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Abstract This paper presents the TGV tool allowing the au- timing constraints etc. It may be employed at differentlgyve
tomatic synthesis of conformance test cases from a formairom unit testing to integration and system testing. Onéeft
specification of a (non-deterministic) reactive systemVTG main problem of testing is to choose test data. This choice
has been developed by Irisa Rennes and Verimag Grenoblejay be based on the code (white box testing) or on the speci-
with the support of the Vasy team of Inria Rhdnes-Alpes. Thefication (black box testing), depending on the availabgityl
paper describes the main elements of the underlying testingomplexity of these artifacts. In practice, testing mosewof
theory, based on a model of transitions system which distinfemains a craft activity. Test data are selected arbiyanid
guishes inputs, outputs and internal actions, and basdukon t test execution and test results analysis are performed-manu
concept of conformance relation. The principles of the testally. This implies that testing is very costly. However most
synthesis process are explained, as well as the main algghases can be automated, at least partially.
rithms. We then describe the main characteristics of the TGV  In this paper, we focus otonformance testingpplied to
tool, and give some pointers to industrial experiments thahon-deterministic reactive systems. By reactive system, w
have been conducted to validate the approach. As a conclunean a software component which reacts to stimuli of its en-
sion, we describe some on going work on test synthesis.  vironment. Non-determinism means that different readtion
can be obtained after applying a given stimulus (this is typ-
ically the case in the presence of concurrency in systems).
Conformance testing consists of checking that the behavior
Key words: Conformance testing — test generation/synthesiof a real implementation of a system (IUT fomplementa-
— reactive systems — protocols — model-checking — tramsitio tion Under Testis correct with respect to a specification. The
systems code of the IUT is unknown, and its behavior is only visible
by interaction with a tester. This controls and observes the
IUT through dedicated interfaces (called PCO Rmints of
1 Conformance testing Control and Observatign Conformance testing is a type of
functional testing of a black box nature. In this context, we
will show how automation can significantly improve test se-
lection.

Software systems are increasingly complex, distributetl an
reactive. Their reliability is a major concern, in partiaul
for critical systems as errors occurring during their execu
tion may have dramatic economical or human consequenced.1 Some basic concepts

Correctness is also essential for less critical softwdres |

thus essential to try to preserve the correctness of sadtalar  In the context of telecommunication protocols, the main-con
along the design process until deployment. This includés so cepts of this activity are described in the standardizatime:

ware engineering methods, verification and validation. Butument ISO 9646 [19]. Some of them are introduced here.

full correctness is in general impossible to prove. Tesiing A test casés an elementary test, targeted at testing a par-
then one of the most popular validation techniques. Testindicular functionality, calleda test purposeA test suiteis a

aims at discovering bugs in design or implementation phaseset of test cases. The basic elements of a test case are inter-
with respect to a reference. It cannot prove correctness budctions through PCOs: outputs are stimuli sent from the en-
improves confidence. Testing may focus on different aspectsironment in order to control the IUT's input events; inputs

of software such as functionality, robustness, perforraanc are observations of the IUT’s outputs to the environment. In



puts may lead to differenterdicts A Fail verdict denotes a A third approach to formal conformance testing was ini-
divergence from the expected behavior: the IUT is rejectedtially focused on data. It is based on algebraic data typles [3
A Pass verdict is returned if the observation is correctaed t The principle is to test axioms, test cases being terms of the
test purpose is reached. Sometimes, one wants to bring thredgebra. Starting from an (infinite) exhaustive test set, hy
IUT into a particular state or the initial state after a temtes ~ potheses such as regularity or uniformity are added toicestr
by a procedure callggostambleln this case, a non-definitive the size of the exhaustive test set to a finite one. This apjroa
(Pass) first verdict is returned and the Pass verdict is @aly r has been extended with LTS methods for Lotos specifications
turned if the postamble does not detect any non-conformancenixing control and data [16].

An Inconclusive verdict is returned if correct behavior s 0 The tool TGV presented in this paper uses the approach
served, but it is impossible to reach the test purpose. Bhis ibased on labeled transition models. This means that it etbas
due to the fact that, in general, reactive systems cannot ben behavioral models of specifications in terms of labeled
completely controlled by a tester: they may have the choicdransition systems. This does not exclude data in specifica-
between several output interactions to the same input. Th&ons, but means that data values are enumerated in the model
tester— specialized hardware, software or human operator TGV is also based on a precise testing theory which allows us
executes test cases. But as test cases are often describedatlescribe test generation algorithms and establish itapbr
some abstraction level (they are callebistract test cas@s  properties on generated test cases. This is for us essential
they must be translated inexecutable test cas€kevel in  gain confidence in software by testing. Nevertheless the TGV
which all the coding aspects of data and interactions havapproach is not only a theoretical work. It is also an effitien

been resolved). tool that has proved useful in numerous case studies. This
efficiency is mainly due to the on-the-fly approach which al-
1.2 Formalizing for automation lows us to generate test cases by a partial exploration &@&f sta

graphs, thus avoiding the state explosion problem.

Conformance testing is a costly activity which plays an im- ~ The paper presents all the TGV approach. The paper is
portant part in the global cost of software. For a long time,organized as follows. In section 2, we first briefly describe
the scientific community has tried to automate the processhe functional view of TGV. In section 3 we present the un-
of deriving test cases. For conformance testing, the reéere  derlying testing theory of TGV based on the model of labeled
behavior is described by a specification which determines th transition systems with distinguished inputs and outmans,
verdicts: it plays the role of anracle as it is called in the precise notions of conformance and verdicts. Then section 4
general framework of testing. Automation thus requires for Presents the synthesis algorithms and the properties ainat ¢
malizing the specification, but also formalizing the intera be established on generated test cases. The TGV tool is de-
tion between the tester and the IUT. The definition of ver-Scribed in section 5. Some case studies are described in sec-
dicts also forces formalizing conformance, i.e. the refati tion 6, ending with lessons learned from these case studies.

between the IUT and its specification that is checked duringn section 7, we compare the TGV approach with other tech-
testing. Algorithms for automatic test case synthesis ast Niques and tools. Finally we conclude and draw some per-
designed that take specifications as inputs. Essentiabprop SPectives in section 8.
ties of test cases must be establisHgoundnesmeans that
test cases may only reject non-conformant |lUSxd)austive- . _
nessmeans that all non-conformant implementations are re2 1GV functional view
jected by a test suite (or may be rejected). The main ingredi-
ents for automation are described in [20]. TGV is atool for test generation from specifications. Itsdun
Several approaches have been studied for conformand@nal view is sketched in figure 1. One of the inputs is thus
test generation. For protocol testing, two approaches hava specification of the intended behavior of the system under
been studied, initially focused on control. A first approachtest. As will be seen later in section 5, TGV is not dependent
uses finite state machines (FSM) as a specification modedf any particular specification language, but depends om-a pa
(see [29] for a survey or [31] for an annotated bibliography) ticular semantics of these languages. This semantics ghoul
The principle of testing is to check that an unknown FSM, thefocus on the behavior. The semantics of the specification thu
IUT, is equivalent to the specification. A finite set of finiést ~ describes valid behaviors of the system under test.
sequences is generated which proves or disprove this equiv- TGV’s role is to select test cases from the behaviors of
alence. Of course, this is only possible if the set of possibl the specification. For this, one needs to give a second in-
IUTs is finite, which is ensured by hypothesis on both theput that can be called a test selection directive. Test selec
specification and IUT. Another approach was initially basedtion directives could take different forms, including rama
on labeled transition models and testing preorders [8/1], a test selection, selection guided by coverage criteriadepli
further improved by distinguishing inputs and outputs [35] by test purposes, or a mixture of these. Even if TGV now
Hypotheses on specifications and IUTs are weaker. In parallows different selection directives (see the IF paralyraip
ticular non-deterministic specifications (in the sensewf a subsection 5.2, selection in TGV was originally based on tes
tomata) can be handled. The counterpart is that a finite set gfurposes. Test purposes are specified by automata that ac-
test cases cannot prove conformance. cept behaviors of the specification. They allow us to describ



Specification Test selection directive 3.1 Modeling with transition systems
(Test purpose)

Test architecture Labeled transition systems (LTS) have long been used to de-
. fine the semantics of behavioral specifications. LTSs are rep
resented by graphs whose states represent configurations of
Ve systems, and edges represent moves between these configu-
rations on the occurrence of actions. Usually LTSs make a
TGV =--- Tuning options difference between internal and visible actions. But far-co
formance testing, a distinction must also be made between
events of the system that azentrollableby the environment
(the inputs), and those that are owlyservablgthe outputs).
The model we adopt (called IOLTS for Input-Output LTS) is
an adaptation of the classical LTS model.

Abstract test cases

Figure 1. Functional view of TGV

Definition 1 An IOLTS is a quadruple
M = (Q", AM, =y, ¢¥) where@" is a finite non-empty set
of statesg)' € Q" is the initial state,A" is the alphabet of

: ] iy . Ry
targeted behaviors in an abstract way as it is not necessagt'ons' Itis partitioned into three sef" = A U A5 U I".

o . e
to describe complete sequences of actions. More genetal teg 'S the input alphabetds is the output alphabet, andt

1 1 M M M
selection directives have recently been added to TGV, gixin 1€ @lphabet of internal actions»,C Q" x A" x Q" is the

extended test purposes with test coverage directivesbut {72nsition relation.

this paper, we will mainly focus on simple test purposes. For the sake of clarity in the examples, we will write
Other optional inputs can be given to TGV. First, inputs for an inputa € A™ and!z for an outputr € AM
are used to refine the test architecture from the default one ' °
implicitl fin h ification. n ion n .
plicitly defined by the specification. Second, options ca Notations: Let M = (Q", A", —y,q)') be an IOLTS. The

be given to tune the test selection algorithms. . : i )
g ) o g subscript (or superscript) will be omitted when clear from
In its original form, TGV generates abstract test CaseSne context. We write LN ¢ for (¢,a,q') €=y andq Ny
. ) 7

from a specification and a test purpose. Abstract test cases, 3¢ : g 5. ¢'. An IOLTS is sometimes denoted by
describe behaviors in terms of input/output interactioes b its initiai state Mand we Wrtd] —, for ¢ —,. Let ) €
’ M 0 M- (]

tween the tester and the IUT, and verdicts associated Wltth be some actionsy;) € A" \ I' be some visible actions

those b_ehawors. Abstract test cases produced by TG_V arei hputs or outputs)r; € I be some internal actions, €
a generic format of graphs. These graphs can be easily trang-,

) o - AV \ I")* be a sequence of visible actions, ! M
lated into a specific language for the description of abstrac \ 1Y) d g €

test has in TTCN be some states.
estcases suchasin ' I'(q) & {u € A" | ¢ B,} is the set of firable actions i

Abstract test cases are not directly executable on an IUTQyt,, (q) £ I'(q) N AY is the set of firable outputs ip We
but specialized tools allow us to transform these abstesttt extend it to sets of states: fé&t C Q"
cases into executable test cases. TGV does not take into agyt,, (P) 2 {Out,(q) | ¢ € P} .

count this phase. Denoteq ““#", ¢ £ 3g0,.. ., qn g =g B ¢ B

-5 gn =4
Visible behaviors are described by therelation. We de-
. g A T1.ToTn * A
3 Testing theory in TGV fineq = ¢ = ¢ =qorg "= ¢ andg = ¢ =
3¢1,92 : ¢ = ¢1 = ¢2 = ¢'. We also use the notations
¢"'=" ¢ 2390, g1 q =G0 F g1+ = gn = ¢ and
¢g=>=3¢ :q=>¢q.Thesey afterc = {¢' € Q |¢=¢'}
The contribution of TGV to automatic synthesis of test caseqrespectivelyP after ¢ 2 Usepa after o) is the set of
is mainly in the area of algorithms and tool. TGV is based onstates reachable frog(respectively from the state sB) by
a conformance testing theory, inspired by work of Jan Tret-action sequences from which only the projectionnto vis-
mans and hl_s coI_Ieagues (at the_UnlverS|ty of Twente) [3_5]-ible actions is defined'races(q) £ {0 € (A\I)* | ¢ 3}
This theory inherits from preceding Worl_< on testing equiv- (respectivelyI'races(M) 2 Traces(q")) describes the se-
alences and preorders [8,1]. The behaviors of specifictionquences of visible actions firable frogn(respectively from
and IUTs are modeled by a variant of labeled transition systhe initial state of an IOLTS/).
tems (LTS). Roughly speaking, the conformance relation is  From an IOLTSA, it is possible to build a deterministic

a partial inclusion of traces of observable events and quiesioLTs with same traces a&/. This IOLTS represents the
cence. We now present this theory, adapted to make it morgjsiple behavior ofi/.

effective and understandable by non specialists.



Figure 2. SpecificationS

Definition 2 Let M = (Q", A, -, ¢)') be an IOLTSThe
deterministic IOLTS of\/, denoted bylet(M) is a determin-
istic IOLTS defined by

det(M) = (2QM, A\ I, = 4et, qp aftere) where,

for P,P' € 29" a € A"\ I",

P 5%, P' <= P' =P aftera

States ofdet(M), called meta-statesn the sequel, are

subsets of)", the initial stategy aftere is the set of states

reachable frongy by internal actions. In section 4.3 we will
see an efficient construction of this IOLTS.

Models of specificationsA specification of a reactive sys-
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Figure 3. Quiescence and how to make it explicit

the IUT andS, i.e. A C A"T, andAg C AY".

We assume that the IUT {sveakly) input completén each
state all inputs are accepted, possibly after internabasfi
i.e.¥Yq € QV",Va € AV, q =. This hypothesis is reasonable
when the IUT never refuses an invalid or inopportune input
but ignores the request or answers negatively.

3.2 Quiescence

In practice, tests observe traces of a system, but also-quies
cence bytimers Several kinds of quiescence may happen and
are illustrated in the left side of Figure 3.d®adloclstate is a
state where the system cannot evolve anymorelig) = 0.

An output quiescergtate is a state where the system is wait-
ing only for an input from the environment, i.€(q) C AY.

A livelockstate is a state from which the system diverges by
an infinite sequence of internal actions. In the case of the fi-
nite state systems that we consider, a livelock is a loop of
internal actions, .63y, 7,...7Th,q 2 " ¢. We denote
deadlock(M) the set of deadlocked states of the IOLTS
outputlock(M) its set of outputlocks antivelock(M) its

set of livelock states. A deadlock is a special case of output

tem is in general given in a specialized language or notatiorpock, thusdeadlock(M) C outputlock(M). The set of all

(SDL, Lotos, UML, and IF in the case of TGV). The opera-
tional semantics of such a language describes all posséble b
haviors of specifications. This operational semantics is us
ally implemented in a simulator which allows to traverse the
behaviors of the specification.

We suppose here that the semantics of a specification i
given by an IOLTSS = (Q°, A%, —, ¢5). The example given
in Figure 2 will be our running example (whergdenotes an
internal action). It is not a real example, but it will illuate
all particularities of the testing theory and algorithms.

Models of implementationsThe implementation under test
(IUT) is a black box interacting with a tester. It is not a faim
object. However, if we want to reason about conformance
we have to model the IUT’s behaviors. This is called téwt
hypothesis

An IUT is modeled by an IOLTS
IUT = (Q|UT’A|UT’_>IUT’qbuT) with AVT = A:UT U A!:l)JT U v,
We will always suppose the compatibility of the alphabets of

quiescent states is denoted by
quiescent(M) = outputlock(M) U livelock(M)

As conformance testing is based on the observation of
visible behaviors, test synthesis requires a determinizatf
the specification: two sequences with same traces cannot be
distinguished, but their respective suffix must be consider
as possible evolutions of the system. Also, the information
about quiescence of the specification must be preserved by
determinization. This is only possible if quiescence is eom
puted on the specification. This results in the definitionrof a
IOLTS called asuspension automatamhich makes explicit
the quiescence by the addition of a new observable aétion
tonsidered as an output. This automaton is described by the
following definition, and its construction is sketched irg+i
ure 3.

Definition 3 Thesuspension automataf an IOLTS
M = (Q, A", -, q)) isan IOLTS
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Figure 4. A(S), the suspension automaton of the specificafion

Figure 5. det(A(S)), the visible behavior of obtained by determinization
of A(S)

A(M) = (Q", A2M), 5 A, ¢))) whereAA™) = A" U {5}
with § € AOA(M) (6 is considered as an output, observable
by the environment), and the transition relatie#y,) is 0b- A conformance relatiofiormalizes the set of IUTs that be-

tained from—,, by adding loops; LN g for each quiescent have consistently with a specification. Following Tretma4s,
stateg (i.e. livelock or output quiescence and thus deadlock).the considered observations during testing are the suigpens

3.3 Conformance relation

More formally traces, as they represent the visible behavior of a system. A
the IUT is unknown and conformance is considered, not ro-
=A== U{(q,6,q) | q € quiescent(M)} bustness, the observation is restricted to specified betsavi

_ thus traces of the specification. Intuitively, an implenagioin
The traces ofA(S) are called thesuspension traced S, and  [UT conforms to its specificatiofi for iocoif after each sus-
are denoted by Traces(S). pension trace of STraces(S) the IUT exhibits only out-

o ) . puts and quiescences that are possiblg.iRormally:
For a specificatiorf, its suspension tracesl'races(S)

exactly represent all the behaviors$that can be observed Definition 4 Let.S be an IOLTS andUT be an input com-
by the environment, i.e. its sequences of inputs, outpuls anplete IOLTS (compatible with),

quiescence. This will thus constitute the basis for test syn , a

thesis. The visible behavior of the IUT is also charactetize IUT ioco § = Vo € STraces(S),

by its suspension tracetl'races(IUT). Conformance test- Out(A(IUT) aftero) C Out(A(S) aftero)
ing will thus be based on a comparison of the observed traces

STraces(IUT) with expected one§Traces(S) as will be Examples: Figure 6 explaingoco for a simple specification
formalized in the next subsection. and several IUTSLUT; ioco S because in each state, outputs

of TUT; are included in outputs af. ioco thus allows us
to restrict the IUT on outputs (as in state IJ/7; ioco S
even if the initial state of UT; allows a new inpufb, as
only the outputs are checked co. iocothus allows partial
specifications. Howeven(IUT, ioco S) as the outputz
after the inpufa is not allowed in the specification. The other
reason for non-conformance is that the quiescence after
(due to an internal loop for example) is not specifiedin

Example: Figure 4 representd(.S), the suspension automa-
ton of the specificatior$ of Figure 2. State§, 2 and4 are
livelocks as they belong to loops of internal actions, while
statesl, 7 and9 are outputlocks as only inputs are firable in
those states.

The suspension traces Sfrepresenting the visible be-
havior of S are characterized by the sequences of the au
tomatondet(A(S)) obtained fromA(S) by determinization
(see Definition 2). For our examplégt(A(S)) is represented 3.4 Tests: models, execution and properties
in Figure 5. Its initial meta-stat@ corresponds to the set
of states0 aftere = {0,1,2,9} of A(S). In A(S), ?b is Reactive systems that we consider are not always contlellab
firable from state2, leading to4. Thus meta-stat® leads by their environment. Thus test cases should have the choice
by ?b to the meta-stat@ corresponding to the set of states between correct inputs and should foresee a non-conformant
4 aftere = {4,8}. The construction proceeds until no new IUT. For example in Figure 6, if a tester sendsit should
meta-state is created. wait for eitherx or y, but also for any other output (that will



Specification — a test case ignput completen all states where an input

is possible:
@ VgeQ™, (3a€c A, ¢ 3.=>Vbe A, ¢ 5:)
?a Atest suitas a set of test cases.
1z
Test execution:Test cases are executed against an IUT, and
Ix ly this execution results in verdicts telling if the IUT shotdlel
rejected or not. This execution should be formalized as we
need to establish properties such as soundness and exhaus-
@ tiveness, which relate verdicts of executions to confortean
We assume a synchronous communication between test cases
and IUTs. Thus, the execution of a test case against an IUT
IUT1 IUT2 is modeled by.a_ paraIIe_I compqsit?on with a synchronization
implementation choice forbidden output on common visible actions. This is formalized by the three
a, / a !
@ p—=prp,a2q4q
o (p,a) e Vs a)
| ,\ - ! p5p q l*Q 7
iz Iz

(0.9) 2pie 0,9 .9 Spjie (:4)

AN
O 0 - This model of execution, together with the hypothesis

@ @ made on the IUT and test cases, ensuresTi@{ A(IUT)
may only block in states where a verdict is returned/ity.
Figure 6. iocoby exampleZUT1 ioco S and—(IUT} ioco S) Thus verdicts are associated wittaximal tracesf the test

cases, i.e. sequencess A™ such thatl(¢° aftero) = 0.
Note that test cases (in particular those generated by TGV)
allow the tester to rejedtUT). In contrast, we assume that may have loops. Thus test execution may be infinite. To pre-
the testers do not present choices between outputs as th&gnt this, global timers should be used.
control them. Furthermore, they have no internal actions. T

model a test case, we also use an IOLTS, but extended witherdicts: A verdict associated with the execution of a test
verdicts and some additional properties. A test case has @ase TC on an IUT is completely determined by the state of
complex behavior whose structure is a graph with possiblerc reached by a maximal trace’ || A(IUT). Depending

loops. on this state, it can bRass Fail or Inconc?
Definition 5 Atest casés an IOLTS ' A .
TC = (Q™, A™, =, ¢°) equipped with three sets of trap verdict(o) = Fail =TC afters C Fail
statesPass C QTC Fall C @™ andInconc C Q' char- verdict(c) = Pass £ TC afterc C Pass

acterizing verdicts. Its alphabet id™ = A’ U A where
Ale C A (T'C emits only inputs of) and A/ C AS™ U {4}
(T'C foresees any output or quiescenceldfT"). We make
several structural assumptions on test cases:

verdict(c) = Inconc £ TC afters C Inconc

A possible rejection of an IUT by a test case is defined

by:
— states inFail andInconc are only directly reachable by
Inputs: TC may reject IUT £ 3o € Traces(TC||A(IUT)),
Y(g,a,q') €=+ (¢’ € InconcU Fail = a € A°) verdict(o) = Fail

— from each state a verdict must be reachable: . ' : .
may pasandmay incona@are defined in the same way. Notice

Yq,30 € A™",3¢' € PassU InconcU Fail, ¢ % ¢' that the lack of control of test cases on an IUT implies that a
unique test case may reject, accept or return an inconelusiv

— TC iscontrollable no choice is allowed between two out- verdict on the same IUT.

puts or an input and output:

1 We make a distinction between the verdict, ®ass and the set of states
TC TC Q, '
Vg€ Q™ Va € Ay, q == Vb # a,q 72>Tc of a test case where a verdict is assigned,Rags



Test case propertiesThe execution of test cases on imple- | System under test
mentations should give a verdict about the conformance o - - PCO  Eies

an IUT with respect to a specification. As conformance is de- JUNNNN- - Context {test cases}
fined formally by a conformance relation, we need to relate

the verdicts of these executions to the conformance relatio

This is done by the following properties of test cases and tes
suites.

Figure 7. Testing in context

Definition 6 A test cas@’C' is soundfor 5 andiocoif Another useful feature of test purposes in TGV is the no-

VIUT,IUT ioco S = —(T'C may reject IUT) tion_ ofAcceptandRefusestates, allowing an efficient test se-
lection, in particular on-the-fly (see section 4 Ayceptstates
A test suite is sound if it consists of sound test cases. are used to select targeted behaviors, wRigdusestates are
A test suite iexhaustivdor S andiocoiif used to cut down the exploration of the specification state

space when undesired actions are taken. An adequate use
of Refusestates may dramatically reduce the test generation

A test suite izompletsif it is both sound and exhaustive. cost.

VIUT,~(IUT ioco S) = T'C may reject [UT

The minimal property required for test suitessisund-  Definition 7 A test purposés a deterministic and complete
ness a test suite should not reject a conformant IUT. ThisIOLTST P = (Q™, A™, =+, ¢;"), equipped with two sets of
property is important, but not sufficient in practice as testtrap states Acceftand Refus€”, with the same alphabet as
cases accepting all IUTs are sound. One would éikeaus- the specification, i.eA™ = AS. Completemeans that each
tive test suites, i.e. every non-conformant IUT would be re-state allows all actions, i.&/g € Q™,V € A™, ¢ % and a
jected. But it is unreachable for finite test suites as soon agfapstateq has a loops on each action i¥a € A™, ¢ = q.
the specification has loops. It requires an infinite number of
test cases or infinite state test cases. Thus we will onlyirequ Note and exampleltis interesting to allow abstraction in the
the exhaustiveness of the synthesis technique: the infeste  description of test purposes with respect to the speciinati
suite composed of all test cases that the synthesis algorith behavior. This is particularly true because in on-the-fit te
can construct is exhaustive. Thus, for a non-conformant lUTgeneration, we want to avoid the construction of the whole
it is theoretically possible to produce a test case that reay r state graph of the specification. However, in the above defi-
ject it (under some fairness assumption of the IUT). nition, test purposes should be complete, which could seem
contradictory. In fact it is not. To satisfy the completenes
quirement, we use the label “*" in TGV which, in a transition
q = ¢' is an abbreviation for the complement set of all other
éransitions leaving;. Moreover, such “*"-transitions can be
implicit as by convention, TGV completes incomplete states
by a “*”-loop. This allows the user to describe test purposes

poses are informal descriptions of behaviors to be tested, iWith partial sequences of actions thqt will be autlomqt}'call
general incomplete sequences of actions. In TGV, we mode(f.ompleted by TGV. Another abstra_ct|on mechamsm_ 'S pro-
test purposes by automata (formally IOLTS extended Withv'ded by the use .Of regular expressions fpr the description o
marked states) accepting sequences of actions of the speéi‘-ats Of labels. Th.'s aIIO\.NS us to describe _m_complet(_a Ia_tbfels
fication. One could restrict test purposes to traces or suspe t_ransmons. This is particularly u_s_eful as it is sometindes .
sion traces, as advocated in [10]. However, allowing irgern f|cu_lt to know the fo_rmat of tr_ansmon labels from the specifi
actions in test purposes is more powerful. It is very usefulCatlon Ianguage_. .F'gF”e 8 gives an example of a test purpose
when one wants to design test purposes for complex syste SP for the speuflcathrS. 'F‘ this .example one wants to Se-
when the targeted visible behavior is difficult to foresemenir ect sequences of actions in which Iabel_s do not end with
the behaviors of individual components. This is partidylar or z (represented by th_e _regular expressidi 25]“2”before

true when the communication with the system is performeoay’ _and_vyh_ery occurs itis followed by &. Here ™"-loops
through a context (FIFO channels for example) that provokeé";lre implicitin all states.

a distortion of the IUT’s behavior (see Figure 7). In thisesas
one would like to test the IUT’s behavior, but its input/ouitp
behavior may not be directly visible by the tester as PCO
are atthe boundaries of the system under test. Thus tests cas

should be composed of actions which are visible at the PCOsThis section describes the main algorithms of TGV. Let us
The specification should describe the whole system undesketch these algorithms, summarized in Figure 9. TGV takes
test, including the context. But test purposes can be wiritte as inputs a specificatiofi and a test purposgP. The first
according to the input/output behavior of the specificaibn operation performs a synchronous product betw&esnd

the IUT, and thus the internal behavior of the system. TP, marking S’'s behaviors accepted (or refused) ByP.

3.5 Formal test purposes

One of the main ingredients of the test synthesis techniqu
implemented in TGV is the formalization of the concept of
test purpose, and its use for test selection. In practisepte-

S4 Principles and algorithms
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From the resulS P we build the visible behavior (traces and
quiescence) inSP"S. Test selection then builds an IOLTS
CTG@G by extraction of the accepted behaviors and inversion controllability
of inputs and outputs. Finally, all controllability contiécare
suppressed to conform with the definition of test casesrAlte
natively, some conflicts can be suppressed during selection TC
leading to the construction &fG, and only residual con- Figure 9. Overview of test synthesis operations

flicts are suppressed afterward. Whgris given implicitly
by traversal functions, all operations except conflict heso

tion can be applied on-the-fly. This means that the aforemengses two stacks: the DFS-stack contains vertices of the cur-
tioned IOLTSs do not need to be Completely constructed bUF’ent sequence and their pending edgeS, and the SCC-stack

only partially. contains vertices where an SCC is not completed. When an
SCC root is popped from the DFS-stack, all vertices of the

4.1 Preliminary notions same SCC are on the top of the SCC-stack and are popped
together.

A graphG with set of verticed” and set of edge# is de-
notedG = (V, E). A strongly connected compondBCC)is ~ 4-2 Synchronous product

a maximal subséy; of V such that, for each pa{w;, w;) of o ) N
vertices in¥;, there is a path from; to w; and a path fronw; ~ 1eSt synthesis in TGV takes as inputs a specificai@nd a

tov;. An SCC istrivial if restricted to a single vertex with no €St purposé’P. The first problem is to identify behaviors of
loop. The partition o’ into SCCs, defines mduced graph S accepted (oricceptstates) byl'P or refused (orRefuse
in which vertices are SCCs, and there is an edge from an SC8{ates) byI'P. This is a classical problem of computation of

V; to an SCCV; if there is an edge i from a vertex inV; the intersection of languages. Just as in model-checkirgy, t
to a vertex iny;. is solved by a synchronous product.

In the sequel, we will see that several problems in testDefinition 8 LetS = (Q5, A%, —,45) bean IOLTS and'P =
synthesis can be understood as reachability problems. NowQ™, A™, —.., ¢I*) a test purpose witl™ = A°and equipped
there is strong relation between reachability and SCC,las alvith state seté\ccept” andRefusé’.
vertices of an SCC have the same reachability properties: iThe synchronous produstx TP is an IOLTS
a vertexw is reachable from a vertex of an SCCV;, wis  SP = (Q%, A%, —,, ¢, equipped with two disjoint sets of
reachable from all vertices iV%;. statesAccept” andRefus€’, and defined as follows:

— its alphabet isds® £ A5(= A™).
— its state set)*" is the subset of)®* x Q™ reachable from

the initial stateqs” 2 (g5, ¢.") by the transition relation

Computation of SCCsTarjan [34] describes an algorithm of
linear complexity for the computation of SCCs. In [26], we
give an iterative version with “holes”, and instantiate gbe
“holes” for several algorithms used in TGV. The algorithm is
a depth first traversal (DFS). Its principle is to identify GC
by theirroots i.e. vertices first reached in the DFS. The DFS (¢%4™) S (454

sP
— the transition relation—, is defined by:

ITP) — qs £>s qIS/\qTP £>TP qITP



Figure 10. Synchronous produP = S x T'P and quiescence\(SP) ) . .
Figure 11. Visible behaviour of the synchronous produgP's =

det(A(S x TP))

— Accept” andRefus€’, are defined as follows:

Accept’ £ Q%N (Q° x Accept’) is applied first because determinization preserves tréces,
Refus& £ Q%N (Q° x Refus&) not quiescenceSP"* is equipped withAcceptand Refuse
B states:

The effect of the synchronous product is to mark behav- "
iors of S by Acceptand Refuse and possibly to unfoldb. Refust® = {P € Q" | PN Refus® # 0}
More precisely, accepted behaviors$P are exactly those ~ Accept® = {P € Q" | PN Accept’ # 0} \ Refus€®
behaviors ofS which are accepted by P. As TP is com-
plete, all behaviors of (including quiescence) are preserved
in SP. More precisely,S x TP is bisimilar to S. SP is
built during the following operation but could be built byyan
traversal.

Figure 10 represents the synchronous produst T'P
of the specificationS of Figure 2 and test purposEP of

This means that we choose to refuse a trace as soon as it
corresponds to at least one refused sequenc&Hn This
choice is justified by the fact that this cuts down the explo-
ration earlier. Figure 11 gives the result of this compotati

for the examples of Figure 2 andl' P of Figure 8. In this
example, the exploration has been stoppefidneptstate 11
andRefusestates 4 and 6 as successorg\oteptstates (re-

Figure 8. Its suspension automatdS x 7' P) is obtained by : .
. . spectivelyRefusestates) are alscceptstates (resepctively
adding the dasheflloops. The construction has been StOppedRefusestates)

in Acceptand Refusestates as subsequent behaviors is not

explored by TGV as it will be cut by the following operations. Computation oflet(A(.)): We already gave the definitions

of A anddet, but for the sake of efficiency, quiescence and
4.3 Visible behaviors determinization are computed simultaneously. We willsilu
trate the computation offi x T'P of Figure 10 and its result
The next operation consists of extracting the visible behav.S P in Figure 11.
ior (traces and quiescence) fro§P, i.e. constructing the Theoretically, & loop should be added in each quiescent
IOLTS SPYs = (@S, A, —ys, q)°) such thatSPYs = state. For deadlocks (no deadlockdrx T'P) and output qui-
det(A(SP)) (see definitions 3 and 2). Note that suspensionescent states (states (1,0),(1,1), (7,1), (9,0) and (v&)just



look at outgoing transitions. For livelocks, which are Isop A word on minimization: The IOLTSSP"* built is not min-

of internal actions (in states (0,0),(0,1), (2,0), (2,#)pf and  imal w.r.t. trace equivalence. As partition refinement algo
(4,1)), ad loop should be added in each state of a non-trivialrithms used for minimization work backward, they need the
SCC of internal actionsr¢SCC for short). But, ag(S) is complete IOLTS. But on-the-fly test synthesis (see sectiéh 4

determinized afterward, addingdoop in the root of each- avoids the complete construction §fP*'* and works for-
SCC has the same effect en. We will see how to combine ward. We then use a weaker equivalence relation and mini-
this with determinization. mizeS PV on-the-fly for this relation: two meta-stat€sand

P; of SPY* are “1-step equivalents” Fire(P;) = Fire(F;).
Determinization: Determinization consists of building the de- This minimization is simply done by a coding of each meta-
terministic I0LTSdet(A(S)) starting from its initial meta- ~ StateP; by Fire(P;), which is the only used information in

statequ(S) = qOA(S) aftere (in the example, the meta-stdie B
of det(A(S)) is {(0,0),(1,0),(2,0),(9,0)}) by alternation
of two operations: 4.4 Test selection

— subset construction: for a state detand a visible ac- g pvs represents all visible behaviors 6 Among these
R a J '
tion a, compute the seP’ = {¢'[3¢ € P,q = ¢'} of  gome visible behaviors correspond to behaviors accepted (o

states reachable in one visible stefrom P. FQ”T = refused) by the test purpo®&P. They are defined by the sets
{(0,0),(1,0),(2,0),(9,0)} and 7a, the result isP" = Accepts and Refusé®. The next operation consists of ex-
{(3,0),(8,0)}. tracting a test case by selection of accepted behaviors. Thi

— e-closure: for a state sdt, compute the seP aftere of  gheration does a little more as, to compute a test case (see
states reachable froft by sequences of internal actions. yefinjtion 5), we must perform a mirror image (invert inputs
ForP = {(3,0), (8,0)}, P aftere is also{(3,0), (8,0)}.  and outputs), complete it for inputs in all states where an in

In [25] we propose as-closure algorithm that avoids re- put is possible, ensure controllability, and define vesdimt
setsPass Inconc andFail.

dundancies, with the counterpart of a supplementary memory In the first step, we will not deal with controllability, and

mplexity. The i i follows. For all h m . . :
:?SCpCe tr?é setes deais as follows. For all statesf the same will describe the computation of an IOLKSI'G or Complete
’ Test Graph CT'G is an interesting IOLTS as it contains alll
. test cases corresponding to the test purpose. Moreovst, it i
— ! a 1

Fire(q) = LJ(SP) (a,{d' |a=4d'}) easier to explain separately how controllability confliate

acd solved. Except fotnconc andFail states,CTG represents
the useful part of P*®, that is, it is composed of states (the set

are identical. In facF'ire(q) denotes visible actions afterra L24) and transitions- 15.4) playing a role in the acceptance

sequence and resulting states, and is thus a reachabdjty pr

of traces.

erty.

For example Definition 9 For a specificationS and a test purposé& P,
Fire((0,0)) = {(?a,{(3,0), (8,0)}), (?b,{(4,0)}), thecomplete test grapis an IOLTS
(?¢,{(6,0)}), (14,{(0,0),(1,0),(2,0),(9,0)})} CTG = (Q°, A°™®, —s 16, ¢5™°), With three sets of trap states
andFire((2,0)) = Fire((0,0)), Pass Inconc andFail, and defined fron$ PV = det(A(S x
while Fire((1,0)) = {(?a, {(3,0)}), (16, {(1,0)}) }. TP)) as follows:
. A meta-state {(0,0), (1,0), (2,0), (9,0)} for example) — its alphabet isA°™ = AC™® U AS™® with AS™® C AYS and
is not only a set of states but a reduced graph—&CC AC™S = AYS (mirror image),
({(0,0),(2,0)},{(1,0)}, {(9,0)}) andF'ire(root(Vi)) issyn-  _ i set of states i©°™ = L2A U Inconc U Fail, with
thesized on each-SCCYV;. Meanwhile, quiescence is com- —I24 = {g € Q" | Jo € A ,v S5 Accepts}.

puted and-loops added. In particular a livelock is a non triv- L2A stands folleads toAccept). It consists of states

ial 7-SCC (e.g{(0,0),(2,0)}). Then, when an already vis- from whichAccept” is reachable,
ited stateyg is reached by a new call toclosure, the root of —Inconc = {v € Q" | Ju € L2A,v & L[24, a €

its 7-SCC returndire(q). For a meta-stat®, the set A" u %< v}, i.e. Inconc is composed of states not

in L2A, but which are direct successors of states in
Fire(P)= | J  Fire(root(V3)) L2A by an output inS P,
VieSCC_init — Fail = {Fail} where Fail¢ Q) is a new state.

— if ¢ € L2A, the initial state isgi™ = ¢ and Q°™ is
restricted to states reachable fragff® by —¢.c, otherwise
Q" is empty.

— the transition relation is=cic=—a U —ineone U —rai
where

whereSCCj,;: is the set of initial SCC of the reduced graph

of 7-SCC of P, gives all firable transitions and reached states.
Thus it gives the result of the subset construction. The time
complexity of determinization remains exponential but, by
avoiding redundancy, our algorithm is much more efficient
than the naive one. —oa = —us N(L2A x A°™® x L2A)
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Figure 13. Controllability conflicts

the computation ofnconc and —,.... is done during back-
tracking of output transitions &8 P¥'** from states inl.2 A to
states outsidé& 2 A. TheFail state and transitions i, are
implicit, — 744 being defined by complementation of firable
transitions. The algorithm has linear complexity in timelan
space, just like Tarjan’s SCC algorithm.

4.5 Pruning controllability conflicts

CTG@ satisfies all properties required for a test case (defini-
tion 5), except controllability: some statesof CTG may
have a choice between outputs or between inputs and outputs
(see Figure 13). Solving these conflicts consists of extrgct
a controllable subgraph @@7T'G while preserving other re-
quired properties. In a state with a conflict, some transgtio
must be pruned: either one output is kept and all other ositput
and inputs are pruned, or all inputs are kept and outputs are
pruned. Unreachable states are suppressed. Reachability t
Accept(or Pass synthesized il.2A) is preserved by a back-
ward traversal oCT'G from Passstates to the initial state.
o = —rus N(L2A x AF™ x Inconc) Among possible traversal strategies we choose a breadth firs
—ea = {(v,a,Fail) |ve L2ANa € A Av A}  traversal for its ability to select shorter paths fréxass Fig-
ure 14 shows a test case which is one possible result of this
— Finally, Pass= Accept". conflict resolution for the CTG of Figure 12. In state O of
CTG, la is chosen butb and?§ are pruned. In state % is
Figure 12 illustrates the computation of the complete tesichosen bula and?é are pruned. Note thal could be chosen
graph fromSP"® of Figure 11 for the exampleS andTP.  in 0 but!a cannot in5 as the PASS verdict would be unreach-
In SP¥s, the SCCH0}, {1}, {2}.{5,8,9} and{11} alllead  able.
to Accept thus their states and transitions are preserved in
CTG. {3,7} does notlead tAcceptandis cutasitis reached Forward pruning: Conflict resolution with a backward traver-
by the input’c, but outputdz and!z leading to{4}, {10} and  sal, as presented previously, requires a complete cotistnuc
{6} are preserved and lead to an Inconclusive verdict. of CTG. But this reduces the interest of the on-the-fly syn-
thesis (see section 4.6). Another solution consists of prun
Algorithm: According to the definition ofCT'G, the main  ing during backtracking in TGVloop. Suppose that TGVloop
point is to compute the sdt2A and to check ify® € L2A. pops a statg’ of SPY from which Accept® is reachable
Now, the setl.2A consists of co-reachable statesAafcept (i.e.q’ € L2A), and letg be its immediate predecessor in the
(note that all states are reachable frgffi by construction), DFS stack by actiom. If a is an input inSP"* (an output
i.e. states where the CTL [7] properf2A = EFAccept® of the tester), all other transitions leaviggalready explored
holds. This computation is classical in model-checking andor not) can be pruned. i is an output ofSP"* (an input
is often performed by a backward traversal fréiwcept But ~ of the tester), all inputs can be pruned. In the first case, al-
a forward traversal is possible, using properties of SC@, an ready explored transitions do not lead&ocept®, otherwise
is more adapted to on-the-fly computation. As a matter ofone of the rules would have been applied already and the in-
fact, either all states of an SCC arelie A or none of them puta pruned. In the second case, already explored inputs do
are. The algorithm, called TGVloop, adapts Tarjan’s algo-not lead toAccept®, otherwise the first rule would have been
rithm by the additional synthesis of the attribui2A and a  applied previously and the inputpruned.
construction of+,, during backtracking. This algorithm can This may solve some controllability conflicts and avoid
be seen as a model-checking algorithm f&A producing the construction of some parts 6f7'G. But some conflicts
all witnesses ofL2A starting in the initial state. Moreover, may not be solved this way, only in the case of particular

Figure 12. Complete test graph



global behavior, one has to reason in terms of functions for
the construction of each of the IOLTS SP andSP"s. The
required functions are traversal functiang: gives the ini-
tial state;firable gives the set of firable transitions in a state;
from a state and a firable transitiosycccomputes the (set
of) target state(s). Additionally, a comparison functiand
functions computing the membershipAéceptor Refusere
needed.

In the worst case, on-the-fly synthesis does not reduce the
construction of the IOLTS, SP andSP"s. But in practice,
the reduction is often dramatic, in particularZifP strongly
constrains the behaviors by the useR#fusestates. Using
this technique often allowed us to quickly synthesize tases
on very large or even infinite state spaces. Nevertheleiss, it
clear that ifS is small, it is preferable to build it completely
and to minimize it before test synthesis with different fast
poses. As we already noted, on-the-fly test synthesis ddes no
allow minimization for trace equivalence, and this sometm
la results in the unfolding of loops in test cases. Howevegsis t
cases are often small, they can be minimiagubsteriori

Figure 14. A possible test case for the example 4.7 Properties of synthesized test suites

Test cases produced by TGV have nice properties relating
verdicts computed during test execution and conformance.

traversal orders in loops. In fact, when a stgtés popped _ :
These properties are stated by the following theorem:

from the DFS stack, it is not always known if it is ib2A

or not. In the worst case, this is known only when its SCC isTheorem 1 For every specificatios, all test suites produced
computed and the two preceding rules cannot be applied. py TGV are sound. Moreover the (infinite) test suite consist-

However, residual conflicts can be sohe@osterioriby  jng of all test cases that TGV may produce is exhaustive.
the backward algorithm. In the example, the conflict in O can

be solved by forward pruning but the conflict in 5 is solved ~ We do not detail the proofs here but just explain the main
this way only if!b is explored beforéx. principles. For soundness, we need to prove that if a test cas

TC may reject an implementatidfU'T" of a specificatiort,
then—IUT ioco S. It then suffices to prove that Bail
verdict of a test case is only put after a forbidden input (an
K utput of IUT not specified inS) after a suspension trace
dgf S. This is almost clear from the definition of CTG. Con-
versely, for exhaustiveness, we need to prove that for every
non-conformanfUT, there is a test purpogeéP and a pos-
sibility to synthesize a test cagéC' from S andT P, such
thatTC may rejectIUT. But, if ~IUT ioco S, thereis a
suspension trace of S such that an output ofUT aftero

is not possible ir5. T'P is then constructed from and there

is a possibility to extract a test ca®&' from the CTG such
that/UT may be rejected by'C.

4.6 On-the-fly test case synthesis

Figure 9 gave an overview of the operations needed for te
synthesis. Remember that after the computation of the pro
uct SP = S x TP, the suspension automatat(SP) and
the deterministic automaton of §PV = det(A(SP)) are
factorized in one operatioAcceptandRefusesets are prop-
agated by these operations. FrétR"'S a complete test graph
CTG@ is computed by selection of traces leadinghtxep't®,
mirror image, addition of verdicts. Alternatively, a tesagh
TG can be built by pruning some controllability conflicts
during selection. Finally, residual controllability caofk on
CTG or TG are solved to produce one test cd%@.

!n generalT'C is small cqr_npa}red_ e, be_cause of. se- The TGV tool
lection byT' P. Also the specification is not given explicitly
by an IOLTS but in a specification language. Its semantics
is an IOLTSS, but it is given implicitly by a simulator API 5.1 TGV architecture
in terms of functions allowing its traversal. Buildirfycom-
pletely when only a small part is used TP is thus ineffi- ~ The architecture of TGV follows its functional description
cient, and in general impossibleSfis not finite state. described (see Figure 15). TGV has several software levels

The idea of on-the-fly synthesis is to perform a lazy con-communicating through APIs. Each API is a simulation API
struction of subgraphs &, SP andSP"* necessary for the of an IOLTS made of graph traversal functions: the computa-
construction off'C, i.e. selected b{"P. To understand the tion of the initial states, the computation of firable traiosis



Specification Test Purpose

(SDL,Lotos,UML,IF, beg,aldebaran)  (bcg,aldebaran) erage strategy. This engine produces sequences of obkervab

| Test architecture actions interpreted as test purposes.
. ______ /o, hide, rename
i compiler )
77777777 ( Vo Tuning optiona UML: to produce test cases from UML models, TGV is con-
simulation simulation | ; nected to a CADP-like simulation API provided by the UM-
APIof § APLof TP |~ LAUT tool [18], a validation framework for UML developed
& synchronous product | in IRISA. UMLAUT uses class and object diagrams, deploy-
-ET ) | | ] f{?l]::r ment diagrams, state diagrams and gives an operational se-
g | uspension (3) determinization | mantics for UML in terms of labeled transition systems, by
i | :f_i‘::lﬁfn transformation and compilation of the UML model.
‘\ selection | _hiding ¢ Another possibility is now offered by the compilation of
77777777 | APof C1G | | APLOE TG | | _regexp UML into IF in the context of the Agedis IST project.
§ controllability )
( | t::;::tlf | ) IF: IF [5] is an intermediate fprmat developed by Verimag
- ’ (Grenoble) based on communicating automata extended with
Test Case data. IF specifications can be produced from SDL and UML

(beg, aldebaran, TTCN GR and MP) models. TGV also uses the simulation API provided by the
IF compiler. Recently, during the IST Agedis project, a new
version of this connection has been developed. The API of-
fered by IF is now the API of the product between a test di-

. ) rective and the specification. Test directives generatse t

of a state, the computation of its successors, and the CO';})'urposesin several ways. First they describe test purgases
parison between states. Each level implements one of the algnged with constraints on data, just like in GOAL observers
gorithms described in section 4, transforming an IOLTS (0rjy opjectGéode. This allows a more precise test case selec-
two in the case of the product) given by its simulation APl i They also allow to describe coverage directives simil
into a simulation API of a new IOLTS. Additionally, TGV (4 those of Gotcha [2]. Coverage directives express coeerag

uses libraries for storing states, for hiding, renaming@9d ot general expressions on specification variables. Cogerin
ular expressions provided by the CADP toolbox [14]. Due t0 5 expression means finding sequences of transitions cover-

this architecture, TGV guides the simulation API of diffete g 4 reachable values of the expression. These sequences
specification languages with the same source code, eXaept i then transformed into test cases. The main problemtis tha
the highest API. This ensures the coherency of different var s may result in the construction of the whole state graph
ants, and facilitates porting to new systems (TGV works 0Ny the specification. This is why coverage directives caa als
SunOS 5, Linux and WindowsXP). Moreover some parts carhe coupled with test purposes in order to limit the behaviors

be used alone or by other programs. In particular, we have imy, \yhich an expression should be covered. Using the general
plemented a module called VTS which verifies soundness angoverage principle, it is also possible to define differdates

strictness of manual test cases (strictness of a test @88 St 41 transition coverage policies. In fact it suffices to auto

that it may reject all IUTs that are non-conformant on the iically introduce new variables in the IF specificatioatth

traces of the test case). This module just replaces TGVIOORqe state change or transition firing, and to cover the galue
and uses other levels. It also served for testing TGVIOOp. ¢ these variables.

Figure 15. TGV architecture

5.2 Supported languages Your favorite specification languagethe simulation API re-
quired by TGV is documented and quite simple. For a lan-
cguage with an operational semantics described in terms of
LTS or IOLTS, if a compiler produces a simulation API, an
interface between this APl and the TGV API can be easily

built.

TGV supports different specification language by a conne
tion to their simulation API:

Lotos: TGV uses the simulation API provided by the CAE-

SAR compiler of the CADP toolbox. But as Lotos does not Output language: TGV may produce test cases in TTCN

d|sF|ngU|sh !nputs. '?”d outputs,. TG.V needs an additional flle(Tree and Tabular Combined Notation [19]), or in one of the
which partitions visible events into inputs and outputs.

graph formats (.aut and .bcg) of the CADP toolbox.

SDL: TGV uses the simulation API of the ObjectGeode SDL

tool from Telelogic [17]. There exist two versions of thigeo 9.3 Other TGV characteristics

nection. The academic version uses a CADP-like API and

guides the ObjectGéode simulator. The commercial tool TestSeveral options are provided by TGV in order to tune test
Composer of ObjectGéode also integrates TGV as one of itgeneration or to refine the produced test cases. In panticula
two test synthesis engines. TestComposer is also equippelGV produces test cases with timer operations. Recall that
with a test purpose synthesis engine based on a branch cotimers are used to detect quiescence, and that quiescesice ha



Hiding is used to increase the set of internal actions. Renam
ing is used to modify the description of visible actions feeyt
will appear in test cases. These options are useful for study

ing several test architectures without modifying the avéi
specification. Another option is the description of inputs a
outputs. This is particularly useful for specification laages
that do not distinguish them, such as Lotos.

- 2atherwise

sout TNOAC .

?Ti
TNOAC

6 Case studies

Different versions of TGV have been evaluated on industrial
size case studies, in various application domains, and with
different specification languages. We just sketch thesescas
studies, as they have been already published, and summarize
the lessons learned from these experiments.

CanceNTAC 6.1 The DREX protocol

This protocol is a military version of the ISDN D protocol.
The study was performed during a project involving several
French industrial partners. Several specifications wert wr
ten in SDL, each describing one service. This case study al-
Start|TAC lowed the validation of TGV principles on a preliminary ver-
@ sion of the tool. This version was incomplete and did not
work on-the-fly [15]. The same specification served as a case
la study for two other tools: TVéda from CNET [32] and the
TOPIC prototype from Vérilog. The experiment allowed us
to compare TGV with these tools as well as with the manual
production of test cases [11]. It proved that the TGV appioac
was feasible on real size case studies. Moreover, it allased
to detect some errors in manual test cases, in particulae som
due to asynchronous communication between the tester and
been taken into account in test generation. Two timers aréhe IUT, producing race conditions. These asynchronous be-
managed, TAC and TNOAC. TAC is used when no quies-haviors are very difficult to imagine manually and complgtel
cence is expected. Thus, TAC is started when inputs are exustify the use of formal methods.
pected (except if is expected). If an input is observed, TAC
is canceled, otherwise a timeout is observed and produces@gy A cache coherency protocol
Fail verdict. Conversely, TNOAC is used when quiescence
is possible. TNOAC is started before entering a state where
quiescencey) is allowed. Itis canceled if an inputis observed

The observation of 'S replaged by a timeout. This timeout cessor architectures of Bull (Polykid). The Lotos specifica
does not produce Bail verdict, because the presencedof tion used was 2,000 lines long, half of which consisted of
proves that quiescence is possible in the specificatiors Thiabstract data types. The specification consisted of 3 mod-
trf'insformation is described by Figure 16 for the test case irhles with several processes per module. Its state graph coul
Figure 14. ) ~not be built. During the experiment, the first version of TGV
The traversal depth can be bounded. This bound is intergrking completely on-the-fly was developed. This also al-
preted in terms of visible actions as, due to non-determmnis |g\yed us to improve TGV algorithms (generation of acyclic
a bound in terms of actions could result in an unsound tesfest cases) and to introduce new optional features. Incparti
case. lar, as Lotos does not make a distinction between inputs and
TGV allows the computation of postambles frdPass  outputs, we had to provide this information in an additional
andInconcverdicts. If possible, these postambles lead to stafile. Renaming and hiding was also intensively used.
ble states i.e. states where, accordin§ too output from the Test purposes where written according to a test plan pro-
IUT is expected. vided by Bull. 75 test cases have been produced from these
The test architecture can also be modified by the use ofest purposes. The average size of test cases was 1000 cy-
hiding and renaming rules described by regular expressiongles. Produced test cases have then been executed by Bull on

Figure 16. Test case with timers

Qeveral experiments [27,28] consisted of using TGV on Lo-
tos specifications of cache coherency protocols for multipr



a simulator of the architecture running a VHDL description have been written in order to check if tools were able to de-
of the Polykid architecture. The usual way to perform testin tect non-conformant mutants. An experiment with TorX had
in Bull for hardware architectures was to work off-line,.i.e already been conducted on a Lotos specification, and TorX
emulating the system by input data, collecting reactions inwas able to detect all non-conformant mutants. A new exper-
output files, analyzing the results and emitting a verdi&. A iment was then conducted with TGV on the same Lotos spec-
test cases produced by TGV are reactive, a testing envirorification, during a visit of colleagues from Twente, in order
ment was developed to run these reactive test cases. The tastcompare TGV with TorX. The challenge was to detect all
campaign uncovered 5 bugs mainly due to address collisionsion-conformant mutants by running generated test cases. Of
course the code of mutants was not available to us. The main
6.3 The SSCOP protocol problem encountered with TGV was to imagine adequate test
purposes. Of course, this involves a good knowledge of the

. . ) ) rotocol as one has to imagine abstract scenarios where at
The SSCOP protocol (service specific connection orlente$

Ni ) | L of the ATM K east one implementation may fail. We first used informal re-
protocol) is a quite complex protocol of the stack, stan- quirements provided with the protocol to write test purfpse

dardized by IT,U' This pr.otocol is supposgd to trans_ffar d,ataand were able to detect most non-conformant IUTs by gener-
between two high bandwidth network entities. A specificatio ated test cases. The last nhon-conformant mutants were more

yf\{as _coded in SI_DL Zy l;TR&D_frolm the ATMdForuT)_spec- difficult to find as faults occurred after long sequences in-
: |cz|it|0n._lt corsns?e of one single pr(l)cggzo le_scn '3& S€\olving loops in protocol entities. But finally, after a cre
era‘ services. S Size was approximate Yy Ines oliteixt study of the protocol, new test purposes were written, aind al
SDL (approxmately 8(_) pages of grgph{cal .SDL). We havenon-conformant IUTs were detected.

used this protocol and its SDL specification in several exper 5 i experiment with the SDL version of the protocol

iments with the aim of putting into relief the particulagisi of was conducted later, using the version of TGV in TestCom-
TGV [4]. The version of TGV that was used was connected toposer

the ObjectGéode SDL simulator (Telelogic). So we used Ob-
jetGéode features to tune the experiments. In particuiﬁr,w6 5 Air traffic controller
made restrictions on the environment behavior with the use™
of feeds. We also used GOAL observers to specify the globak

service automaton of the ATM standard. This was useful to UML model of an arr traffic control (ATC) syste_m Was_
. o used as an example of the UMLAUT/TGV connection. This
detect errors in the specification and to ensure that seqgenc

model consists of a class diagram consisting of four classes

traversed by TGV during test case generation did not V|olateand three actors, one state diagram per class or actor, and ob

h rvice. We al ic analysi fely r h : e .
the service. We also used static analysis to safely reduce t ect diagrams specifying the initial state. The environhten

specification state graph. Fifty complex test purposes Wer%1avior is defined by actors. One describes a human controller

designed, covering all services of the protocol, but of seur . : )
gned, co g - P ' e second describes the radar, and the third describes a con
not all behaviors. We made some variations on the number o : :
- troller of another ATC. The four classes describe the flight
PCOs and the communication mode (synchronous or asyn- . . : )
chronous) between tester and IUT. Asynchronous Commuand flight plan, the position of flights and the flight plan man-
- ASY ager. The semantics of a UML model in UMLAUT is defined

nication was specified by the introduction of a process be- a labeled transition system obtained by transformations

tween the system and the environment. The results gaine%ﬁy . .
: . the UML model. Simple test purposes have been automati-
during these experiments showed that on-the-fly test gener- .
. g e . cally generated from sequence diagrams. From these, TGV
ation was efficient on specifications with large state spaces . .
This resulted in the transfer of TGV into ObjectGéode produced interesting test cases. The case study was done to
We also used the same SDL specification to chéck fordemonstrate that test generation using TGV was possible for
P ; UML models.
correctness of a part of the TTCN test suite produced by the
ATM Forum. For this, we used our tool VTS, which is built . o )
from parts of TGV. VTS takes as input a specification and a8-6 Transit Computerization Project

test case, and checks for soundness and strictness of the tes

case [24]. This allowed us to detect some errors with respe { the framework of the IST E.u.rop_e an project Agedis, TGV
to soundness in the ATM test suite. Most of them were due td'2> been used on an IF specification of the ECN component
asynchronism of the Transit Computerization Project (TCP). The aim of

TCP is to develop a set of applications that will be used for

electronic exchange of information regarding goods ingitan
6.4 The conference protocol between EU countries. The ECN is mainly in charge of ensur-

ing the communication and translation of business informa-
TGV has also been used on a conference protocol [12]. Thision flows between domains. From an informal UML model
protocol is a toy example designed by colleagues of Twentef the system provided by IntraSoft, an SDL specification was
University to compare test generation tools. Several §ipeci written by Verimag, and then automatically translated Ifto
cations have been written in different languages, inclgdin The specification consists of 10 processes running concur-
SDL and Lotos. Also 28 mutants of a correct implementationrently and communicating asynchronously. Two experiments



were conducted. The first one with TGV in TestComposerthe case. In a first approach one writes very abstract test pur
directly with the SDL specification, used test purposes gene poses. But it is often necessary to refine these test purposes
ated with branch coverage and test purposes generated wifbr several reasons. First when state graphs are largeaabst
interactive simulation. This experiment showed that bhanc test purposes do not guide sufficiently the generation. Thus
coverage was clearly not sufficient to cover most intergstin TGV may suffer from state space explosion. Second, even if
behaviors. Thus additional test purposes were designed by test case is produced one realizes that a shorter one could
simulation and from requirements. The second experimenibe generated. This implies restricting test purposes bgdhe
was done with TGV connected with the IF simulator, us- dition of refuse states or limiting the depth of test cases.

ing the IF specification and a few significant test purposes. Nevertheless, we know that test generation from test pur-
The number of processes (10) and their concurrency pushegbses is not always the best approach for some users. Some
TGV to its limits. In particular, we noticed that there was a prefer a more automatic solution, based on coverage crite-
lot of concurrency between internal actions. But these conria. But coverage is limited as it often misses interestiag b
currencies could be avoided, as test generation is corgternénaviors. Thus additional test cases based on well targeted
with visible behavior. This gave us some ideas about possitest purposes are often necessary. However, we are codcerne
ble improvements using partial order methods (see secjion 8with coverage. This is why we recently tried to improve TGV
Finally, we generated a state graph of the specification withwith coverage facilities, allowing us to mix coverage direc
additional constraints. The size of the graph was of therordetives with test purposes.

of 500 000 states and 900 000 transitions.

. 7 Comparison with other techniques and tools
6.7 Lessons learned from case studies

L . 7.1 FSM based test generation
We have sketched some case studies in which members of our 9

team participated. TGV has been used by us or some of our ) )
partners in other cases studies in telecommunication bat al -SM test generation tools make strong assumptions on spec-
for smart card applications. ifications and implementations. This is the price to be paid

First one can notice that we made some realistic caséor exhaustiveness, as this restricts the set of possitpéeim

studies in very different domains. TGV was first designed formentations to finite set. This means that if a fault is pre_sent
telecommunication protocols, but showed that it could be al it can be detected after a bounded number of steps. This cor-

esponds to a regularity hypothesis in the framework of [3].

applied to hardware and also to middleware. This proves tha . th " de by TGV K
the TGV approach is very general. The reason is that the tes -ONVErsely, the assumptions made by are very weax.
he only significant one is that implementations are input

ing theory and algorithms are general enough for all these . .
g y d ¢ g complete. Practically, exhaustiveness cannot be ass#red b

application domains. o ) P ;
We also used different specification languages. This glearFause the set of possible implementations is mﬂmte. This
means that a fault can occur after a trace of arbitrary length

shows the independence of TGV with respect to speuﬁcaﬂorgind thus cannot be detected by test cases of bounded length.

lan . Thisis n rprisin Il th lan r
anguages S IS not surprising as all these languages a owever, all faults are detectable as proven by Theorem 1.

given a semantics in terms of labeled transition systems. An Moreover FSM based test generation algorithms are com
additional interpretation of actions in terms of internaput ' e 9 algor
plex, and are thus limited to small specifications. Usually,

or output actions is sometimes necessary, but is often.clear o . 4
. . when large specifications are considered, a rough abstmacti
On-the-fly test generation has proved useful in most cases

. e .. 1S made, or the state graphs are built up to a limited depth.
In fact, sometimes state graphs of specifications were igfini : ; .
: Thus exhaustiveness is only partial.
but in most cases they were very large, due to data and/or
asynchronism between processes, and thus impossiblddo bui
completely. Nevertheless, we were able to generate tess cas7.2 Test generation based on model-checking
with TGV. Of course, if state graphs can be completely con-
structed, on-the-fly test generation is not necessary. BMT TGV can be compared with test synthesis techniques and
can still be used on these explicit state graphs. tools based on model-checking (e.g [13]). The common idea
All experiments were useful to imagine improvements of of most of these techniques is to use a standard model-checke
TGV. Test generation algorithms have been improved comto produce counter-examples. Given a test purpose specified
pared to the first version. Starting from algorithms genegat by a reachability property’ of a temporal logic (e.g. LTL
acyclic test cases, TGV now generates test cases with loogsr CTL), a model-checker (e.g. SPIN, SMV) is used to pro-
and takes into account coverage directives. We also imgroveduce a witness of? on the specificatior$. To do this, one
the tuning of TGV by the addition of options in test genera- checks the negationP of the property against the specifi-
tion algorithms. cationS. The property-P is a safety property, that can be
The main difficulty in most case studies was to design teswiolated by a finite trace. Most model-checkers can produce
purposes. In some cases, the task was easier as we could baseinter-examples for this kind of property. Thus§ iiolates
test purpose design on requirements. But this was not alwaysP (thusP is satisfied byS), the model-checker produces a



counter-example for P, and thus a witness faP. This wit- Agedis project, we improved TGV with test directives that in
ness is then abstracted from internal actions and intexnpret clude both test purposes and coverage criteria (e.g. stdte a
as atest case. TGV goes beyond this idea. First itis based onteansition coverage).

clear testing theory. Second it does not use a model-chgckin
tool, but adapts model-checking algorithms to test syntheA
sis. This allows us to take into account non-deterministit a
non-controllable specifications, which is not the case foep
tools.

Improvements of algorithms are also to be investigated.
n interesting direction is to use partial order technicaem
model-checking [30]. These techniques can already be used
for internal actions as the order of occurrence of intergal a
tions has no effect (if they are not used in test purposes) on
visible actions, and thus on synthesized test cases. Apply-
7.3 TorX ing these techniques for visible actions is more difficult as

concurrent behavior must be synthesized in test casesr Othe

improvements concern compositionality. We will investea
The most comparable tool for TGV is TorX [9] from the Uni- oy to compute test cases incrementally in the case of com-
versity of Twente. The testing theory is almost identicat (¢ positional specifications. In the same line of thought, i@ th
cept that livelocks are not considered). It also synthede®t  gntext of Agedis we also investigated how to compute sev-

cases on-the-fly, butfor the momentwithout any test purposegr| test cases in one run from a composition of test purposes
As it executes test cases on-the-fly during their synthtrgs, coverage criteria.

test case synthesis is guided by the observations made of the ) ] o ]

IUT for the proposed stimuli. As mentioned in subsection 5.3 Another important problem is that of distributed testing.
both tools were applied to the same case study and, despif@ the general case the system is distributed, and test cases
their differences, gave similar results in terms of fauliede should be distributed and should communicate asynchriyious
tion power. In some sense, TGV algorithms are more pOW_Concurrent-TTCN has such specificgtion power. A first ap-
erful than TorX ones for test selection. They both base tesProach we adopted [23] is to synthesize a sequential test cas
generation on a traversal of suspension traces of the speciffd to distribute it according to localities of actions. B0

cation. But while TorX works forward and randomly, TGV choices were solved by a distributed consensus service. The

works both forward and backward guided by a test purpos main drawback is the loss of concurrency and the fact that

Nevertheless, the approaches of TGV and TorX are complednnecessary synchro_nizations between testers are added. A
mentary. TorX is very efficient for intensive testing, wheet  diréction of research is to preserve concurrency by the use
goal is to detect faults by a random exploration of behaviors©f trué concurrency models [21,22] and to revisit the testin
TGV is more efficient when precise faults are targeted by a€ory accordingly.
test purpose. Another drawback of TGV is the use of enumerative tech-
nigues. A consequence is that specifications with data-struc
tures with large (or infinite) domains may be impossible to
8 Conclusion and perspectives treat, even with on-the-fly techniques. Also specificatioits
symbolic variables are out of the scope of TGV. A solution is
to use symbolic techniques [33]. States sets and transition
In this paper, we have presented the principles of TGV, itsare not enumerated but represented by predicates. The speci
underlying theory, the algorithms and the tool. TGV has im-fication model we use is called IOSTS (Input-Output Sym-
proved the state of the artin test synthesis in a significagt w bolic Transition Systems). Transitions are labeled with in
Our main contribution is not in the theory, despite our adapt puts, outputs or internal actions, guarded with boolean ex-
tions and improvements, but in the algorithms and tool archi pressions on symbolic constants, variables and communica-
tecture. TGV is able to synthesize tests from industriad siz tion parameters, and may perform assignments. From a spec-
specifications. However, some improvements are still recesfication specified as an IOSTS and test purpose (Aitbept
sary for industrial use. and Refusestates) also specified by an IOSTS, a test case
A first drawback is the necessity to describe test purposess first extracted with techniques similar to TGV, but only
Itis an advantage compared to manual generation of test casen the syntax of the specification. This test case is sound
because test purposes are of a higher abstraction levédgand for the conformance relation but may include unsatisfiable
cause TGV ensures soundness of synthesized test cases. Bunsitions that should be pruned. Unfortunately this prob
an effort must be paid for the description of test purposés anlem is undecidable, thus approximate methods must be used.
this requires some expertise. TestComposer providesialpart In our tool STG [6] we use two means. We use the Omega
answer by the synthesis of test purposes according to a coonstraint solver to prune some locally unsatisfiable trans
erage criterion adapted from branch coverage, but limited t tions. Moreover, a deeper analysis using abstract interpre
observable behaviors. But the branch coverage criteriofiis tion (by our NBAC tool) computes an over-approximation
ten too weak and some test purposes still have to be writterof reachable and co-reachable states, which prunes more un-
A possible direction for future research is to use improvedsatisfiable transitions. Even if some unsatisfiable tramst
coverage criteria based on the specification code and atlapteemain, after fixing the values of symbolic constants, exe-
to the specific problem of conformance. In the context of thecutable test cases can be produced and executed on imple-



mentations. Omega is again used during execution to find G. v. Bochmann, editorsfIP 13" Int. Conference on Testing
outputs satisfying the guards.
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