
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

TGV: theory, principles and algorithms

A tool for the automatic synthesis of conformance test casesfor non-deterministic reactive systems

Claude Jard
�

, Thierry Jéron
�

�

IRISA/ENS Cachan-Bretagne, Campus de Beaulieu, F-35042 Rennes Cedex, France, e-mail:jard@irisa.fr
�

IRISA/INRIA, Campus de Beaulieu, F-35042 Rennes Cedex, France, e-mail:jeron@irisa.fr

Abstract This paper presents the TGV tool allowing the au-
tomatic synthesis of conformance test cases from a formal
specification of a (non-deterministic) reactive system. TGV
has been developed by Irisa Rennes and Verimag Grenoble,
with the support of the Vasy team of Inria Rhônes-Alpes. The
paper describes the main elements of the underlying testing
theory, based on a model of transitions system which distin-
guishes inputs, outputs and internal actions, and based on the
concept of conformance relation. The principles of the test
synthesis process are explained, as well as the main algo-
rithms. We then describe the main characteristics of the TGV
tool, and give some pointers to industrial experiments that
have been conducted to validate the approach. As a conclu-
sion, we describe some on going work on test synthesis.

Key words: Conformance testing – test generation/synthesis
– reactive systems – protocols – model-checking – transition
systems

1 Conformance testing

Software systems are increasingly complex, distributed and
reactive. Their reliability is a major concern, in particular
for critical systems as errors occurring during their execu-
tion may have dramatic economical or human consequences.
Correctness is also essential for less critical software. It is
thus essential to try to preserve the correctness of software all
along the design process until deployment. This includes soft-
ware engineering methods, verification and validation. But
full correctness is in general impossible to prove. Testingis
then one of the most popular validation techniques. Testing
aims at discovering bugs in design or implementation phases
with respect to a reference. It cannot prove correctness but
improves confidence. Testing may focus on different aspects
of software such as functionality, robustness, performance,

timing constraints etc. It may be employed at different levels,
from unit testing to integration and system testing. One of the
main problem of testing is to choose test data. This choice
may be based on the code (white box testing) or on the speci-
fication (black box testing), depending on the availabilityand
complexity of these artifacts. In practice, testing most often
remains a craft activity. Test data are selected arbitrarily, and
test execution and test results analysis are performed manu-
ally. This implies that testing is very costly. However most
phases can be automated, at least partially.

In this paper, we focus onconformance testingapplied to
non-deterministic reactive systems. By reactive system, we
mean a software component which reacts to stimuli of its en-
vironment. Non-determinism means that different reactions
can be obtained after applying a given stimulus (this is typ-
ically the case in the presence of concurrency in systems).
Conformance testing consists of checking that the behavior
of a real implementation of a system (IUT forImplementa-
tion Under Test) is correct with respect to a specification. The
code of the IUT is unknown, and its behavior is only visible
by interaction with a tester. This controls and observes the
IUT through dedicated interfaces (called PCO forPoints of
Control and Observation). Conformance testing is a type of
functional testing of a black box nature. In this context, we
will show how automation can significantly improve test se-
lection.

1.1 Some basic concepts

In the context of telecommunication protocols, the main con-
cepts of this activity are described in the standardizationdoc-
ument ISO 9646 [19]. Some of them are introduced here.

A test caseis an elementary test, targeted at testing a par-
ticular functionality, calleda test purpose. A test suiteis a
set of test cases. The basic elements of a test case are inter-
actions through PCOs: outputs are stimuli sent from the en-
vironment in order to control the IUT’s input events; inputs
are observations of the IUT’s outputs to the environment. In-

puts may lead to differentverdicts. A Fail verdict denotes a
divergence from the expected behavior: the IUT is rejected.
A Pass verdict is returned if the observation is correct and the
test purpose is reached. Sometimes, one wants to bring the
IUT into a particular state or the initial state after a test case,
by a procedure calledpostamble. In this case, a non-definitive
(Pass) first verdict is returned and the Pass verdict is only re-
turned if the postamble does not detect any non-conformance.
An Inconclusive verdict is returned if correct behavior is ob-
served, but it is impossible to reach the test purpose. This is
due to the fact that, in general, reactive systems cannot be
completely controlled by a tester: they may have the choice
between several output interactions to the same input. The
tester– specialized hardware, software or human operator –
executes test cases. But as test cases are often described at
some abstraction level (they are calledabstract test cases),
they must be translated intoexecutable test cases(level in
which all the coding aspects of data and interactions have
been resolved).

1.2 Formalizing for automation

Conformance testing is a costly activity which plays an im-
portant part in the global cost of software. For a long time,
the scientific community has tried to automate the process
of deriving test cases. For conformance testing, the reference
behavior is described by a specification which determines the
verdicts: it plays the role of anoracle, as it is called in the
general framework of testing. Automation thus requires for-
malizing the specification, but also formalizing the interac-
tion between the tester and the IUT. The definition of ver-
dicts also forces formalizing conformance, i.e. the relation
between the IUT and its specification that is checked during
testing. Algorithms for automatic test case synthesis mustbe
designed that take specifications as inputs. Essential proper-
ties of test cases must be established.Soundnessmeans that
test cases may only reject non-conformant IUTs,exhaustive-
nessmeans that all non-conformant implementations are re-
jected by a test suite (or may be rejected). The main ingredi-
ents for automation are described in [20].

Several approaches have been studied for conformance
test generation. For protocol testing, two approaches have
been studied, initially focused on control. A first approach
uses finite state machines (FSM) as a specification model
(see [29] for a survey or [31] for an annotated bibliography).
The principle of testing is to check that an unknown FSM, the
IUT, is equivalent to the specification. A finite set of finite test
sequences is generated which proves or disprove this equiv-
alence. Of course, this is only possible if the set of possible
IUTs is finite, which is ensured by hypothesis on both the
specification and IUT. Another approach was initially based
on labeled transition models and testing preorders [8,1], and
further improved by distinguishing inputs and outputs [35].
Hypotheses on specifications and IUTs are weaker. In par-
ticular non-deterministic specifications (in the sense of au-
tomata) can be handled. The counterpart is that a finite set of
test cases cannot prove conformance.

A third approach to formal conformance testing was ini-
tially focused on data. It is based on algebraic data types [3].
The principle is to test axioms, test cases being terms of the
algebra. Starting from an (infinite) exhaustive test set, hy-
potheses such as regularity or uniformity are added to restrict
the size of the exhaustive test set to a finite one. This approach
has been extended with LTS methods for Lotos specifications
mixing control and data [16].

The tool TGV presented in this paper uses the approach
based on labeled transition models. This means that it is based
on behavioral models of specifications in terms of labeled
transition systems. This does not exclude data in specifica-
tions, but means that data values are enumerated in the model.
TGV is also based on a precise testing theory which allows us
to describe test generation algorithms and establish important
properties on generated test cases. This is for us essentialto
gain confidence in software by testing. Nevertheless the TGV
approach is not only a theoretical work. It is also an efficient
tool that has proved useful in numerous case studies. This
efficiency is mainly due to the on-the-fly approach which al-
lows us to generate test cases by a partial exploration of state
graphs, thus avoiding the state explosion problem.

The paper presents all the TGV approach. The paper is
organized as follows. In section 2, we first briefly describe
the functional view of TGV. In section 3 we present the un-
derlying testing theory of TGV based on the model of labeled
transition systems with distinguished inputs and outputs,and
precise notions of conformance and verdicts. Then section 4
presents the synthesis algorithms and the properties that can
be established on generated test cases. The TGV tool is de-
scribed in section 5. Some case studies are described in sec-
tion 6, ending with lessons learned from these case studies.
In section 7, we compare the TGV approach with other tech-
niques and tools. Finally we conclude and draw some per-
spectives in section 8.

2 TGV functional view

TGV is a tool for test generation from specifications. Its func-
tional view is sketched in figure 1. One of the inputs is thus
a specification of the intended behavior of the system under
test. As will be seen later in section 5, TGV is not dependent
of any particular specification language, but depends on a par-
ticular semantics of these languages. This semantics should
focus on the behavior. The semantics of the specification thus
describes valid behaviors of the system under test.

TGV’s role is to select test cases from the behaviors of
the specification. For this, one needs to give a second in-
put that can be called a test selection directive. Test selec-
tion directives could take different forms, including random
test selection, selection guided by coverage criteria, guided
by test purposes, or a mixture of these. Even if TGV now
allows different selection directives (see the IF paragraph of
subsection 5.2, selection in TGV was originally based on test
purposes. Test purposes are specified by automata that ac-
cept behaviors of the specification. They allow us to describe

Specification Test selection directive
(Test purpose)

Test architecture

Tuning options

Abstract test cases

TGV

Figure 1. Functional view of TGV

targeted behaviors in an abstract way as it is not necessary
to describe complete sequences of actions. More general test
selection directives have recently been added to TGV, mixing
extended test purposes with test coverage directives, but in
this paper, we will mainly focus on simple test purposes.

Other optional inputs can be given to TGV. First, inputs
are used to refine the test architecture from the default one
implicitly defined by the specification. Second, options can
be given to tune the test selection algorithms.

In its original form, TGV generates abstract test cases
from a specification and a test purpose. Abstract test cases
describe behaviors in terms of input/output interactions be-
tween the tester and the IUT, and verdicts associated with
those behaviors. Abstract test cases produced by TGV are in
a generic format of graphs. These graphs can be easily trans-
lated into a specific language for the description of abstract
test cases such as in TTCN.

Abstract test cases are not directly executable on an IUT,
but specialized tools allow us to transform these abstract test
cases into executable test cases. TGV does not take into ac-
count this phase.

3 Testing theory in TGV

The contribution of TGV to automatic synthesis of test cases
is mainly in the area of algorithms and tool. TGV is based on
a conformance testing theory, inspired by work of Jan Tret-
mans and his colleagues (at the University of Twente) [35].
This theory inherits from preceding work on testing equiv-
alences and preorders [8,1]. The behaviors of specifications
and IUTs are modeled by a variant of labeled transition sys-
tems (LTS). Roughly speaking, the conformance relation is
a partial inclusion of traces of observable events and quies-
cence. We now present this theory, adapted to make it more
effective and understandable by non specialists.

3.1 Modeling with transition systems

Labeled transition systems (LTS) have long been used to de-
fine the semantics of behavioral specifications. LTSs are rep-
resented by graphs whose states represent configurations of
systems, and edges represent moves between these configu-
rations on the occurrence of actions. Usually LTSs make a
difference between internal and visible actions. But for con-
formance testing, a distinction must also be made between
events of the system that arecontrollableby the environment
(the inputs), and those that are onlyobservable(the outputs).
The model we adopt (called IOLTS for Input-Output LTS) is
an adaptation of the classical LTS model.

Definition 1 An IOLTS is a quadruple� � ��
M � �M � �

M
� �M

0 � where
�

M is a finite non-empty set
of states,�M

0 	 �
M is the initial state,�M is the alphabet of

actions. It is partitioned into three sets�M
� �M

I
 �M
O
 �M.�M

I is the input alphabet,�M
O is the output alphabet, and� M

the alphabet of internal actions.�M� �
M
 �M
 �

M is the
transition relation.

For the sake of clarity in the examples, we will write��
for an input� 	 �M

I and �� for an output� 	 �M
O .

Notations: Let
� � ��

M � �M � �
M
� �M

0 � be an IOLTS. The
subscript (or superscript)M will be omitted when clear from
the context. We write� ��

M
� � for

�� � � � � � � 	�M and� ��
M

for �� � � � ��
M

� �. An � ��� � is sometimes denoted by
its initial state, and we write

� �
M for �M

0
�

M. Let � ��� 	�M be some actions,� ��� 	 �M � � M be some visible actions
(inputs or outputs),� ��� 	 � M be some internal actions, 	��M � � M �! be a sequence of visible actions, and� � � � 	 �

M

be some states." �� � # $� 	 �M % � &�
M ' is the set of firable actions in�.

�()M

�� � # " �� � * �M
O is the set of firable outputs in� . We

extend it to sets of states: for+ � �
M

�()M

�+ � # $�()M

�� � % � 	 + ' .

Denote� & , ---&.�
M
� � # ��/ � 0 0 0 � �1 � � � �/ &,� �� &2�

3 3 3 &.� �1 � � �.
Visible behaviors are described by the4 relation. We de-

fine � 54 � � # � � � � or � 6, -62 7776.� ! � � and � �4 � � #�� � � �� � � 54 �� �� �� 54 � �. We also use the notations� �, 777�.4 � � # ��/ � 0 0 0 � �1 � � � �/ �,4 �� 3 3 3 �.4 �1 � � � and� 84# � � � � � 84 � �. The set� after # $� � 	 � % � 84 � � '
(respectively+ after # 9:;< � after) is the set of
states reachable from� (respectively from the state set+) by
action sequences from which only the projection onto vis-
ible actions is defined.� =�>?@ �� � # $ 	 �� � � �! % � 84 '
(respectively� =�>?@ �� � # � =�>?@ ��M

0 �) describes the se-
quences of visible actions firable from� (respectively from
the initial state of an IOLTS

�
).

From an IOLTS
�

, it is possible to build a deterministic
IOLTS with same traces as

�
. This IOLTS represents the

visible behavior of
�

.

0

1
2

3

5

8

9

4

7

6

?c

?a

?b

!z

!y

!x
?a

τ4

τ6

τ6

τ2

τ1

τ5

τ3
?c

!y

Figure 2. Specification�

Definition 2 Let
� � ��

M � �M � �
M
� �M

0 � be an IOLTS.The
deterministic IOLTS of

�
, denoted by�?) �� � is a determin-

istic IOLTS defined by

�?) �� � � ���M � �M � � M � � ��� � �M/ after � � where,

for + � + � 	 ��M � � 	 �M � � M �
+ �� ��� + � �4 + � � + after �

States of�?) �� �, calledmeta-statesin the sequel, are
subsets of

�
M, the initial state�M/ after � is the set of states

reachable from�M/ by internal actions. In section 4.3 we will
see an efficient construction of this IOLTS.

Models of specifications:A specification of a reactive sys-
tem is in general given in a specialized language or notation
(SDL, Lotos, UML, and IF in the case of TGV). The opera-
tional semantics of such a language describes all possible be-
haviors of specifications. This operational semantics is usu-
ally implemented in a simulator which allows to traverse the
behaviors of the specification.

We suppose here that the semantics of a specification is
given by an IOLTS� � ��

S� �S � �
S
� �S/ �. The example given

in Figure 2 will be our running example (where�� denotes an
internal action). It is not a real example, but it will illustrate
all particularities of the testing theory and algorithms.

Models of implementations:The implementation under test
(IUT) is a black box interacting with a tester. It is not a formal
object. However, if we want to reason about conformance,
we have to model the IUT’s behaviors. This is called thetest
hypothesis.

An IUT is modeled by an IOLTS

� 	 � � ��
IUT � � IUT � �

IUT
� � IUT/ � with � IUT

� � IUT
I
 � IUT

O
 � IUT .
We will always suppose the compatibility of the alphabets of

!x
deadlock

τ

τ

!x

?b

livelock τ

?aoutput

τ

τ τ

τ

τ

?a

?b
quiescence

!δ

!δ

!δ

!δ

!δ

!δ

Figure 3. Quiescence and how to make it explicit

the IUT and� , i.e.�S
I � � IUT

I , and�S
O � � IUT

O .
We assume that the IUT is(weakly) input complete: in each
state all inputs are accepted, possibly after internal actions,
i.e.
 � 	 �

IUT �
� 	 � IUT
I

� � �4 . This hypothesis is reasonable
when the IUT never refuses an invalid or inopportune input
but ignores the request or answers negatively.

3.2 Quiescence

In practice, tests observe traces of a system, but also quies-
cence bytimers. Several kinds of quiescence may happen and
are illustrated in the left side of Figure 3. Adeadlockstate is a
state where the system cannot evolve anymore, i.e.

" �� � � �
.

An output quiescentstate is a state where the system is wait-
ing only for an input from the environment, i.e.

" �� � � �M
I .

A livelockstate is a state from which the system diverges by
an infinite sequence of internal actions. In the case of the fi-
nite state systems that we consider, a livelock is a loop of
internal actions, i.e.�� � � �� � 0 0 0 �1 � � 6, -62 7776.� � . We denote
�?���
>� �� � the set of deadlocked states of the IOLTS

�
,

()�()�
>� �� � its set of outputlocks and��� ? �
>� �� � its
set of livelock states. A deadlock is a special case of output-
lock, thus�?���
>� �� � �
()� ()�
>� �� �. The set of all
quiescent states is denoted by

�(�?@>?�) �� � �
()�()�
>� �� �
 ��� ?�
>� �� �
As conformance testing is based on the observation of

visible behaviors, test synthesis requires a determinization of
the specification: two sequences with same traces cannot be
distinguished, but their respective suffix must be considered
as possible evolutions of the system. Also, the information
about quiescence of the specification must be preserved by
determinization. This is only possible if quiescence is com-
puted on the specification. This results in the definition of an
IOLTS called asuspension automatonwhich makes explicit
the quiescence by the addition of a new observable action�,
considered as an output. This automaton is described by the
following definition, and its construction is sketched in Fig-
ure 3.

Definition 3 Thesuspension automatonof an IOLTS� � ��
M � �M � �

M
� �M

0 � is an IOLTS

0

1
2

3

5

8

9

4

7

6

?c

?a

?a

!x

τ4

!y

?c

?b

!y

!z

τ6

τ6

τ5

τ1

!δ
!δ

!δ

!δ

!δ

!δ

τ3

τ2

Figure 4. � �� �, the suspension automaton of the specification�

� �� � � ��
M � �� �M� � �� �M� � �M

0 � where�� �M� � �M
 $� '
with � 	 �� �M�

O (� is considered as an output, observable
by the environment), and the transition relation� � �M� is ob-

tained from�
M by adding loops� �� � for each quiescent

state� (i.e. livelock or output quiescence and thus deadlock).
More formally

�� �M���
M
$�� � � � � � % � 	 �(�?@>?�) �� �'

The traces of
� �� � are called thesuspension tracesof � , and

are denoted by�� =�>?@ �� �.
For a specification� , its suspension traces�� =�>?@ �� �

exactly represent all the behaviors of� that can be observed
by the environment, i.e. its sequences of inputs, outputs and
quiescence. This will thus constitute the basis for test syn-
thesis. The visible behavior of the IUT is also characterized
by its suspension traces�� =�>?@ ��	 � �. Conformance test-
ing will thus be based on a comparison of the observed traces

�� =�>?@ �� 	 � � with expected ones�� =�>?@ �� � as will be
formalized in the next subsection.

Example: Figure 4 represents
� �� �, the suspension automa-

ton of the specification� of Figure 2. States�,
�

and� are
livelocks as they belong to loops of internal actions, while
states�, 	 and
 are outputlocks as only inputs are firable in
those states.

The suspension traces of� representing the visible be-
havior of � are characterized by the sequences of the au-
tomaton�?) �� �� �� obtained from

� �� � by determinization
(see Definition 2). For our example,�?) �� �� �� is represented
in Figure 5. Its initial meta-state� corresponds to the set
of states� after � � $� � � � � �
' of

� �� �. In
� �� �, �� is

firable from state
�
, leading to�. Thus meta-state� leads

by �� to the meta-state
�

corresponding to the set of states
� after � � $� � � '. The construction proceeds until no new
meta-state is created.

0

!δ !δ

!δ

!δ

!y

?c

?a

?b

?c

!y

!y

!x

?a

!y 2

1

4

6

5

3

!z

Figure 5.
�� �� �� ��, the visible behavior of� obtained by determinization
of � �� �

3.3 Conformance relation

A conformance relationformalizes the set of IUTs that be-
have consistently with a specification. Following Tretmans[35],
the considered observations during testing are the suspension
traces, as they represent the visible behavior of a system. As
the IUT is unknown and conformance is considered, not ro-
bustness, the observation is restricted to specified behaviors,
thus traces of the specification. Intuitively, an implementation

� 	 � conforms to its specification� for ioco if after each sus-
pension trace of �� =�>?@ �� � the � 	 � exhibits only out-
puts and quiescences that are possible in� . Formally:

Definition 4 Let � be an IOLTS and� 	 � be an input com-
plete IOLTS (compatible with�),

� 	 � ioco � #
 	 �� =�>?@ �� � �
�() �� �� 	 � � after � � �() �� �� � after �

Examples: Figure 6 explainsioco for a simple specification
and several IUTs.� 	 � � ioco � because in each state, outputs
of � 	 � � are included in outputs of� . ioco thus allows us
to restrict the IUT on outputs (as in state 1).�	 � � ioco �
even if the initial state of�	 � � allows a new input��, as
only the outputs are checked byioco. ioco thus allows partial
specifications. However� �� 	 � � ioco � � as the output��
after the input�� is not allowed in the specification. The other
reason for non-conformance is that the quiescence after�� ��
(due to an internal loop for example) is not specified in� .

3.4 Tests: models, execution and properties

Reactive systems that we consider are not always controllable
by their environment. Thus test cases should have the choice
between correct inputs and should foresee a non-conformant
IUT. For example in Figure 6, if a tester sends�, it should
wait for either� or � , but also for any other output (that will

IUT1

!δ

!δ

!x

Specification

partial specification

!z

implementation choice forbidden output
IUT2

forbidden quiescence

?a

!y

!δ

!z
?a

!δ

!z
!x

?a
!z

?b

δ
!δ

!y!x
!z

!δ !δ

!δ

Figure 6. iocoby example:� � � � ioco � and� �� � � � ioco � �

allow the tester to reject� 	 � �). In contrast, we assume that
the testers do not present choices between outputs as they
control them. Furthermore, they have no internal actions. To
model a test case, we also use an IOLTS, but extended with
verdicts and some additional properties. A test case has a
complex behavior whose structure is a graph with possible
loops.

Definition 5 A test caseis an IOLTS

� � � ��
TC � � TC � �

TC
� �TC

0 � equipped with three sets of trap
statesPass � �

TC, Fail � �
TC and Inconc � �

TC char-
acterizing verdicts. Its alphabet is� TC

� � TC
I
 � TC

O where� TC
O � �S

I (� �
emits only inputs of�) and� TC

I � � IUT
O
 $� '

(� �
foresees any output or quiescence of� 	 �). We make

several structural assumptions on test cases:

– states inFail and Inconc are only directly reachable by
inputs:

 �� � � � � � � 	� TC

�� � 	 Inconc
 Fail 4 � 	 � TC
I �

– from each state a verdict must be reachable:

 � � � 	 �TC! � �� � 	 Pass
 Inconc
 Fail � � 8� � �
– TC iscontrollable: no choice is allowed between two out-

puts or an input and output:

 � 	 � TC �
� 	 � TC
O
� � ��

TC4
 � �� � � � � �� TC

– a test case isinput completein all states where an input
is possible:

 � 	 �
TC � �� � 	 � TC

I
� � ��

TC4
 � 	 �TC
I
� � ��

TC�
A test suiteis a set of test cases.

Test execution:Test cases are executed against an IUT, and
this execution results in verdicts telling if the IUT shouldbe
rejected or not. This execution should be formalized as we
need to establish properties such as soundness and exhaus-
tiveness, which relate verdicts of executions to conformance.
We assume a synchronous communication between test cases
and IUTs. Thus, the execution of a test case against an IUT
is modeled by a parallel composition with a synchronization
on common visible actions. This is formalized by the three
following rules:

� ��< � � � � ��� � �
�
� � � � ��< ��� �

� � � � � �
� 6� < � ��

� � � � 6� < ��� �
� � � � �

� 6�� � �
�
� � � � 6�< ��� �

� � � � �
This model of execution, together with the hypothesis

made on the IUT and test cases, ensures that� � %%� �� 	 � �
may only block in states where a verdict is returned by� �

.
Thus verdicts are associated withmaximal tracesof the test
cases, i.e. sequences 	 � TC� such that

" ��TC/ after � � �
.

Note that test cases (in particular those generated by TGV)
may have loops. Thus test execution may be infinite. To pre-
vent this, global timers should be used.

Verdicts: A verdict associated with the execution of a test
case TC on an IUT is completely determined by the state of
TC reached by a maximal trace of� � %%� �� 	 � �. Depending
on this state, it can bePass, Fail or Inconc1

� ?=��>) � � � Fail # � �
after � Fail

� ?=��>) � � � Pass # � �
after � Pass

� ?=��>) � � � Inconc # � �
after � Inconc

A possible rejection of an IUT by a test case is defined
by:

� � 	 �� =?
 ?>) �	 � # � 	 � =�>?@ �� � %%� �� 	 � �� �
� ?=��>) � � � Fail

may passandmay inconcare defined in the same way. Notice
that the lack of control of test cases on an IUT implies that a
unique test case may reject, accept or return an inconclusive
verdict on the same IUT.

1 We make a distinction between the verdict, e.g.Pass, and the set of states
of a test case where a verdict is assigned, e.g.Pass.

Test case properties:The execution of test cases on imple-
mentations should give a verdict about the conformance of
an IUT with respect to a specification. As conformance is de-
fined formally by a conformance relation, we need to relate
the verdicts of these executions to the conformance relation.
This is done by the following properties of test cases and test
suites.

Definition 6 A test case� �
is soundfor � andioco if

 � 	 � � � 	 � ioco � 4 � �� � 	 �� =?
 ?>) � 	 � �
A test suite is sound if it consists of sound test cases.

A test suite isexhaustivefor � andioco if

 � 	 � � � �� 	 � ioco � � 4 � � 	 �� =?
 ?>) � 	 �
A test suite iscompleteif it is both sound and exhaustive.

The minimal property required for test suites issound-
ness: a test suite should not reject a conformant IUT. This
property is important, but not sufficient in practice as test
cases accepting all IUTs are sound. One would likeexhaus-
tive test suites, i.e. every non-conformant IUT would be re-
jected. But it is unreachable for finite test suites as soon as
the specification has loops. It requires an infinite number of
test cases or infinite state test cases. Thus we will only require
the exhaustiveness of the synthesis technique: the infinitetest
suite composed of all test cases that the synthesis algorithm
can construct is exhaustive. Thus, for a non-conformant IUT,
it is theoretically possible to produce a test case that may re-
ject it (under some fairness assumption of the IUT).

3.5 Formal test purposes

One of the main ingredients of the test synthesis technique
implemented in TGV is the formalization of the concept of
test purpose, and its use for test selection. In practice, test pur-
poses are informal descriptions of behaviors to be tested, in
general incomplete sequences of actions. In TGV, we model
test purposes by automata (formally IOLTS extended with
marked states) accepting sequences of actions of the speci-
fication. One could restrict test purposes to traces or suspen-
sion traces, as advocated in [10]. However, allowing internal
actions in test purposes is more powerful. It is very useful
when one wants to design test purposes for complex systems
when the targeted visible behavior is difficult to foresee from
the behaviors of individual components. This is particularly
true when the communication with the system is performed
through a context (FIFO channels for example) that provokes
a distortion of the IUT’s behavior (see Figure 7). In this case,
one would like to test the IUT’s behavior, but its input/output
behavior may not be directly visible by the tester as PCOs
are at the boundaries of the system under test. Thus tests cases
should be composed of actions which are visible at the PCOs.
The specification should describe the whole system under
test, including the context. But test purposes can be written
according to the input/output behavior of the specificationof
the IUT, and thus the internal behavior of the system.

PCO
System under test

Tester
{test cases}ContextIUT

Figure 7. Testing in context

Another useful feature of test purposes in TGV is the no-
tion of AcceptandRefusestates, allowing an efficient test se-
lection, in particular on-the-fly (see section 4.6).Acceptstates
are used to select targeted behaviors, whileRefusestates are
used to cut down the exploration of the specification state
space when undesired actions are taken. An adequate use
of Refusestates may dramatically reduce the test generation
cost.

Definition 7 A test purposeis a deterministic and complete
IOLTS� + � ��

TP � �TP � �
TP
� �TP

0 �, equipped with two sets of
trap states AcceptTP andRefuseTP, with the same alphabet as
the specification, i.e.�TP

� �S. Completemeans that each
state allows all actions, i.e.
 � 	 �

TP �
 	 �TP � � ��
TP and a

trapstate� has a loops on each action i.e.
� 	 �TP� � ��
TP

�.
Note and example:It is interesting to allow abstraction in the
description of test purposes with respect to the specification
behavior. This is particularly true because in on-the-fly test
generation, we want to avoid the construction of the whole
state graph of the specification. However, in the above defi-
nition, test purposes should be complete, which could seem
contradictory. In fact it is not. To satisfy the completeness re-
quirement, we use the label “*” in TGV which, in a transition� !� � � is an abbreviation for the complement set of all other
transitions leaving�. Moreover, such “*”-transitions can be
implicit as by convention, TGV completes incomplete states
by a “*”-loop. This allows the user to describe test purposes
with partial sequences of actions that will be automatically
completed by TGV. Another abstraction mechanism is pro-
vided by the use of regular expressions for the description of
sets of labels. This allows us to describe incomplete labelsof
transitions. This is particularly useful as it is sometimesdif-
ficult to know the format of transition labels from the specifi-
cation language. Figure 8 gives an example of a test purpose

� + for the specification� . In this example one wants to se-
lect sequences of actions in which labels do not end with�
or � (represented by the regular expression.*[z5]) before
a � , and when� occurs it is followed by a� . Here “*”-loops
are implicit in all states.

4 Principles and algorithms

This section describes the main algorithms of TGV. Let us
sketch these algorithms, summarized in Figure 9. TGV takes
as inputs a specification� and a test purpose� + . The first
operation performs a synchronous product between� and

� + , marking � ’s behaviors accepted (or refused) by� + .

0

1

2
Accept

3
Refuse

.*[z5]

*

.*y

.*z

*

*

*

Figure 8. Test purpose� � for specification� in Figure 2

From the result�+ we build the visible behavior (traces and
quiescence) in�+ VIS. Test selection then builds an IOLTS� � � by extraction of the accepted behaviors and inversion
of inputs and outputs. Finally, all controllability conflicts are
suppressed to conform with the definition of test cases. Alter-
natively, some conflicts can be suppressed during selection,
leading to the construction of� � , and only residual con-
flicts are suppressed afterward. When� is given implicitly
by traversal functions, all operations except conflict resolu-
tion can be applied on-the-fly. This means that the aforemen-
tioned IOLTSs do not need to be completely constructed but
only partially.

4.1 Preliminary notions

A graph
�

with set of vertices� and set of edges� is de-
noted

� � �� �� �. A strongly connected component(SCC) is
a maximal subset� � of � such that, for each pair

�� � �� � � of
vertices in� �, there is a path from� � to � � and a path from� �
to � �. An SCC istrivial if restricted to a single vertex with no
loop. The partition of� into SCCs, defines areduced graph
in which vertices are SCCs, and there is an edge from an SCC
� � to an SCC�� if there is an edge in

�
from a vertex in� �

to a vertex in�� .
In the sequel, we will see that several problems in test

synthesis can be understood as reachability problems. Now,
there is strong relation between reachability and SCC, as all
vertices of an SCC have the same reachability properties: if
a vertex� is reachable from a vertex(of an SCC� �, � is
reachable from all vertices in� �.
Computation of SCCs:Tarjan [34] describes an algorithm of
linear complexity for the computation of SCCs. In [26], we
give an iterative version with “holes”, and instantiate these
“holes” for several algorithms used in TGV. The algorithm is
a depth first traversal (DFS). Its principle is to identify SCCs
by theirroots, i.e. vertices first reached in the DFS. The DFS

TPS

SP

SP

−
ct

g

selection

TGCTG

TC

on−the−fly

controllability

determinization

 (+ δ)

synchronous product

vis

suspension

Figure 9. Overview of test synthesis operations

uses two stacks: the DFS-stack contains vertices of the cur-
rent sequence and their pending edges, and the SCC-stack
contains vertices where an SCC is not completed. When an
SCC root is popped from the DFS-stack, all vertices of the
same SCC are on the top of the SCC-stack and are popped
together.

4.2 Synchronous product

Test synthesis in TGV takes as inputs a specification� and a
test purpose� + . The first problem is to identify behaviors of

� accepted (onAcceptstates) by� + or refused (onRefuse
states) by� + . This is a classical problem of computation of
the intersection of languages. Just as in model-checking, this
is solved by a synchronous product.

Definition 8 Let� � ��
S� �S� �

S
� �S/ � be an IOLTS and� + �

��
TP � � TP � �

TP
� �TP

0 � a test purpose with� TP
� �S and equipped

with state setsAcceptTP andRefuseTP.
The synchronous product�
 � + is an IOLTS

�+ � ��
SP� �SP� �

SP
� �SP

0 �, equipped with two disjoint sets of
statesAcceptSP andRefuseSP, and defined as follows:

– its alphabet is�SP # �S
�� �TP�.

– its state set
�

SP is the subset of
�

S
 �
TP reachable from

the initial state�SP
0 # ��S

0
� �TP

0 � by the transition relation�
SP

– the transition relation� SP is defined by:��S� �TP� ��
SP

�� �S� � �TP� �4 �S ��
S
� �S � �TP ��

TP
� �TP

(8,0)

(0,1)

(3,0)

(3,1)

(5,0)

(5,1)

(8,1)

(2,0)

(2,1)

(6,0)

(6,1)

?c

τ4

!z

!δ

!δ
τ2

(0,0)
τ1

τ5

τ3

?a

!y

!y
?c

(6,1)

?b

!z

τ6

!y

τ1

!x

?a

!x

τ5
?a

τ3

?a

!y

τ2

τ4

!δ

?c ?b

τ6!δ (4,1)

τ6

!y?c

!z

!δ

(1,0)

(9,0)) !δ

!δ

(1,1)

!δ(9,1))

(7,1)!δ

(7,1)!δ

(4,0) τ6!δ

!δ

Accept
(2,2)

Refuse
(2,3) (1,3)

Refuse

Figure 10.Synchronous product�� � � � � � and quiescence� ��� �

– AcceptSP andRefuseSP, are defined as follows:

AcceptSP # �
SP * ��

S
 AcceptTP�
RefuseSP # �SP * ��S
 RefuseTP�

The effect of the synchronous product is to mark behav-
iors of � by Acceptand Refuse, and possibly to unfold� .
More precisely, accepted behaviors of� + are exactly those
behaviors of� which are accepted by� + . As � + is com-
plete, all behaviors of� (including quiescence) are preserved
in �+ . More precisely,�
 � + is bisimilar to � . �+ is
built during the following operation but could be built by any
traversal.

Figure 10 represents the synchronous product�
 � +
of the specification� of Figure 2 and test purpose� + of
Figure 8. Its suspension automaton

� ��
� + � is obtained by
adding the dashed� loops. The construction has been stopped
in Acceptand Refusestates as subsequent behaviors is not
explored by TGV as it will be cut by the following operations.

4.3 Visible behaviors

The next operation consists of extracting the visible behav-
ior (traces and quiescence) from� + , i.e. constructing the
IOLTS �+ VIS

� ��
VIS � �VIS � �

VIS
� �VIS

0 � such that�+ VIS
�

�?) �� �� + �� (see definitions 3 and 2). Note that suspension

1

5

8

12

10

2

9

11

3

7

0

Accept

Refuse

Refuse
4

6

!δ

!δ

!δ

!δ !δ
!δ

!δ

!δ

!δ

!y !y

!x

?c
?c

!z

!x

?a

!x

?a

!y

!z

?b?a

!y

?c

!y

?b

Figure 11. Visible behaviour of the synchronous product:�� VIS
�

�� �� �� � � � ��

is applied first because determinization preserves traces,but
not quiescence.�+ VIS is equipped withAcceptand Refuse
states:

RefuseVIS � $+ 	 �
VIS % + * RefuseSP �� �'

AcceptVIS � $+ 	 �
VIS % + * AcceptSP �� �' � RefuseVIS

This means that we choose to refuse a trace as soon as it
corresponds to at least one refused sequence in� + . This
choice is justified by the fact that this cuts down the explo-
ration earlier. Figure 11 gives the result of this computation
for the examples� of Figure 2 and� + of Figure 8. In this
example, the exploration has been stopped inAcceptstate 11
andRefusestates 4 and 6 as successors ofAcceptstates (re-
spectivelyRefusestates) are alsoAcceptstates (resepctively
Refusestates).

Computation of�?) �� �0��: We already gave the definitions
of

�
and�?), but for the sake of efficiency, quiescence and

determinization are computed simultaneously. We will illus-
trate the computation on�
 � + of Figure 10 and its result

�+ vis in Figure 11.
Theoretically, a� loop should be added in each quiescent

state. For deadlocks (no deadlock in�
� +) and output qui-
escent states (states (1,0),(1,1), (7,1), (9,0) and (9,1)), we just

look at outgoing transitions. For livelocks, which are loops
of internal actions (in states (0,0),(0,1), (2,0), (2,1), (4,0) and
(4,1)), a� loop should be added in each state of a non-trivial
SCC of internal actions (� -SCC for short). But, as

� �� � is
determinized afterward, adding a� loop in the root of each� -
SCC has the same effect on4 . We will see how to combine
this with determinization.

Determinization: Determinization consists of building the de-
terministic IOLTS�?) �� �� �� starting from its initial meta-

state�� �� �0

� �� �� �
0 after � (in the example, the meta-state�

of �?) �� �� �� is $�� � �� � �� � � � � �� � �� � �
 � ��') by alternation
of two operations:

– subset construction: for a state set+ and a visible ac-
tion �, compute the set+ � � $� � %�� 	 + � � �� � � ' of
states reachable in one visible step� from + . For + �
$�� � �� � �� � �� � �� � � � � �
 � ��' and ��, the result is+ � �
$�� � �� � �� � ��'.

– �-closure: for a state set+ , compute the set+ after � of
states reachable from+ by sequences of internal actions.
For+ � $�� � � � � �� � ��', + after � is also$�� � �� � �� � � �'.
In [25] we propose an�-closure algorithm that avoids re-

dundancies, with the counterpart of a supplementary memory
complexity. The idea is as follows. For all states� of the same
� -SCC, the sets

� �=? �� � � �
�;���SP�

�� � $� � % � �4 � � '�

are identical. In fact
� �=? �� � denotes visible actions after a�

sequence and resulting states, and is thus a reachability prop-
erty.

For example� �=? ��� � � �� � $��� � $ �� � �� � �� � � �'� � ��� � $ �� � ��'� ���> � $�	 � ��'� � ��� � $ �� � �� � �� � � � � �� � �� � �
 � ��'�'
and

� �=? ��� � � �� � � �=? ��� � ���,
while

� �=? ��� � � �� � $��� � $ �� � ��'� � ��� � $ �� � � �'�'.
A meta-state ($�� � �� � �� � �� � �� � � � � �
 � ��' for example)

is not only a set of states but a reduced graph of� -SCC
($�� � � � � �� � ��', $�� � � �', $�
 � � �') and

� �=? �=

) �� � �� is syn-
thesized on each� -SCC� �. Meanwhile, quiescence is com-
puted and�-loops added. In particular a livelock is a non triv-
ial � -SCC (e.g.$�� � � � � �� � ��'). Then, when an already vis-
ited state� is reached by a new call to�-closure, the root of
its � -SCC returns

� �=? �� �. For a meta-state+ , the set

� �=? �+ � � �

�;�� �_�1��

� �=? �=

) �� � ��

where�� � �1�� is the set of initial SCC of the reduced graph
of � -SCC of+ , gives all firable transitions and reached states.
Thus it gives the result of the subset construction. The time
complexity of determinization remains exponential but, by
avoiding redundancy, our algorithm is much more efficient
than the naïve one.

A word on minimization:The IOLTS�+ VIS built is not min-
imal w.r.t. trace equivalence. As partition refinement algo-
rithms used for minimization work backward, they need the
complete IOLTS. But on-the-fly test synthesis (see section 4.6)
avoids the complete construction of�+ VIS and works for-
ward. We then use a weaker equivalence relation and mini-
mize�+ VIS on-the-fly for this relation: two meta-states+� and
+� of �+ VIS are “1-step equivalents” if

� �=? �+ � � � � �=? �+� �.
This minimization is simply done by a coding of each meta-
state+� by

� �=? �+ � �, which is the only used information in
+�.
4.4 Test selection

�+ VIS represents all visible behaviors of� . Among these,
some visible behaviors correspond to behaviors accepted (or
refused) by the test purpose� + . They are defined by the sets
AcceptVIS and RefuseVIS. The next operation consists of ex-
tracting a test case by selection of accepted behaviors. This
operation does a little more as, to compute a test case (see
definition 5), we must perform a mirror image (invert inputs
and outputs), complete it for inputs in all states where an in-
put is possible, ensure controllability, and define verdicts by
setsPass, Inconc andFail.

In the first step, we will not deal with controllability, and
will describe the computation of an IOLTS

� � � or Complete
Test Graph.

� � � is an interesting IOLTS as it contains all
test cases corresponding to the test purpose. Moreover, it is
easier to explain separately how controllability conflictsare
solved. Except forInconc andFail states,

� � � represents
the useful part of�+ vis, that is, it is composed of states (the set

� ��) and transitions (�
��) playing a role in the acceptance
of traces.

Definition 9 For a specification� and a test purpose� + ,
thecomplete test graphis an IOLTS� � � � ��

CTG� �CTG� ��
CTG

� �CTG
0 �, with three sets of trap states

Pass, Inconc andFail, and defined from�+ VIS
� �?) �� ��

� + �� as follows:

– its alphabet is�CTG
� �CTG

O
 �CTG
I with �CTG

O � �VIS
I and�CTG

I

� �VIS
O (mirror image),

– its set of states is
�

CTG
� � ��
 Inconc
 Fail, with

– ��� � $� 	 �
VIS % � 	 �VIS� � � 8�

VIS AcceptVIS'.
L2A stands forleads toAccept). It consists of states
from whichAcceptVIS is reachable,

– Inconc
� $� 	 �

VIS % �(� �� � � �	 ��� � � 	�VIS
O
� (��

VIS � '. i.e. Inconc is composed of states not
in ��� , but which are direct successors of states in

��� by an output in�+ VIS.
– Fail

� $Fail' where Fail �	 �
VIS is a new state.

– if �VIS
0 	 ��� , the initial state is�CTG

0

� �VIS
0 and

�
CTG is

restricted to states reachable from�CTG
0 by� CTG, otherwise�

CTG is empty.
– the transition relation is� CTG

��
L2A
 �

Inconc
 �
Fail

where

�
L2A

� �
VIS * ����
 �CTG
 ����

1

5

8

9

11

2

0

Pass

10

4
Inconc

6

?y
!b

?y

?y

?z

?y !a

?x

?z

!b!a

?x

?δ
?δ

?δ

?δ

?δ

Inconc

InconcFail ?otherwise

Figure 12.Complete test graph

�
Inconc

� �
VIS * �� ��
 �CTG

I

 Inconc��

Fail

� $�� � � �Fail� % � 	 ��� � � 	 �CTG
I

� � � �� VIS'
– Finally, Pass

�
AcceptVIS.

Figure 12 illustrates the computation of the complete test
graph from� + VIS of Figure 11 for the examples� and� + .
In �+ VIS, the SCCs$� ', $�', $�', $� � � �
 ' and$��' all lead
to Accept, thus their states and transitions are preserved in� � � . $� � 	' does not lead toAcceptand is cut as it is reached
by the input�>, but outputs�� and�� leading to$� ', $�� ' and

$	' are preserved and lead to an Inconclusive verdict.

Algorithm: According to the definition of
� � � , the main

point is to compute the set� �� and to check if�VIS/ 	 ��� .
Now, the set��� consists of co-reachable states ofAccept
(note that all states are reachable from�VIS/ by construction),
i.e. states where the CTL [7] property��� � � �

AcceptVIS

holds. This computation is classical in model-checking and
is often performed by a backward traversal fromAccept. But
a forward traversal is possible, using properties of SCC, and
is more adapted to on-the-fly computation. As a matter of
fact, either all states of an SCC are in� �� or none of them
are. The algorithm, called TGVloop, adapts Tarjan’s algo-
rithm by the additional synthesis of the attribute��� and a
construction of� L2A during backtracking. This algorithm can
be seen as a model-checking algorithm for��� producing
all witnesses of��� starting in the initial state. Moreover,

!a !b ?x !a !a ?x ?y

forbidden configurations allowed configurations

Figure 13.Controllability conflicts

the computation ofInconc and�
Inconc is done during back-

tracking of output transitions of� + VIS from states in��� to
states outside��� . TheFail state and transitions in� Fail are
implicit, � � ��� being defined by complementation of firable
transitions. The algorithm has linear complexity in time and
space, just like Tarjan’s SCC algorithm.

4.5 Pruning controllability conflicts

� � � satisfies all properties required for a test case (defini-
tion 5), except controllability: some states� of

� � � may
have a choice between outputs or between inputs and outputs
(see Figure 13). Solving these conflicts consists of extracting
a controllable subgraph of

� � � while preserving other re-
quired properties. In a state with a conflict, some transitions
must be pruned: either one output is kept and all other outputs
and inputs are pruned, or all inputs are kept and outputs are
pruned. Unreachable states are suppressed. Reachability to
Accept(or Pass, synthesized in���) is preserved by a back-
ward traversal of

� � � from Passstates to the initial state.
Among possible traversal strategies we choose a breadth first
traversal for its ability to select shorter paths fromPass. Fig-
ure 14 shows a test case which is one possible result of this
conflict resolution for the CTG of Figure 12. In state 0 of
CTG, �� is chosen but�� and �� are pruned. In state 5,�� is
chosen but�� and�� are pruned. Note that�� could be chosen
in 0 but �� cannot in� as the PASS verdict would be unreach-
able.

Forward pruning: Conflict resolution with a backward traver-
sal, as presented previously, requires a complete construction
of

� � � . But this reduces the interest of the on-the-fly syn-
thesis (see section 4.6). Another solution consists of prun-
ing during backtracking in TGVloop. Suppose that TGVloop
pops a state� � of �+ VIS from which AcceptVIS is reachable
(i.e. � � 	 � ��), and let� be its immediate predecessor in the
DFS stack by action�. If � is an input in�+ VIS (an output
of the tester), all other transitions leaving� (already explored
or not) can be pruned. If� is an output of�+ VIS (an input
of the tester), all inputs can be pruned. In the first case, al-
ready explored transitions do not lead toAcceptVIS, otherwise
one of the rules would have been applied already and the in-
put � pruned. In the second case, already explored inputs do
not lead toAcceptVIS, otherwise the first rule would have been
applied previously and the input� pruned.

This may solve some controllability conflicts and avoid
the construction of some parts of

� � � . But some conflicts
may not be solved this way, only in the case of particular

Fail

0

4
Inconc

?δ

Pass

1

5

9

11

?x

!a

?y

?y !b

?z

?otherwise

?o
th

er
wise

Figure 14.A possible test case for the example

traversal orders in loops. In fact, when a state� � is popped
from the DFS stack, it is not always known if it is in� ��
or not. In the worst case, this is known only when its SCC is
computed and the two preceding rules cannot be applied.

However, residual conflicts can be solveda posterioriby
the backward algorithm. In the example, the conflict in 0 can
be solved by forward pruning but the conflict in 5 is solved
this way only if �� is explored before��.

4.6 On-the-fly test case synthesis

Figure 9 gave an overview of the operations needed for test
synthesis. Remember that after the computation of the prod-
uct �+ � �
 � + , the suspension automaton

� �� + � and
the deterministic automaton of it� + VIS

� �?) �� �� + �� are
factorized in one operation.AcceptandRefusesets are prop-
agated by these operations. From�+ VIS a complete test graph� � � is computed by selection of traces leading toAcceptVIS,
mirror image, addition of verdicts. Alternatively, a test graph

� � can be built by pruning some controllability conflicts
during selection. Finally, residual controllability conflicts on� � � or � � are solved to produce one test case� �

.
In general� �

is small compared to� , because of se-
lection by� + . Also the specification is not given explicitly
by an IOLTS but in a specification language. Its semantics
is an IOLTS� , but it is given implicitly by a simulator API
in terms of functions allowing its traversal. Building� com-
pletely when only a small part is used in� + is thus ineffi-
cient, and in general impossible if� is not finite state.

The idea of on-the-fly synthesis is to perform a lazy con-
struction of subgraphs of� , �+ and�+ VIS necessary for the
construction of� �

, i.e. selected by� + . To understand the

global behavior, one has to reason in terms of functions for
the construction of each of the IOLTS� , � + and�+ VIS. The
required functions are traversal functions:init gives the ini-
tial state;firable gives the set of firable transitions in a state;
from a state and a firable transition,succcomputes the (set
of) target state(s). Additionally, a comparison function,and
functions computing the membership ofAcceptor Refuseare
needed.

In the worst case, on-the-fly synthesis does not reduce the
construction of the IOLTS� , �+ and� + VIS. But in practice,
the reduction is often dramatic, in particular if� + strongly
constrains the behaviors by the use ofRefusestates. Using
this technique often allowed us to quickly synthesize test cases
on very large or even infinite state spaces. Nevertheless, itis
clear that if� is small, it is preferable to build it completely
and to minimize it before test synthesis with different testpur-
poses. As we already noted, on-the-fly test synthesis does not
allow minimization for trace equivalence, and this sometimes
results in the unfolding of loops in test cases. However, as test
cases are often small, they can be minimizeda posteriori.

4.7 Properties of synthesized test suites

Test cases produced by TGV have nice properties relating
verdicts computed during test execution and conformance.
These properties are stated by the following theorem:

Theorem 1 For every specification� , all test suites produced
by TGV are sound. Moreover the (infinite) test suite consist-
ing of all test cases that TGV may produce is exhaustive.

We do not detail the proofs here but just explain the main
principles. For soundness, we need to prove that if a test case

� �
may reject an implementation�	 � of a specification� ,

then ��	 � ioco � . It then suffices to prove that aFail
verdict of a test case is only put after a forbidden input (an
output of �	 � not specified in�) after a suspension trace
of � . This is almost clear from the definition of CTG. Con-
versely, for exhaustiveness, we need to prove that for every
non-conformant� 	 � , there is a test purpose� + and a pos-
sibility to synthesize a test case� �

from � and � + , such
that � �

may reject� 	 � . But, if �� 	 � ioco � , there is a
suspension trace of � such that an output of�	 � after
is not possible in� . � + is then constructed from and there
is a possibility to extract a test case� �

from the CTG such
that � 	 � may be rejected by� �

.

5 The TGV tool

5.1 TGV architecture

The architecture of TGV follows its functional description
described (see Figure 15). TGV has several software levels
communicating through APIs. Each API is a simulation API
of an IOLTS made of graph traversal functions: the computa-
tion of the initial states, the computation of firable transitions

o
n

−
th

e−
fl

y

API of SPvis

API of SP = S x TP

(bcg, aldebaran,TTCN GR and MP)

(SDL,Lotos,UML,IF, bcg,aldebaran)

formatter

compiler

API of TP

selection

Specification

(bcg,aldebaran)

Test Purpose

compiler

(δ)

synchronous product

suspension determinization

API of CTG API of TG

API of TC

Test Case

API of S

simulation simulation

controllability

Test architecture

i/o, hide, rename

Tuning options

 API for

 CADP

−regexp

−hiding

−renaming

−storage

Figure 15.TGV architecture

of a state, the computation of its successors, and the com-
parison between states. Each level implements one of the al-
gorithms described in section 4, transforming an IOLTS (or
two in the case of the product) given by its simulation API
into a simulation API of a new IOLTS. Additionally, TGV
uses libraries for storing states, for hiding, renaming andreg-
ular expressions provided by the CADP toolbox [14]. Due to
this architecture, TGV guides the simulation API of different
specification languages with the same source code, except for
the highest API. This ensures the coherency of different vari-
ants, and facilitates porting to new systems (TGV works on
SunOS 5, Linux and WindowsXP). Moreover some parts can
be used alone or by other programs. In particular, we have im-
plemented a module called VTS which verifies soundness and
strictness of manual test cases (strictness of a test case states
that it may reject all IUTs that are non-conformant on the
traces of the test case). This module just replaces TGVloop
and uses other levels. It also served for testing TGVloop.

5.2 Supported languages

TGV supports different specification language by a connec-
tion to their simulation API:

Lotos: TGV uses the simulation API provided by the CAE-
SAR compiler of the CADP toolbox. But as Lotos does not
distinguish inputs and outputs, TGV needs an additional file
which partitions visible events into inputs and outputs.

SDL: TGV uses the simulation API of the ObjectGeode SDL
tool from Telelogic [17]. There exist two versions of this con-
nection. The academic version uses a CADP-like API and
guides the ObjectGéode simulator. The commercial tool Test-
Composer of ObjectGéode also integrates TGV as one of its
two test synthesis engines. TestComposer is also equipped
with a test purpose synthesis engine based on a branch cov-

erage strategy. This engine produces sequences of observable
actions interpreted as test purposes.

UML: to produce test cases from UML models, TGV is con-
nected to a CADP-like simulation API provided by the UM-
LAUT tool [18], a validation framework for UML developed
in IRISA. UMLAUT uses class and object diagrams, deploy-
ment diagrams, state diagrams and gives an operational se-
mantics for UML in terms of labeled transition systems, by
transformation and compilation of the UML model.

Another possibility is now offered by the compilation of
UML into IF in the context of the Agedis IST project.

IF: IF [5] is an intermediate format developed by Verimag
(Grenoble) based on communicating automata extended with
data. IF specifications can be produced from SDL and UML
models. TGV also uses the simulation API provided by the
IF compiler. Recently, during the IST Agedis project, a new
version of this connection has been developed. The API of-
fered by IF is now the API of the product between a test di-
rective and the specification. Test directives generalize test
purposes in several ways. First they describe test purposesex-
tended with constraints on data, just like in GOAL observers
in ObjectGéode. This allows a more precise test case selec-
tion. They also allow to describe coverage directives similar
to those of Gotcha [2]. Coverage directives express coverage
of general expressions on specification variables. Covering
an expression means finding sequences of transitions cover-
ing all reachable values of the expression. These sequences
are then transformed into test cases. The main problem is that
this may result in the construction of the whole state graph
of the specification. This is why coverage directives can also
be coupled with test purposes in order to limit the behaviors
in which an expression should be covered. Using the general
coverage principle, it is also possible to define different state
and transition coverage policies. In fact it suffices to auto-
matically introduce new variables in the IF specification that
code state change or transition firing, and to cover the values
of these variables.

Your favorite specification language:the simulation API re-
quired by TGV is documented and quite simple. For a lan-
guage with an operational semantics described in terms of
LTS or IOLTS, if a compiler produces a simulation API, an
interface between this API and the TGV API can be easily
built.

Output language:TGV may produce test cases in TTCN
(Tree and Tabular Combined Notation [19]), or in one of the
graph formats (.aut and .bcg) of the CADP toolbox.

5.3 Other TGV characteristics

Several options are provided by TGV in order to tune test
generation or to refine the produced test cases. In particular,
TGV produces test cases with timer operations. Recall that
timers are used to detect quiescence, and that quiescence has

?x
2

?y
Cancel TAC

Inconc

3

4

Cancel TAC

5

6

Start TAC

1

!a

0

7

!b

?z

9

Pass
10

Cancel TNOAC

8

Cancel TNOAC

?y
Start TNOAC

?Timeout TNOAC

?otherwise

Fail

?
ot

he
rw

ise

?T
im

eo
ut

 T
AC

Figure 16.Test case with timers

been taken into account in test generation. Two timers are
managed, TAC and TNOAC. TAC is used when no quies-
cence is expected. Thus, TAC is started when inputs are ex-
pected (except if� is expected). If an input is observed, TAC
is canceled, otherwise a timeout is observed and produces a
Fail verdict. Conversely, TNOAC is used when quiescence
is possible. TNOAC is started before entering a state where a
quiescence (�) is allowed. It is canceled if an input is observed
The observation of� is replaced by a timeout. This timeout
does not produce aFail verdict, because the presence of�
proves that quiescence is possible in the specification. This
transformation is described by Figure 16 for the test case in
Figure 14.

The traversal depth can be bounded. This bound is inter-
preted in terms of visible actions as, due to non-determinism,
a bound in terms of actions could result in an unsound test
case.

TGV allows the computation of postambles fromPass
andInconcverdicts. If possible, these postambles lead to sta-
ble states i.e. states where, according to� , no output from the
IUT is expected.

The test architecture can also be modified by the use of
hiding and renaming rules described by regular expressions.

Hiding is used to increase the set of internal actions. Renam-
ing is used to modify the description of visible actions, as they
will appear in test cases. These options are useful for study-
ing several test architectures without modifying the original
specification. Another option is the description of inputs and
outputs. This is particularly useful for specification languages
that do not distinguish them, such as Lotos.

6 Case studies

Different versions of TGV have been evaluated on industrial
size case studies, in various application domains, and with
different specification languages. We just sketch these cases
studies, as they have been already published, and summarize
the lessons learned from these experiments.

6.1 The DREX protocol

This protocol is a military version of the ISDN D protocol.
The study was performed during a project involving several
French industrial partners. Several specifications were writ-
ten in SDL, each describing one service. This case study al-
lowed the validation of TGV principles on a preliminary ver-
sion of the tool. This version was incomplete and did not
work on-the-fly [15]. The same specification served as a case
study for two other tools: TVéda from CNET [32] and the
TOPIC prototype from Vérilog. The experiment allowed us
to compare TGV with these tools as well as with the manual
production of test cases [11]. It proved that the TGV approach
was feasible on real size case studies. Moreover, it allowedus
to detect some errors in manual test cases, in particular some
due to asynchronous communication between the tester and
the IUT, producing race conditions. These asynchronous be-
haviors are very difficult to imagine manually and completely
justify the use of formal methods.

6.2 A cache coherency protocol

Several experiments [27,28] consisted of using TGV on Lo-
tos specifications of cache coherency protocols for multipro-
cessor architectures of Bull (Polykid). The Lotos specifica-
tion used was 2,000 lines long, half of which consisted of
abstract data types. The specification consisted of 3 mod-
ules with several processes per module. Its state graph could
not be built. During the experiment, the first version of TGV
working completely on-the-fly was developed. This also al-
lowed us to improve TGV algorithms (generation of acyclic
test cases) and to introduce new optional features. In particu-
lar, as Lotos does not make a distinction between inputs and
outputs, we had to provide this information in an additional
file. Renaming and hiding was also intensively used.

Test purposes where written according to a test plan pro-
vided by Bull. 75 test cases have been produced from these
test purposes. The average size of test cases was 1000 cy-
cles. Produced test cases have then been executed by Bull on

a simulator of the architecture running a VHDL description
of the Polykid architecture. The usual way to perform testing
in Bull for hardware architectures was to work off-line, i.e.
emulating the system by input data, collecting reactions in
output files, analyzing the results and emitting a verdict. As
test cases produced by TGV are reactive, a testing environ-
ment was developed to run these reactive test cases. The test
campaign uncovered 5 bugs mainly due to address collisions.

6.3 The SSCOP protocol

The SSCOP protocol (service specific connection oriented
protocol) is a quite complex protocol of the ATM stack, stan-
dardized by ITU. This protocol is supposed to transfer data
between two high bandwidth network entities. A specification
was coded in SDL by FTR&D from the ATM Forum spec-
ification. It consisted of one single process describing sev-
eral services. Its size was approximately 2000 lines of textual
SDL (approximately 80 pages of graphical SDL). We have
used this protocol and its SDL specification in several exper-
iments with the aim of putting into relief the particularities of
TGV [4]. The version of TGV that was used was connected to
the ObjectGéode SDL simulator (Telelogic). So we used Ob-
jetGéode features to tune the experiments. In particular,we
made restrictions on the environment behavior with the use
of feeds. We also used GOAL observers to specify the global
service automaton of the ATM standard. This was useful to
detect errors in the specification and to ensure that sequences
traversed by TGV during test case generation did not violate
the service. We also used static analysis to safely reduce the
specification state graph. Fifty complex test purposes were
designed, covering all services of the protocol, but of course
not all behaviors. We made some variations on the number of
PCOs and the communication mode (synchronous or asyn-
chronous) between tester and IUT. Asynchronous commu-
nication was specified by the introduction of a process be-
tween the system and the environment. The results gained
during these experiments showed that on-the-fly test gener-
ation was efficient on specifications with large state spaces.
This resulted in the transfer of TGV into ObjectGéode.

We also used the same SDL specification to check for
correctness of a part of the TTCN test suite produced by the
ATM Forum. For this, we used our tool VTS, which is built
from parts of TGV. VTS takes as input a specification and a
test case, and checks for soundness and strictness of the test
case [24]. This allowed us to detect some errors with respect
to soundness in the ATM test suite. Most of them were due to
asynchronism.

6.4 The conference protocol

TGV has also been used on a conference protocol [12]. This
protocol is a toy example designed by colleagues of Twente
University to compare test generation tools. Several specifi-
cations have been written in different languages, including
SDL and Lotos. Also 28 mutants of a correct implementation

have been written in order to check if tools were able to de-
tect non-conformant mutants. An experiment with TorX had
already been conducted on a Lotos specification, and TorX
was able to detect all non-conformant mutants. A new exper-
iment was then conducted with TGV on the same Lotos spec-
ification, during a visit of colleagues from Twente, in order
to compare TGV with TorX. The challenge was to detect all
non-conformant mutants by running generated test cases. Of
course the code of mutants was not available to us. The main
problem encountered with TGV was to imagine adequate test
purposes. Of course, this involves a good knowledge of the
protocol as one has to imagine abstract scenarios where at
least one implementation may fail. We first used informal re-
quirements provided with the protocol to write test purposes,
and were able to detect most non-conformant IUTs by gener-
ated test cases. The last non-conformant mutants were more
difficult to find as faults occurred after long sequences in-
volving loops in protocol entities. But finally, after a careful
study of the protocol, new test purposes were written, and all
non-conformant IUTs were detected.

Another experiment with the SDL version of the protocol
was conducted later, using the version of TGV in TestCom-
poser.

6.5 Air traffic controller

A UML model of an air traffic control (ATC) system was
used as an example of the UMLAUT/TGV connection. This
model consists of a class diagram consisting of four classes
and three actors, one state diagram per class or actor, and ob-
ject diagrams specifying the initial state. The environment be-
havior is defined by actors. One describes a human controller,
the second describes the radar, and the third describes a con-
troller of another ATC. The four classes describe the flight
and flight plan, the position of flights and the flight plan man-
ager. The semantics of a UML model in UMLAUT is defined
by a labeled transition system obtained by transformationsof
the UML model. Simple test purposes have been automati-
cally generated from sequence diagrams. From these, TGV
produced interesting test cases. The case study was done to
demonstrate that test generation using TGV was possible for
UML models.

6.6 Transit Computerization Project

In the framework of the IST European project Agedis, TGV
has been used on an IF specification of the ECN component
of the Transit Computerization Project (TCP). The aim of
TCP is to develop a set of applications that will be used for
electronic exchange of information regarding goods in transit
between EU countries. The ECN is mainly in charge of ensur-
ing the communication and translation of business informa-
tion flows between domains. From an informal UML model
of the system provided by IntraSoft, an SDL specification was
written by Verimag, and then automatically translated intoIF.
The specification consists of 10 processes running concur-
rently and communicating asynchronously. Two experiments

were conducted. The first one with TGV in TestComposer,
directly with the SDL specification, used test purposes gener-
ated with branch coverage and test purposes generated with
interactive simulation. This experiment showed that branch
coverage was clearly not sufficient to cover most interesting
behaviors. Thus additional test purposes were designed by
simulation and from requirements. The second experiment
was done with TGV connected with the IF simulator, us-
ing the IF specification and a few significant test purposes.
The number of processes (10) and their concurrency pushed
TGV to its limits. In particular, we noticed that there was a
lot of concurrency between internal actions. But these con-
currencies could be avoided, as test generation is concerned
with visible behavior. This gave us some ideas about possi-
ble improvements using partial order methods (see section 8).
Finally, we generated a state graph of the specification with
additional constraints. The size of the graph was of the order
of 500 000 states and 900 000 transitions.

6.7 Lessons learned from case studies

We have sketched some case studies in which members of our
team participated. TGV has been used by us or some of our
partners in other cases studies in telecommunication but also
for smart card applications.

First one can notice that we made some realistic case
studies in very different domains. TGV was first designed for
telecommunication protocols, but showed that it could be also
applied to hardware and also to middleware. This proves that
the TGV approach is very general. The reason is that the test-
ing theory and algorithms are general enough for all these
application domains.

We also used different specification languages. This clearly
shows the independence of TGV with respect to specification
languages. This is not surprising as all these languages are
given a semantics in terms of labeled transition systems. An
additional interpretation of actions in terms of internal,input
or output actions is sometimes necessary, but is often clear.

On-the-fly test generation has proved useful in most cases.
In fact, sometimes state graphs of specifications were infinite,
but in most cases they were very large, due to data and/or
asynchronism between processes, and thus impossible to build
completely. Nevertheless, we were able to generate test cases
with TGV. Of course, if state graphs can be completely con-
structed, on-the-fly test generation is not necessary. But TGV
can still be used on these explicit state graphs.

All experiments were useful to imagine improvements of
TGV. Test generation algorithms have been improved com-
pared to the first version. Starting from algorithms generating
acyclic test cases, TGV now generates test cases with loops
and takes into account coverage directives. We also improved
the tuning of TGV by the addition of options in test genera-
tion algorithms.

The main difficulty in most case studies was to design test
purposes. In some cases, the task was easier as we could base
test purpose design on requirements. But this was not always

the case. In a first approach one writes very abstract test pur-
poses. But it is often necessary to refine these test purposes
for several reasons. First when state graphs are large, abstract
test purposes do not guide sufficiently the generation. Thus
TGV may suffer from state space explosion. Second, even if
a test case is produced one realizes that a shorter one could
be generated. This implies restricting test purposes by thead-
dition of refuse states or limiting the depth of test cases.

Nevertheless, we know that test generation from test pur-
poses is not always the best approach for some users. Some
prefer a more automatic solution, based on coverage crite-
ria. But coverage is limited as it often misses interesting be-
haviors. Thus additional test cases based on well targeted
test purposes are often necessary. However, we are concerned
with coverage. This is why we recently tried to improve TGV
with coverage facilities, allowing us to mix coverage direc-
tives with test purposes.

7 Comparison with other techniques and tools

7.1 FSM based test generation

FSM test generation tools make strong assumptions on spec-
ifications and implementations. This is the price to be paid
for exhaustiveness, as this restricts the set of possible imple-
mentations to finite set. This means that if a fault is present,
it can be detected after a bounded number of steps. This cor-
responds to a regularity hypothesis in the framework of [3].
Conversely, the assumptions made by TGV are very weak.
The only significant one is that implementations are input
complete. Practically, exhaustiveness cannot be assured be-
cause the set of possible implementations is infinite. This
means that a fault can occur after a trace of arbitrary length,
and thus cannot be detected by test cases of bounded length.
However, all faults are detectable as proven by Theorem 1.

Moreover, FSM based test generation algorithms are com-
plex, and are thus limited to small specifications. Usually,
when large specifications are considered, a rough abstraction
is made, or the state graphs are built up to a limited depth.
Thus exhaustiveness is only partial.

7.2 Test generation based on model-checking

TGV can be compared with test synthesis techniques and
tools based on model-checking (e.g [13]). The common idea
of most of these techniques is to use a standard model-checker
to produce counter-examples. Given a test purpose specified
by a reachability property+ of a temporal logic (e.g. LTL
or CTL), a model-checker (e.g. SPIN, SMV) is used to pro-
duce a witness of+ on the specification� . To do this, one
checks the negation�+ of the property against the specifi-
cation� . The property�+ is a safety property, that can be
violated by a finite trace. Most model-checkers can produce
counter-examples for this kind of property. Thus, if� violates
�+ (thus+ is satisfied by�), the model-checker produces a

counter-example for�+ , and thus a witness for+ . This wit-
ness is then abstracted from internal actions and interpreted
as a test case. TGV goes beyond this idea. First it is based on a
clear testing theory. Second it does not use a model-checking
tool, but adapts model-checking algorithms to test synthe-
sis. This allows us to take into account non-deterministic and
non-controllablespecifications, which is not the case for other
tools.

7.3 TorX

The most comparable tool for TGV is TorX [9] from the Uni-
versity of Twente. The testing theory is almost identical (ex-
cept that livelocks are not considered). It also synthesizes test
cases on-the-fly, but for the moment without any test purpose.
As it executes test cases on-the-fly during their synthesis,the
test case synthesis is guided by the observations made of the
IUT for the proposed stimuli. As mentioned in subsection 5.3,
both tools were applied to the same case study and, despite
their differences, gave similar results in terms of fault detec-
tion power. In some sense, TGV algorithms are more pow-
erful than TorX ones for test selection. They both base test
generation on a traversal of suspension traces of the specifi-
cation. But while TorX works forward and randomly, TGV
works both forward and backward guided by a test purpose.
Nevertheless, the approaches of TGV and TorX are comple-
mentary. TorX is very efficient for intensive testing, when the
goal is to detect faults by a random exploration of behaviors.
TGV is more efficient when precise faults are targeted by a
test purpose.

8 Conclusion and perspectives

In this paper, we have presented the principles of TGV, its
underlying theory, the algorithms and the tool. TGV has im-
proved the state of the art in test synthesis in a significant way.
Our main contribution is not in the theory, despite our adapta-
tions and improvements, but in the algorithms and tool archi-
tecture. TGV is able to synthesize tests from industrial size
specifications. However, some improvements are still neces-
sary for industrial use.

A first drawback is the necessity to describe test purposes.
It is an advantage compared to manual generation of test cases
because test purposes are of a higher abstraction level, andbe-
cause TGV ensures soundness of synthesized test cases. But
an effort must be paid for the description of test purposes and
this requires some expertise. TestComposer provides a partial
answer by the synthesis of test purposes according to a cov-
erage criterion adapted from branch coverage, but limited to
observable behaviors. But the branch coverage criterion isof-
ten too weak and some test purposes still have to be written.
A possible direction for future research is to use improved
coverage criteria based on the specification code and adapted
to the specific problem of conformance. In the context of the

Agedis project, we improved TGV with test directives that in-
clude both test purposes and coverage criteria (e.g. state and
transition coverage).

Improvements of algorithms are also to be investigated.
An interesting direction is to use partial order techniquesas in
model-checking [30]. These techniques can already be used
for internal actions as the order of occurrence of internal ac-
tions has no effect (if they are not used in test purposes) on
visible actions, and thus on synthesized test cases. Apply-
ing these techniques for visible actions is more difficult as
concurrent behavior must be synthesized in test cases. Other
improvements concern compositionality. We will investigate
how to compute test cases incrementally in the case of com-
positional specifications. In the same line of thought, in the
context of Agedis we also investigated how to compute sev-
eral test cases in one run from a composition of test purposes
or coverage criteria.

Another important problem is that of distributed testing.
In the general case the system is distributed, and test cases
should be distributed and should communicate asynchronously.
Concurrent-TTCN has such specification power. A first ap-
proach we adopted [23] is to synthesize a sequential test case
and to distribute it according to localities of actions. Global
choices were solved by a distributed consensus service. The
main drawback is the loss of concurrency and the fact that
unnecessary synchronizations between testers are added. A
direction of research is to preserve concurrency by the use
of true concurrency models [21,22] and to revisit the testing
theory accordingly.

Another drawback of TGV is the use of enumerative tech-
niques. A consequence is that specifications with data struc-
tures with large (or infinite) domains may be impossible to
treat, even with on-the-fly techniques. Also specificationswith
symbolic variables are out of the scope of TGV. A solution is
to use symbolic techniques [33]. States sets and transitions
are not enumerated but represented by predicates. The speci-
fication model we use is called IOSTS (Input-Output Sym-
bolic Transition Systems). Transitions are labeled with in-
puts, outputs or internal actions, guarded with boolean ex-
pressions on symbolic constants, variables and communica-
tion parameters, and may perform assignments. From a spec-
ification specified as an IOSTS and test purpose (withAccept
and Refusestates) also specified by an IOSTS, a test case
is first extracted with techniques similar to TGV, but only
on the syntax of the specification. This test case is sound
for the conformance relation but may include unsatisfiable
transitions that should be pruned. Unfortunately this prob-
lem is undecidable, thus approximate methods must be used.
In our tool STG [6] we use two means. We use the Omega
constraint solver to prune some locally unsatisfiable transi-
tions. Moreover, a deeper analysis using abstract interpreta-
tion (by our NBAC tool) computes an over-approximation
of reachable and co-reachable states, which prunes more un-
satisfiable transitions. Even if some unsatisfiable transitions
remain, after fixing the values of symbolic constants, exe-
cutable test cases can be produced and executed on imple-

mentations. Omega is again used during execution to find
outputs satisfying the guards.

Acknowledgements.The TGV tool is the result of common work
during several years. We wish to thank all participants in its design
and development in Irisa and Verimag: Erwan Demairy, Jean-Claude
Fernandez, Alain Kerbrat, Pierre Morel, Laurence Nedelka,Joseph
Sifakis, Séverine Simon, Valery Tschaen, César Viho and students.
We also thank Laurent Mounier and Marius Bozga from Verimag for
the connection to IF, Hubert Garavel and the VASY team from Inria
Rhônes-Alpes for their help in the connection of TGV with Lotos,
and the support and distribution of TGV in the CADP toolbox.

We also wish to thank the reviewers of the paper for their helpful
comments that allowed us to improve the paper.

References

1. S. Abramsky. Observational Equivalence as a Testing Equiva-
lence.Theoretical Computer Science, 53(3), 1987.

2. M. Benjamin, D. Geist, A. Hartman, G. Mas, R. Smeets, and
Y. Wolfsthal. A feasibility study in formal coverage driventest
generation. In36th Design Automation Conference, DAC99,
June 1999.

3. G. Bernot, M. C. Gaudel, and B. Marre. Software Testing Based
on Formal Specification: a Theory and a Tool.Software Engi-
neering Journal, pages 387–405, November 1991.

4. M. Bozga, J.-C. Fernandez, L. Ghirvu, C. Jard, T. Jéron, A.Ker-
brat, P. Morel, and L. Mounier. Verification and test genera-
tion for the SSCOP protocol.Journal of Science of Computer
Programming, special issue on Formal Methods in Industry,
36(1):27–52, Jan. 2000.

5. M. Bozga, S. Graf, and L. Mounier. IF-2.0: A validation envi-
ronment for component-based real-time systems.Lecture Notes
in Computer Science, 2404:343–348, 2002.

6. D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: a sym-
bolic test generation tool. InInternational Conference on
Tools and Algorithms for Construction and Analysis of Sys-
tems, TACAS2002, Grenoble, France, volume 2280 ofLNCS.
Springer-Verlag, April 2002.

7. E. Clarke and E. A. Emerson. Synthesis of synchronisation
skeletons for branching time temporal logic. InWorkshop in
Logic of Programs, (Yorktown Heights, NY), volume 131 of
LNCS. Springer Verlag, 1981.

8. R. De Nicola and M. Henessy. Testing Equivalences for Pro-
cesses.Theoretical Computer Science, 34:83–133, 1984.

9. R. G. De Vries and J. Tretmans. On-the-fly conformance testing
using SPIN. Software Tools for Technology Transfer, 2(4):382–
393, March 2000.

10. R. G. De Vries and J. Tretmans. Torwards formal test purposes.
In E. Brinskma and J. Tretmans, editors,Workshop FATES’01:
Formal Approaches of Testing of Software, BRICS Notes Series
NS-01-4, 2001.

11. L. Doldi, V. Encontre, J.-C. Fernandez, T. Jéron, S. Le Bricquir,
N. Texier, and M. Phalippou. Assessment of automatic genera-
tion methods of conformance test suites in an industrial context.
In B. Baumgarten and A. Burkhardt, H.-J.Giessler, editors,IFIP
TC6 9�

�
International Workshop on Testing of Communicating

Systems. Chapman & Hall, Sept. 1996.
12. L. du Bousquet, S. Ramangalahy, S. Simon, V. C., A. Belin-

fante, and R. G. De Vries. Formal test automation: The con-
ference protocol with TGV/TorX. In H. Ural, R. Probert, and

G. v. Bochmann, editors,IFIP
��

�
�

Int. Conference on Testing
of Communicating Systems(TestCom 2000). Kluwer Academic
Publishers, 2000.

13. A. Engels, L. Feijs, and S. Mauw. Test Generation for Intel-
ligent Networks Using Model-Checking. InThird Workshop
TACAS, Enschede, The Netherlands, volume 1217 ofLNCS.
Springer-Verlag, 1997.

14. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu,
L. Mounier, and M. Sighireanu. CADP: A Protocol Valida-
tion and Verification Toolbox. In R. Alur and T. A. Henzinger,
editors,Proc. of CAV’96 (New Brunswick, New Jersey, USA),
volume 1102 ofLNCS, August 1996.

15. J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An experiment
in automatic generation of conformance test suites for protocols
with verification technology.Science of Computer Program-
ming, 29:123–146, 1997. Egalement disponible en rapport de
recherche Irisa n� 1035 et Inria n� 2923.

16. M.-C. Gaudel and P. R. James. Testing algebraic data types and
processes : a unifying theory.Formal Aspects of Computing,
10(5-6):436–451, 99.

17. R. Groz, T. Jéron, and A. Kerbrat. Automated test generation
from SDL specifications. In R. Dssouli, G. von Bochmann, and
Y. Lahav, editors,SDL’99 The Next Millenium, 9th SDL Forum,
Montréal, Québec, pages 135–152. Elsevier, June 1999.

18. W.-M. Ho, J.-M. Jézéquel, A. L. Guennec, and F. Pennaneac’h.
UMLAUT: an extendible UML transformation framework. In
Proc. Automated Software Engineering, ASE’99, Florida, Oct.
1999.

19. ISO. Information Technology - Open Systems Interconnection
Conformance Testing Methodology and Framework. Interna-
tional Standard ISO/IEC 9646-1/2/3, 1992. Part 1 : General
Concept - Part 2 : Abstract Test Suite Specification - Part 3 :
The Tree and Tabular Combined Notation (TTCN).

20. ITU. ISO/IEC JTC1/SC21 WG7, Information Retrieval, Trans-
fer and Management for OSI; Framework: Formal Methods in
Conformance Testing. Committee Draft CD 13245-1, ITU-T
proposed recommendation Z 500, 1996.

21. C. Jard. Principles of test synthesis using true-concurrency
models. In H. König and I. Schiferdecker, editors,Proc. of Test-
com’2002, Berlin, Germany, March 2002. IFIP.

22. C. Jard. Synthesis of distributed testers from true-concurrency
models of reactive systems.International Journal of Informa-
tion and Software Technology, 45:791–888, sept 2003.

23. C. Jard, T. Jéron, H. Kahlouche, and C. Viho. Towards au-
tomatic distribution of testers for distributed conformance test-
ing. InFORTE/PSTV’98, Paris, France. Chapman & Hall, Nov.
1998.

24. C. Jard, T. Jéron, and P. Morel. Verification of test suites. In
TestCom 2000, IFIP TC 6 / WG 6.1, The IFIP 13th International
Conference on Testing of Communicating Systems, Ottawa, On-
tario, Canada. Kluwer Academic Publishers, Aug. 2000.

25. T. Jéron and P. Morel. Abstraction,� -réduction et déterminisa-
tion à la volée: application à la génération de test. InCFIP’97,
Congrès Francophone sur l’Ingéniérie des Protocoles, Liège,
Belgique. Hermes, Sept. 1997.

26. T. Jéron and P. Morel. Test generation derived from model-
checking. In N. Halbwachs and D. Peled, editors,CAV’99,
Trento, Italy, volume 1633 ofLNCS, pages 108–122. Springer-
Verlag, July 1999.

27. H. Kahlouche, C. Viho, and M. Zendri. An Industrial Experi-
ment in Automatic Generation of Executable Test Suites for a
Cache Coherency Protocol. In A. Petrenko and N. Yevtushenko,

editors,IFIP TC6 11�
�

International Workshop on Testing of
Communicating Systems. Chapman & Hall, September 1998.

28. H. Kahlouche, C. Viho, and M. Zendri. Hardware Testing us-
ing a Communication Protocol Conformance Testing Tool. In
W. R. Cleaveland, editor,Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’99), volume 1579 of
Lecture Notes in Computer Science, pages 315–329. Springer
Verlag, March 1999.

29. D. Lee and M. Yannakakis. Principles and Methods of Testing
Finite State Machines - A Survey.Proceedings of the IEEE,
84(8):1090–1123, August 1996.

30. D. Peled. Combining partial order reductions with on-the-fly
model-checking. In D. L. Dill, editor,CAV Workshop, volume
818 ofLNCS. Springer Verlag, 1994.

31. A. Petrenko. Fault model-driven test derivation from finite state
models: Annotated bibliography. In F. Cassez, C. Jard, B. Ro-
zoy, and M. Ryan, editors,MOVEP’2k MOdelling and VErifi-
cation of Parallel processes, Nantes, France, volume 2067 of
LNCS, pages 196 – 205. Springer, 2000.

32. M. Phalippou. Test Sequence Generation Using Estelle orSDL
Structure Information. InFORTE’94, Berne, October 1994.

33. V. Rusu, L. du Bousquet, and T. Jéron. An approach to sym-
bolic test generation. InIntegrated Formal Methods (IFM’00),
Dagstuhl, Allemagne, volume 1945 ofLNCS, pages 338–357.
Springer Verlag, Novembre 2000.

34. R. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal of Computing, 1:146–160, 1972.

35. J. Tretmans. Test generation with inputs, outputs and repetitive
quiescence.Software - Concepts and Tools, 17, 1996.

