On-the-fly Analysis
of Distributed Computations

Eddy FROMENTIN, Claude JARD,
Guy-Vincent JOURDAN, Michel RAYNAL

IRISA, Campus de Beaulieu,
F-35042 Rennes, FRANCE.
email: <name>Qirisa.fr

May 13, 1994

Abstract

At some abstraction level a distributed computation can be modelled as a partial
order on a set of observable events. This paper presents an analysis technique
which can be superimposed on distributed computations to analyze control flows
terminating at observable events. A general algorithm working on the longest
control flows of distributed computations is introduced. Moreover it is shown how
this algorithm can be simplified according to the definition of observable events or
to the set of control flows we want to analyze.

Key Words: Distributed computation, observable event, longest control flows,
causal precedence, sequences analysis.

1 Introduction

Since Lamport’s seminal paper [8], distributed computations are modelled as sets of
events structured by partial order relations. For a particular computation, events pro-
duced by each process are totally ordered and communications creates dependencies
among events belonging to distinct processes. These partial order relations on events
are generally called happened before (with respect to a logical time frame) or causal
precedence. They formally express control flows and their mutual dependencies which
organize distributed executions.

One important topic addressed by computer science is the analysis of sequences of
symbols or words (e.g. syntactical analysis, pattern recognition, etc). Well-suited for-
malizations have been designed and specialized tools have been implemented to make

feasible such analyses in specific domains (formal languages and automata theory are the
most famous example of these works). In this paper we are interested in analyzing on
the fly the set of “words” produced by a distributed computation; a word being defined
from sequences of relevant events produced by an execution of a distributed program.
The practical motivation of our work comes from debugging, testing and monitoring of
distributed computations [5, 7|. In this context we choose to explore analysis techniques
of distributed computations which must be done on-the-fly anf without delay (this is
particularly important in the context of reactive monitoring). These constraints elimi-
nate the possibility to log events produced by each process (as the analysis cannot be
done off-line) or to use an additional process (monitor) that would receive notification
messages sent by processes of the computation in order to analyze their traces (as in
that case notification messages would add some delay between event occurences and
their knowledge by the monitor). In other words we constraint our analysis mechanism
to be superimposed on the computation and to use only a piggybacking technique to
convey analysis related informations from one process to another.

According to the aim of the analysis (detection of a property, for example) only a
subset of all the events generated by a distributed execution are meaningful to the user,
these events are called observable events. From this point of view, the other events are
ignored at the abstraction level considered; they participate only in the establishment
of causal dependencies between observable events. Sequences of observable events are
defined by the partial order relation associated with the computation. Although each
observable event of the computation is unique, several events can be execution occurences
of the same action for example. So a labelling function is introduced and the sequences
of observable events are associated with words (concatenation of labels). The analysis is
then carried out on the fly and without delay on these words. The analysis considered
in this paper is based on finite state automata. Other kinds of automata could be used
but finite state automata are sufficient to illustrate our analysis technique; moreover
finite state automata can solve interesting practical problems (see Section 5) and allow
an efficient analysis, as far as the automaton is concerned, as they require only the
piggybacking of a bounded number of bits —one per state of the automaton— to do the
analysis.

The paper is divided into 4 main sections. Section 2 presents the model of distributed
computation; Section 3 presents the kind of analysis we are interested in, the definition of
languages (set of words) associated with distributed computations and the two question
(satisfaction rules) which can be answered by the analysis. Section 4 presents a general
distributed algorithm which, in this context, analyzes on the fly and without delay a
distributed computation. Section 5 examines particular cases according to the position
of observable events with respect to communication events.

2 Distributed Computations

2.1 Distributed programs

We are interested here by distributed computations. Such computations result from
the execution of distributed programs. A distributed program is made of n sequential
processes P, .., P, which synchronize and communicate by the only means of message
passing. A distributed program can be directly produced by a programmer or can be the
result of the compilation of a parallel or sequential program for a distributed memory
parallel machine. Processes that realize the distributed computation execute actions
which are either communication actions (sending of a message, reception of a message)
or internal actions (all the other actions). Execution of an action is called an event.

2.2 Model of distributed computations
2.2.1 Lamport’s precedence relation

When executed, each sequential process P; produces a set of events E; totally ordered
by a local precedence relation <,. This set E; can be partitioned into two subsets:

e I;: the set of internal events of P; (resulting from internal actions);
e X;: the set of communication events of P; (send and receive events).

The set E' = |, E; of all the events produced by the distributed execution is partially
ordered by Lamport’s relation called happened before or causal precedence [8]. The
resulting poset is noted £ = (E, <,):

(T = y
or
det t=jand z <,y
Vee Bj,yeEj:a <,y = or

x is the sending of a message and y its reception
or

dz such that z <, z and 2 <, y

\

2.2.2 Abstraction level and observable events

Analysis of a (distributed) computation is always done at some abstraction level (usually
language, system or hardware level). For an abstraction level, a distributed computation
is characterized by the events that must be observed in order to analyze it. So we con-
sider here that, for a given abstraction level, only a subset of internal events are relevant;
these events are called observable events and result from execution of specific actions (for
example, modifications of some processes variables); these actions will be identified by
labels as described in Section 3.2. Communication events create causal dependencies

between observable events but are not supposed to be observable (if necessary a commu-
nication event can be made observable by generating an additional internal event just
before it —in case of a send— or just after it —in case of a receive—; see Section 5.2).

So an abstraction level is a screen that filters out all irrelevant events and keeps all
causal dependencies between relevant events. Let O; C I; be the set of observable events
of P, and O = J; O;. At the abstraction level considered the distributed computation is
characterized by the poset O = (0, <,) with <_ defined by!:

Vz,y€ O:z <,y x <,y

Figure 1 displays a distributed computation in the classical space-time diagram.
Observable events are denoted by black points; exchanges of messages are represented
by arrows going from one process line to another one.

T~

T

Figure 1: A distributed computation.

Figure 2 displays the poset 0= (0, <) associated with the distributed computation
of Figure 1 (only non reflexive and non-transitive edges are represented).

a b j
[] ®
C d \L/
[[®

Figure 2: A poset 0= (0,<,)

"'We use z <, y as a shorthand for z <, y and x # y.

2.3 Deciding about order of events

By using a vector clock mechanism [2, 9] a timestamp can be associated with each event
and used to decide about order of events. Such a vector timestamp V,[1..n| associated
with event z is such that:

Vkel.n:Vik]=|{z € O : 2 <, x}|
and we have
Ve € O;,y€ O:x <, & V,[i] <V,

These timestamps are obtained by using the classical vector clock mechanism [2, 9]:
e each process P; maintains an integer vector V;[1..n] initialised to O;

e cach time [P, produces an observable event =z € O;, it executes:
Vili] :== Vi[i] + 1,V := V;

e cach time P; sends a message, it adds V; to the message;

e each time F; receives a message from F;, piggybacking V; it executes:
Vo € 1.n: Vi[k] :== max(V;[k], V;[k]).

3 On the Fly Analysis of a Distributed Computa-
tion

3.1 Covering graph of causal dependencies

A way to perform analyses of distributed computations on the fly and without delay
is to carry them out incrementally each time an observable event is produced. So the
analysis done when such an event x is produced is on the set of its causal predecessors,
denoted pred x:

predz ={ye€ O:y <, x}

Among all the causal predecessors of x some are its immediate predecessors. If it
exists the immediate predecessor of x on some process P; is unique. It constitutes the
singleton or empty set im_pred x. Formally:

Y<,7
def and
) = Y € Oj
and

(im_pred, = = {y}

Az € 0:(y<,zand z <, x)

s\]

Figure 3: b is an immediate predecessor of c.

For example, in Figure 3, the observable event ¢ has an immediate predecessor
on P; (im_pred c={b}) and there is no immediate predecessor of x on process P;
(im_pred ¢ = {}).

Let C be the covering graph of O (i.e. C is O from which all transitivity edges have
been suppressed); we have:

(y,x)eCeIjeln: im_pred, v = {y}

Considering an observable event x, the analysis is carried out on the paths of C
beginning with an observable event without predecessor and ending at x; let C(x) be
the set of all these paths. In Figure 3 we have C(c) = {abc, aefc,defc}. Paths of C(x)
include all events of pred x and correspond to the “longest control flows” that are needed
to produce . We can see that, in the previous example, the path ac is not a “longest
control flow”.

It would be possible to consider a set of paths ending at = larger than C(z) to
perform the analysis. We choose the previous set C(z) essentially for the generality of
the associated analysis algorithm described in Section 4. The resulting algorithm is very
general and can be simplified to work on a larger set of control flows ending at some
observable event x. Such an algorithm is sketched at Section 5.3. When considering
the observable event ¢ in Figure 3, this simplified algorithm works on the set of paths:
{abc, ac, aec,aefc,dec, defc} which represents all possible control flows ending at ¢ and
not only the “longest” ones.

3.2 Language associated with observable events

Observable events are execution of relevant actions at the abstraction level considered.
These actions define an alphabet A and a labelling function A : O — A associates with
each observable event an element of the alphabet A.

A language L(z) (set of words of A*) is associated with each observable event z in
the following way:

L(z)=4{\o):0€ C(x)}
where A\(x12g ... x,) = Ax1)A(22) . .. A(zg).

3.3 Specifying a pattern

The analysis consists in answering wether the computation meets some pattern.
The patterns we are here interested in are described with a finite state automaton
® = (A,Q, q,0, F) where:

e A is the alphabet (labels of observable events);
e () is the set of states;

® (o is the initial state;

e 0 C (@ x AXQ is the transition function;

o ' C @ is the set of final states.

Other kinds of automata could be used to specify patterns. But as claimed in the

introduction, finite state automata are sufficient to describe a lot of practical properties

(whose linked predicates [4] and atomic sequences of predicates [6] are special cases).
L(®) will denote the language recognized .

3.4 Satisfaction rules

Consider an observable event x. Two kinds of question can be answered according to
kind of analysis we are interested in: either only one or all paths of C(z) match the
pattern described by the automaton ®. More formally the two following satisfaction
rules are defined for x € O:

rE3® & Llx)NL(®) #{}
ey ® & L(z) C L(D)

The first satisfaction rules is useful in the context of debugging (with ® describing
a pattern revealing am error). The second one is more interesting in the field of on-line
testing to verify an execution did not exhibit an anomalous behavior.

4 An On the Fly Analysis Algorithm

4.1 An incremental analysis

Consider an observable event z; let ®(x) be the set of states reached by the automaton
by analyzing all words of L(z):

®(z) = {6"(gp,0) : 0 € L(2)}

where 6* is the transition function of ® extended to words. We have:

rE3® & O(z)NF#{}

As the analysis is on C(xz), the set of “longest control flows” ending at x, ®(x) can
be computed in an incremental way by using the immediate predecessors of x:

d(z) = {5((], A(x)),Vq € U@(im_predj 3:)}

J

with ®({}) = {} and ®(im_pred z) = {qo} if 2 is a minimum of O.

4.2 Description of the algorithm

Each process P; is endowed with a vector clock V;[1..n] managed as described in Sec-
tion 2.3. It is also associated with an array ®pred;[1..n| of sets of elements of Q.
Ipred;[j] is managed in such a way that supposing the next event x produced by P;
is an observable event, we have: ®pred;[j] = ®(im_pred) (the proof in Section 4.3 will
establish this invariant).
The algorithm is defined by the 4 following statements S1 to S4 executed by each
process P;.

S1: initialization:

Vi€ l.n: Vi[j] :=0;
Vi € 1.n, Dpred;[j] :=={q};

S2: When P; produces an observable event z:
Vili] := Vili] + 1;
Ppred;[i] := {6(q, M), Vg € Uy Tpred;[k]};

Vi€l j#i: Gred] = {};
% ®(x) = Tpred;|i] %

S3: When P; sends a message to Py:
Vi[1..n] and ®pred;[1..n] are added to the message;

S4: When P; receives from Py, a message piggybacking Vi, and ®predy:

Viel.n:do
case
Vili] < Vi[j] then Bpred;[j] := predi[j];
Vili) =
Vili] > Vi[j] then skip
Vilj] = Vk[j] then if pred;[j] # {}
then pred;|j] := Ppredy[j]
fi
end-case

S2 acts as a reset: when it produces an observable event x, P; computes ®(x) ac-
cording to the states in which the automaton was when the immediate predecessors of
x were produced. Moreover if the next event produced by P; is observable it will have x
as the only immediate predecessor.

S4 updates the array ®pred; in order, V7, the invariant relying the concrete variable
dpred;[j] and the abstract variables ®(im_pred x) be maintained. Vector clocks play
an essential role in this management by permitting to know which events are immediate
predecessors of each observable event of the distributed computation. Section 4.3 proves
the correctness of this updating strategy.

4.3 Proof

Notation:
e For the sake of simplicity we will note n(z) =i if x € E;, Vi € 1..n.

e In the following ®pred[k](t) denotes the value of ®pred [k just after the event ¢
has been produced.

e We assume that each process P; begins with an initial fictitious internal event
1; & O such that Vj, ®pred[j](L;) = {q} (L; represents the initialization of F;).

As explained in Section 4.2, we have to show the following proposition in order to
prove the correctness of the algorithm (illustraded in Figure 4).

Proposition
Let v € O and t € E such that t <_, = and Ay € E:t <
have:

vy YNY <, T then we

Vj € 1.n: dpred[j](t) = ®(im_pred x)

N S e
7

The value of @pred, ,)[k], Vk just before z is equal to
the value produced just after ¢, the last event on Py (,) just before z.

Figure 4: The proposition.

Vt € E, let last_modifier(t) denote the event such that:
(last - modifier(t) <_, 1)
and
(last_-modifier(t) € O or last_modifier(t) is a receive event)
and
Ay such that (y € O or y is a receive event) and (last_modifier(t) <
or such that
last_modifier(t) = Ln if there is neither receive nor an observable event on Py before
t.

Remark that if ¢ is an internal event or a send event, the algorithm does not change
the array ®pred,[1..n]. So, in order to proof the proposition, it is sufficient to prove
that (see Figure 5):

o Y and y <. t)

Vo € O,Vj € 1.n: pred[j](last_modifier(z)) = ®(im_pred, z)

The proof is on the rank of z. More formally, let M™ and O™ be subsets of O such
that:

M ={z€0:Aye0:y<, x} 0°=0
M"z{xe(’)"‘l:/ﬂye(’)"‘l:y<o x} Onzon—l\Mn—l

With these notations we have to prove the following:
Vr,Vo € M",Vj € 1.n : dpred[j|(last_modifier(x)) = ®(im_pred, x)

Moreover we suppose there is mno infinite chains CC of O, such that
Az € M" y € M iz =min(CC),y = maz(CC). This states that, for the dis-
tributed computations we consider, there is no an infinity of events between two events
(this hypothesis will be called finiteness hypothesis in the following).

10

Here, last_modifier(z)
is an observable event,

~
8

Pr(a) Co V; VARV

U /N \ /N /N
Here, last_modi fier(z
is a receive event.
Pra) \

The value of ®pred[k](t), Vk is equal to the value
produced just after last_modifier(z), on Py ().

o~

[]

Figure 5: Meaning of last_modi fier(z).

Base case

Let z€ M° 2 is a minimum of O, so Vje€l.n: ®(im_pred x) = {q}-
As there is no observable event before z, last-modifier(x) is Ln) or a re-
ceive event. If last_modifier(z) = L) then the property follows from S1. If
last_modifier(z) is a receive event, consider s € FE its associated send event.
If 3k: dpredlk|(last_modifier(x)) # {qo} then, due to statement S4, we have

Dpred[k](s) # {qo} and so Ppred|k](last_modifier(s)) # {qo}. Applying inductively this
reasonning, there is a 1,, such that ®pred[k](L,,) # {q} which is impossible. So the
proposition is true for z € MO.

Induction case

Let r an integer, assume that the property is true for all rank 7’ < r, we have to show:

Vo € M",Vj € 1.n: Qpred[j](last_modifier(r)) = ®(im_pred, x)

Lemma Vi’ <7, Vy € M", we have Bpred[r(y)]|(y) = ®(y) and
Vj # m(y) : Spredfjl(y) = {}.

The Proof of this lemma follows from induction hypothesis and from statement S2.

Now, there are two cases to consider: last_modifier(x) is an observable event or a
receive event.

11

1. last_modifier(x) is an observable event.
It follows from definition of last_modi fier(x) that Vj # 7(z) : im_pred x = {}
and im_pred . « = {last_-modifier(z)}. Then the proposition follows directly
from the previous lemma.

2. last_modifier(z) is a receive event.
Let y = maz(Ox) Npred x), in order to proof the proposition, we have to show
the following property:

pred(n(y)|(last-modifier(z)) ={} & imypred , x={}
Ppredln(y)](last-modi fier(z)) = ®(y) < impred . == {y}

which is equivalent to (by definition of last_modifier(x)):

Dpred[n(y)|(last_modifier(z)) = {} & Fz€O0:y <, zAz <, last_modifier(x)
Dpredr(y)|(last_modifier(z)) = ®(y) & Az €0 :y <, zAz <, last_modifier(x)

Let s € E be the send event associated with last_modifier(x). Let t be the event
last_modi fier(last_modifier(z)) (see Figure 6).

I?R(S)

P t = last-modifier(last_-modifier(x)) z
w(z)

last_modi fier(x)

t is either a receive or an observable event.

Figure 6: Two cases to consider.

The proposition is proved by considering the two cases:

(a) Az €0 :y <, 2Nz <, last-modifier(z) =
Dpred[n(y)|(last_modifier(x)) = ®(y);

12

(b) 32 € O:y <, 2Nz <, last_modifier(x) =

Ipred[n(y)|(last_modifier(zx)) = {}.

case 2a

() Az €0 :y <, zNz <, last-modifier(x) = Ipredn(y)|(last_modifier(z)) = ®(y)
By contradiction, assume Az € 0:y <, 2z A z <, last_modifier(z) (H1)
and Ppred[r(y)](last_modifier(z)) # ®(y) (H2).
Considering statement S4 of the algorithm, there are three cases to consider:

L Va@)[m(y)] < Vaglr(y)]
then @prediz(y)](s) # (y),
so we have ®pred[r(y)](last_modifier(s)) # ®(y).
If last_modifier(s) € O then by H1 it follows that y = last_modi fier(s)
and then ®pred[r(y)](y) # ®(y) which contradicts the lemma.
If last_modifier(s) is a receive event then we have
Az €0 :y <, zNz<, last_modifier(s)
and Ppred[n(y)|(last_modifier(s)) # ®(y).
To proof there is a contradiction, it remains to show that
Az €Oy <, 2Nz <, last-modifier(s) =
Ipred[n(y)|(last-modifier(s)) # ®(y).
il Vi) [m(y)] > Vi) [()]
then @prediz (y)](t) # ®(y),

by applying the same reasonning as in case 2()i, we show that ¢ ¢ O,

so we have Az € O:y <, z Az <, t and Ipred[n(y)|(t) # ®(y).

It remains to show that

Az € 0:y<,zNz<,t= Dpredr(y)|(t) # 2(y).

il Vi) [m(y)] = Vi) [()]

then we have to consider two cases:

A. Bpredln(y)](t) = {},
as t ¢ O (by applying the same reasonning as in cases 2()i and 2()ii),
It remain to show that Az € O:y <, 2Nz <, t =
Bpred(n(y)](t) # (y).

B. @pred(r(y)|(t) # {},
then we have ®pred|r(y)|(s) # ®(y) and the same reasonning as in

case 2()i applies.

So considering the finiteness hypothesis, applying recursively the reasonning
will fall in the contradiction case : ®pred[r(y)](y) # ®(y) which proves 2a.

(case 2b)
dz€0:y <, zAz <, last-modifier(x) = pred[r(y)|(last-modifier(x)) = {}
By contradiction, assume 3z € 0: y <, 2z A z <, last_modifier(z) (H3) and

Ipred[n(y)|(last_modifier(x)) # {} (H4).

Considering statement S4 of the algorithm, there are three cases to consider:

13

L Va@[m()] < Vaglr(y)]
then @pred(z(y)](s) # {},
so we have ®pred[r(y)](last_modifier(s)) # {}.
If last_modifier(s) € O there are two cases: last_modifier(s) =y or
last_modifier(s) # y.
If last_modifier(s) # y then by statement S2 and by H4 it follow that
(s) = 7(y),
and by H3, y <_ | last_modi fier(s) wich is impossible as
y = max(Oqrq) Npred x).
If last_modifier(s) = y then it contradicts H3.
If last_modifier(s) is a receive event, we have
dz€0:y <, zAz <, last_modifier(s),
as Az € O :y <, zAz <, simplies (by H3)
dz€0:y <, zAz<, last_modifier(z)
which implies Vi) [m(y)] > Va7 (y)] contradicting the hypothesis on
timestamps of events.
To prove there is a contradiction, it remains to show that
dz2€0:y <, 2Nz <, last-modifier(s) =
Dpred[n(y)|(last_modifier(s)) = {}.

il Vi) [m(y)] > Va7 ()]
then @pred[x(y)](t) # {}-
If t € O there are two cases: t =y or ¢t # y.
If t # y then by statement S2 and by H4 it follow that 7 (y) = 7 (¢),
then y <_ ¢ wich is impossible as y = maz(Ox(y) N pred z).
If t = y then it contradicts H3.
If t is a receive event then we have 32 € O 1y <, 2 Az <, t.
It remains to show that 32 € O 1y <, 2z A2 <, t =
Bpredi(y)](t) = {}-

il Ve [m(y)] = Vi) [r(y)]
then @pred(r(y)|(t) # {} and Bprediz(y)](s) # {}

the same reasonning as in case 2()i applies.

So considering the finiteness hypothesis, applying recursively the reasonning
will fall in the contradiction cases : y # max(Onr(y) Npred x) or
Az €0 :y <, zNz <, last_modifier(x) which implies 2b. O

5 Particular Cases

According to the position of observable events with respects to communication events,
several particular cases can be defined. In all these cases the analysis algorithm simplifies.

14

5.1 Non invisible process participation

In this case we assume there is always one observable event during any interval of a
process beginning with a receive event and ending with a send event. This assumption,
called non invisible participation, is described in Figure 7.

iAo [/
/ Vo

Figure 7: Non invisible process participation.

This assumption has the following immediate consequence: when a process P; sends
a message we have always:

Dpred;[k] == {},Vk € 1.n,k #1i

It follows that only the vector V;[1..n] and the set ®pred;[i] have to be piggybacked by
the message sent. Statement S4 can be simplified accordingly and becomes:

S4: When P; receives from P, a message piggybacking Vi and ®predy[k]:

Vi # k : if Vi[j] < Vi[j] then Bpred;|j] := {} fi;
if Vj[k] < Vi|k] then Tpred;[k] := Dpredy[k| fi;
Vi € 1.n: Vi[j] == max(Vi[j], Vili]);

5.2 Non invisible communication

Here we assume all communication events are observed in the following way: there is
always an observable event just before every send event or just after every receive event
(by “just before” or “just after” we mean there is neither a send nor a receive event
between). In that case each observable event has exactly one or two immediate prede-
cessors: always one on the same process and in the case of two, another on the process
wich sent the last received message. In Figure 8, = has two immediate predecessors z
and y; 2’ as only z as immediate predecessor ((¢,2') is not an edge on a “longest control
flow”).

It follows from this simplifying assumption that the array ®pred;[1..n] is no more
necessary, a simple ®pred; being sufficient to compute ®(z) for each observable event z.
The algorithm becomes for each process P;:

15

S1:

S2:

S3:

S4:

Py ° °

Figure 8: Non invisible communication.

initialization:
Vi€ l.n: Vij] :=0;
pred; :={qo};

When P; produces an observable event x:
Vili] :== Vi[i] + 1;

Dpred; :=={6(q, \(z)),VYq € Tpred;};
% ®(x) = Dpred; %

When P, sends a message to Py:
Vi[l..n] and ®pred; are added to the message;

When P, receives from P, a message piggybacking Vi and ®predy:

case
Vilk] > Vi[k] then skip
Vili] = Vi[i] then Ppred; := Dpredy
else $pred; := Ppred; U Ppredy,

end-case

Vj € Lo s Vilj] == maz(Vilj], Vilj);

5.3 Considering all paths

If we are interested not in the “longest control flows” as defined by C(x) for each ob-
servable event z, but in control flows ending at = (cf. discussion in Section 3.1) vector
clocks become useless (remember they are used to consider only immediate predecessors
when a messsage is received). The analysis algorithm simplifies accordingly.

16

S1: initialization:

Ipred; :={q};

S2: When P; produces an observable event x:

Ipred; :={6(q, \(z)),VYq € Tpred;};
% ®(z) = Ipred; %

S3: When F; sends a message to P:
add ®pred; to the message;

S4: When P; receives from P, a message piggybacking ®predy:
Ppred; .= Ppred; U Ppredy,

6 Related works

The algorithm introduced in [4] to detect linked predicates and the algorithm which
detects regular patterns in distributed computation introduced in [3] are two particular
uses of the simplified algorithm described in Section 5.3 which considers all control flows
ending at observable events.

The algorithm described in [1] that computes the immediate predecessors of an ob-
servable event z is a special case of the general analysis algorithm where all observable
events have the same label [and the automaton has only one state gy whith 6(go,) = go.
With such an automaton, when an observable event x is produced by P; we have:

(Fy - im_pred x = {y}) & Ppred;[j] # {}

7 Conclusion

A general algorithm working on the fly and without delay has been introduced to analyze
distributed computations. It associates with each observable event x of the computation
the set of the longest control flows (sequences of observable events) that terminates at
this event. A labelling function allows the user to consider these sequences as words on
some alphabet and the algorithm checks wether these words belongs to some language
(defined by a finite state automaton). It has been shown that according to the contraints
on the position of observable events with respect to communication events, the analysis
algorithm can be simplified.

17

References

1]

C. Diehl, C. Jard, and J. X. Rampon. Reachability analysis on distributed execu-
tions. In Theory and Practice of Software Development, pages 629-643, TAPSOFT,
Springer Verlag, LNCS 668 (Gaudel and Jouannaud editors), April 1993.

J. Fidge. Timestamps in message passing systems that preserve the partial ordering.
In Proc. 11th Australian Computer Science Conference, pages 55—66, February 1988.

E. Fromentin, M. Raynal, V.K. Garg, and A.I. Tomlinson. On the fly testing of
regular patterns in distributed computations. In Proc. of the 23"¢ International
Conference on Parallel Processing, St. Charles, IL, August 1994.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed pro-
grams. In Twelfth International Conference on Foundations of Software Technology
and Theoretical Computer Science, pages 253-264, Springer Verlag, LNCS 625, New
Delhi, India, December 1992.

M. Hurfin, N. Plouzeau, and M. Raynal. A debugging tool for distributed Estelle
programs. Journal of Computer Communications, 16(5):328-333, May 1993.

M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicates
in distributed computations. In Proc. ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 32—42, San Diego, CA, May 1993. (Reprinted in SIGPLAN
Notices, Dec. 1993).

C. Jard, T. Jeron, G.V. Jourdan, and Rampon J.X. A general approach to trace-
checking in distributed computing systems. In Proc. IEEE Int. Conf. on DCS, Poz-
nan, Poland, June 1994.

L. Lamport. Time, clocks and the ordering of events in a distributed system. Com-
munications of the ACM, 21(7):558-565, July 1978.

F. Mattern. Virtual time and global states of distributed systems. In Cosnard, Quin-
ton, Raynal, and Robert, editors, Parallel and Distributed Algorithms, pages 215226,
North-Holland, October 1988.

18

