis for Discrete-Event Systems”, Ph.D. Thesis,
Dept. of Electl. & Cmptr. Engrg., Univ. of Toronto, June 2004.

[31] F. Vaandrager. A simple definition for parallel composition of prime event
structures. CWI report CS-R8903, march 1989.

[32] G. Winskel. Event Structure Semantics for CCS and Related Languages.
In: Proceedings of ICALP 82, M. Nielsen and M. Schmidt eds., LNCS
140, 561–576, Springer-Verlag, 1982. Extended version as DAIMI Research
Report, University of Aarhus, 67 pp., April 1983.

[33] G. Winskel. Categories of Models for Concurrency. Seminar on Concur-
rency, Carnegie-Mellon Univ. July 1984. Also in LNCS Vol. 197, 246–267,
1985.

[34] G. Winskel. Event Structures. In Petri nets: applications and relationships
to other models of concurrency, Advances in Petri nets 1986, part II, W.
Brauer, W. Reisig and G. Rozenbegr eds., LNCS 255, 325–392, Springer-
Verlag, 1987.

55

