Symbolic Unfolding of Parametric Stopwatch
Petri Nets

L.-M. Traonouez!, B. Grabiec?, C. Jard?, D. Lime? and O. H. Roux®*

! Universita di Firenze, Dipartimento di Sistemi e Informatica, Italy

2 ENS Cachan & INRIA, IRISA, Rennes, France
Université européenne de Bretagne

3 Tcole Centrale de Nantes & Université de Nantes, IRCCyN, Nantes, France

Abstract. This paper proposes a new method to compute symbolic
unfoldings for safe Stopwatch Petri Nets (SwPNs), extended with time
parameters, that symbolically handle both the time and the parameters.
We propose a concurrent semantics for (parametric) SwPNs in terms of
timed processes d la Aura and Lilius. We then show how to compute a
symbolic unfolding for such nets, as well as, for the subclass of safe time
Petri nets, how to compute a finite complete prefix of this unfolding.
Our contribution is threefold: unfolding in the presence of stopwatches
or parameters has never been addressed before. Also in the case of time
Petri nets, the proposed unfolding has no duplication of transitions and
does not require read arcs and as such its computation is more local.
Finally the unfolding method is implemented (for time Petri nets) in the
tool ROMEO.

Keywords: unfolding, time Petri nets, stopwatches, parameters, sym-
bolic methods

1 Introduction

The analysis of concurrent systems is one of the most challenging practical prob-
lems in computer science. Formal specification using Petri nets has the advantage
to focus on the tricky part of such systems, that is parallelism, synchronization,
conflicts and timing aspects. Among the different analysis techniques, we chose
to develop the work on unfoldings [9)].

Unfoldings were introduced in the early 1980s as a mathematical model of
causality and became popular in the domain of computer aided verification. The
main reason was to speed up the standard model-checking technique based on
the computation of the interleavings of actions, leading to a very large state
space in case of highly concurrent systems. The seminal papers are [14] and [8].
They dealt with basic bounded Petri nets.

Since then, the technique has attracted more attention, and the notion of
unfolding has been extended to more expressive classes of Petri nets (Petri nets

* This work was partially funded by the ANR national research program DOTS (ANR-
06-SETI-003).

with read and inhibitor arcs [7,3], unbounded nets [1], high-level nets [12], and
time Petri nets [6]).

Advancing this line of works, we present in this paper a method to unfold safe
parametric stopwatch Petri nets. Stopwatch Petri nets (SwPNs) [5] are a strict
extension of the classical time Petri nets a la Merlin (TPNs) [15,4] and provide
a means to model the suspension and resumption of actions with a memory of
the “work” done before the suspension. This is very useful to model real-time
preemptive scheduling policies for example.

The contribution of this paper is a new unfolding algorithm addressing the
problem for stopwatch and parametric models for the first time. When applied
to the subclass of time Petri nets, it provides an alternative to [6] and improves
on the latter method by providing a more compact unfolding and not requiring
read arcs in the unfolding (if the TPN itself has no read arcs of course). We
also provide a way to compute a finite complete prefix of the unfolding for (safe)
TPNs. Note this is the best we can do as most interesting properties, such as
reachability, are undecidable in time Petri nets in presence of stopwatches [5] or
parameters [16].

While not extremely difficult from a theoretical point of view, we think that
the handling of parameters is of utmost practical importance: adding parameters
in specifications is a real need. It is often difficult to set them a priori: indeed,
we expect from the analysis some useful information about their possible values.
This feature of genericity clearly adds some “robustness” to the modeling phase.
It is important to note that, as for time, we handle these parameters symboli-
cally to achieve this genericity and the unfolding technique synthesizes all their
possible values as linear constraint expressions.

Finally, note that the lack of existence of a finite prefix in the stopwatch or

parametric cases is not necessarily prohibitive as several analysis techniques, such
as supervision, can do without it [10]. Practical experience also demonstrates
that even for very expressive models, such as Linear Hybrid Automata [11], the
undecidability of the interesting problems still allows to analyze them in many
cases.
Organization of the paper. Section 2 gives preliminary definitions and Sec-
tion 3 propose an unfolding method of stopwatch parametric Petri nets based
on an original way of determining conflicts in the net. Section 4 shows how to
compute a complete finite prefix of the unfolding of a time Petri net. Finally in
Section 5, we discuss open problems and future work.

2 Definitions

We denote by IN the set of non-negative integers, by Q the set of rational numbers
and R the set of real numbers. For A € {Q,R}, A>((resp. Asg) denotes the
subset of non-negative (resp. strictly positive) elements of A. Given a,b € IN
such that a < b, we denote by [a..b] the set of integers greater or equal to a and
less or equal to b. For any set X, we denote by |X| its cardinality.

For a function f on a domain D and a subset C of D, we denote by f|c the
restriction of f to C.

Let X be a finite set. A (rational) valuation of X is a function from X to
Q. A (rational) linear expression on X is an expression of the form ajz; +
<o+ apxy, with n € N, Vi,a; € Q and z; € X. A linear constraint on X
is an expression of the form Lx ~ b, where Lx is a linear expression on X,
b€ Q and ~€ {<,<,>,>}. Given a linear expression L = a121 + - -+ + apy
on X and a rational valuation v on X, we denote v(L) the rational number
av(zy) + -+ - + apv(xy,). Similarly for a linear constraint C = L ~ b, we note
v(C) the Boolean expression (v(L) ~ b). We extend this notation in the same
way for conjunctions, disjunctions and negations of constraints.

For the sake of readability, when non-ambiguous, we will “flatten” nested
tuples, e.g. (((B, E, F),l),v,0) will be written (B, E, F,l,v,0).

2.1 Unfolding Petri nets

Definition 1 (Place/transition net). A place/transition net with read arcs
(P/T net) is a tuple (P, T,W,W,.) where: P is a finite set of places, T is a finite
set of transitions, with PNT =, W C (P x T) U (T x P) is the transition
incidence relation and W,. C P x T is the read incidence relation

This structure defines a directed bipartite graph such that (x,y) € WU W,
iff there is an arc from x to y.

We further define, for all x € P UT, the following sets: *x = {y € P U
T|(yx) eW},z={ye PUT | (y,z) e W} and2* ={y € PUT | (z,y) €
W, These set definitions naturally extend by union to subsets of PUT.

A marking m : P — NN is a function such that (P, m) is a multiset. For all
p € P, m(p) is the number of tokens in the place p. In this paper we restrict
our study to I-safe nets, i.e. nets such that Vp € P, m(p) < 1. Therefore, in the
rest of the paper, we will usually identify the marking m with the set of places
p such that m(p) = 1. In the sequel we will call Petri net (with read arcs) a
marked P/T net, i.e. a pair (N, m) where N is a P/T net and m a marking of
N, called initial marking.

A transition ¢ € T is said to be enabled by the marking m if *t Ut C m. We
denote by en(m), the set of transitions enabled by m.

2.2 Semantics of true concurrency

There is a path z1,29,...,2, in a P/T net iff Vi € [l.n], 2; € PUT and
Vi € [1n — 1], (xi,$i+1) eWuw,.

In a P/T net, consider z,y € PUT. x and y are causally related, which we
denote by x < y, iff there exists a path in the net from x to y. The causal past of
a transition ¢ is called local configuration and denoted by [t], and is constituted
by the transitions that causally precede t, i.e. [t] ={¢ € T |t < t}.

The addition of the read arcs introduces another causal relation between two
transitions x,y € T, that is called weak causality and denoted by x " y, iff
x < yV°rN® # (. This notion is already presented in [7]. The relation denotes
that the firing of the transition x happens before the one of y.

The two causal relations induce a relation of conflicts between the transitions
of the net. A set X C T of transitions are said to be in conflict, noted #X |,
when some transitions consumed the same token, or when the weak causality
defines a cycle in this set. Formally:

4X = JryeX t x#FyYyA TN Y£0V
) Fzo, 1,2 €X xS xS X

Definition 2 (Occurrence net). An occurrence net is an acyclic P/T net
(B,E,F,F):

— finite by precedence (Ve € E, [e] is finite),
— such that each place has at most one input transition (Vb € B, |*b] < 1),
— and such that there is no conflicts in the causal past of each transition (Ve €

E, =#{eUe]}).
We use the classical terminology of conditions and events to refer to the places
B and the transitions E in an occurrence net.

Definition 3 (Branching process). A branching process of a Petri net N' =
(P, T,W,W, mgp) is a labeled occurrence net 5 = {(O,l) where O = (B, E, F, F,)
is an occurrence net and l : BUE — PUT s the labeling function such that:

—I(B)CPandl(E)CT,

— foralle € E, the restriction ljs. of | to ®e is a bijection between *e and °l(e),
— for all e € E, the restriction ljo. of | to °e is a bijection between °e and °l(e),
— foralle € E, the restriction ljce of | to e® is a bijection between e® and l(e)®,
— for all e1,es € E, if %e1 = ®eq, %e1 = “eq and l(e1) = l(ez) then e; = es.

E should also contain the special event L, such that: *L =0, °L =0, [(L) =0,
and I 1+ is a bijection between 1* and my.

Branching processes can be partially ordered by a prefiz relation. For exam-
ple, the process {ej,ea,e3} is a prefix of the branching process in Fig. 1b in
which t; is fired only once. There exists the greatest branching process accord-
ing to this relation for any Petri net A/, which is called the unfolding of N. Let
8 = (B, E,F, F,.1) be a branching process.

A co-set in [is a set B’ C B of conditions that are in concurrence, that
is to say without causal relation or conflict, i.e. Vb,b' € B’,=(b < V') and
~# Uy (DU [%]).

A configuration of § is a set of events E/ C E which is causally closed and
conflict-free, that is to say Ve' € E',Ve € F, e < e = e¢ € E' and -#F’. In
particular the local configuration [e] of an event e is a configuration.

A cut is a maximal co-set (inclusion-wise). For any configuration E’, we can
define the cut Cut(E’) = E’**E’, which is the marking of the Petri net obtained
after executing the sequence of events in E’.

An extension of (3 is a pair (t,e) such that e is an event not in F, ®*eU% C B
is a co-set, the restriction of [to ®e is bijection between ®e and *t, the restriction
of [to e is bijection between ‘e and °t, and there is no ¢’ € E s.t. I(e/) = ¢,
*¢’ = % and %’ = “e. Adding e to F and labeling e with ¢ gives a new branching
process.

t4[16, 16] tl [10, 20} tg [(l, b] t3[5, 5]

n pe) ()

—
93
Nty
—

o
=

Fig. 1. A parametric stopwatch Petri net (a) and a branching processes of its underlying
(untimed) Petri net (b). Stopwatch arcs are drawn with a circle tip and read arcs with
a diamond tip.

Ezample 1. Fig. 1b shows a branching process obtained by unfolding the net
presented in Fig. la (ignoring any timing or parameter information). The labels
are figured inside the nodes. The branching process in Fig. 1b includes two firings
of t1 after executing the loop to,t3. It could be repeated infinitely many times,
leading to an infinite unfolding.

2.3 Stopwatch Petri nets

A mainstream way of adding time to Petri nets is by equipping transitions with
a time interval. This model is known as Time Petri nets (TPNs) [15,4]. We
use a further extension of TPNs featuring stopwatches, called Stopwatch Petri
nets (SwPNs) and originally proposed in [5]. Stopwatches allow the modelling
of suspension / resumption of actions, which has many useful applications like
modelling real-time preemptive scheduling policies [13].

The added expressivity comes at the expense of decidability: most interesting
problems, such as reachability, liveness, etc. are undecidable for SwWTPNs, even

when bounded [5]. They are decidable however when restricting to bounded
TPNs [4].

Definition 4 (Stopwatch Petri net). A Stopwatch Petri net (with read arcs)
SwPN is a tuple (P, T, W, W,., Wy, mg, eft, Ift) where: (P,T,W,W,.,mg) is a Petri
net, Wy C P x T is the stopwatch incidence relation, and eft : T' — Q>¢
and Ift : T — Q> U {00} are functions satisfying ¥Vt € T, eft(t) < Ift(t), and
respectively called earliest (eft) and latest (Ift) transition firing times.

Given a SWPN N = (P, T, W, W,., W, mq, eft, Ift), we denote by Untimed(N)
the Petri net (P, T, W, W,.U Wy, mg). Note that in Untimed(\) stopwatch arcs
are transformed into read arcs. For any transition ¢, we define the set of its
activating places as °t = {p € P | (p,t) € W,}. A transition is said to be active
in marking M if it is enabled by M and °¢ C M. An enabled transition that is
not active is said to be suspended.

Intuitively, the semantics of TPN states that any enabled transition measures
the time during which it has been enabled and an enabled transition can only fire
if that time is within the time interval of the transition. Also, unless it is disabled
by the firing of another transition, the transition must fire within the interval:
a finite upper bound for the time interval then means that the transition will
become urgent at some point. For SwPNs, the time during which the transition
has been enabled progresses if and only if all its activating places are marked.
Otherwise the stopwatch is “frozen” and keeps its current value.

More formally, we define the concurrent semantics of SwPNs using the time
processes of Aura and Lilius [2]. Let us first recall the definition of these time
processes:

Definition 5 (Time process). A time process of a Stopwatch Petri net N is a
pair (E',0), where E' is a configuration of (a branching process of) Untimed (/)
and 0 : E' — R is a timing function giving a firing date for any event of E'.

Let (F’,0) be a time process of a SWPN N = (P, T, W, W,., Wy, mo, eft, Ift)
and 8 = (B, E, F, F,,l) be the associated branching process of Untimed(N'). We
note *e = ®e U {b € % | l(b) € °I(e)} the set of conditions that enabled an
event e in the process E. These conditions are the consumed conditions and
the read conditions due to read arcs, but it excludes the read conditions due to
stopwatches.

Let B’ C E'® be a co-set and t € T be a transition enabled by {(B’). We define
the enabling date of t by B’ as: TOE(B’,t) = max({0(*b) | b € B’ Al(b) € *tU%}).
This means that we measure the time during which the transition has been
enabled. By extension, for any event e, we note TOE(e) = TOE(*e,l(e)). We also
define the set of events temporally preceding an event e € E’ as: Earlier(e) =
{e/ € E"| 0(¢') < (e)}, and we note C. = Cut(Earlier(e)).

When dealing with stopwatches, the enabling date is not sufficient to de-
termine the firing dates of the event, and is replaced by the notion of activity
duration. For any co-set B’, we define its duration up to some date 6 as:

dur(B',0) = min{elélg}.{ﬁ(e)}, 0} — ix&%}g{@('b)}

Then, for a transition ¢ enabled by a co-set B’, we define its active co-sets
Acos(B’,t) as all the co-sets A s.t.

— A is in the causal past of B’,
— the conditions that enabled ¢ in B also belong to A,
— tis active in A.

Finally the activity duration of the transition ¢ at some date 6 is:

adur(B,t,0) = Z dur(A, 9)

A€Acos(B,t)

By extension, for any event e, we note Acos(e) = Acos(*e,l(e)), and adur(e, 8) =
adur(*e,l(e), 0).

The semantics of a Stopwatch Petri net is then defined using the notion of
validity of time processes.

Definition 6 (Valid time process for SWPNs). A time process is valid iff
0(L) =0 and the following constraints are satisfied, Ve € E' (e # L):

6(e) > max({6(*b) | b € ®e U e}) (1)
adur(e, 0(e)) > eft(l(e)) (2)
vt € en(I(Ce)), adur(Ce, t,0(e)) < Ift(t) (3)

Condition 1 ensures that time progresses. Condition 2 states that to fire a
transition I(e) by an event e, it must have been active for at least a duration
equal to eft(l(e)) before being fired. Condition 3 states that at the firing date
of an event e, the activity duration of no transition ¢ can exceed its maximum
firing time Ift(¢). Notice that if the former is purely local to the transition ¢, the
latter refers to all enabled transitions in the net, which adds causality between
events that are not causally related in the underlying untimed net.

It is easy to see that in the case of TPNs without stopwatches this definition
reduces to the definition of Aura and Lilius [2] since, for any transition ¢ enabled
by a co-set B, we then have Acos(B,t) = B and V6, dur(B,0) = 6 — TOE(B,1).

Note that, in this paper, we consider only Petri nets with non-zeno behavior.

Finally, we extend SwPNs with parameters, a model introduced in [16].

Definition 7 (Parametric Stopwatch Petri net). A Parametric Stopwatch
Petri net (PSwPN) is a tuple N = (P, T,W,W,., Wy, mg, eft, Ift, I[I, Dy} where:
(P, T,W,W,,mq) is a Petri net, Wy is the stopwatch incidence relation as before,
II is a finite set of parameters (IIN(PUT) =10), Dy is a conjunction of linear
constraints describing the set of initial constraints on the parameters, and eft
and Ift are functions on T such that for all t € T, eft(t) and Ift(t) are rational
linear expressions on IT (or Ift(t) is infinite).

Definition 8 (Semantics of a PSWPN). Let N = (P, T, W, W,., W, my, eft, Ift,
II, D). Given a rational valuation v on IT such that v(Dyr) is true, we define
the semantics of N as the SwPN N, = (P, T, W, W,., W, mq, v(eft), v(Ift)).

Ezample 2. Fig. la gives an example of a PSwPN. Notice that the time interval
of transition o refers to two parameters a and b. The only initial constraint is
DH = {a S b}

3 Unfolding

The method we propose to unfold parametric stopwatch Petri nets is based on an
original way of determining conflicts in the net. In the non parametric timed case
(no stopwatch), unfoldings built with this method differ in general from those
of [6]. In [6], the emphasis is put on the on-line characteristic of the algorithm:
it is a pessimistic approach that ensures that events and constraints put in
the unfolding cannot be back into question. This leads possibly to unnecessary
duplication of events. In contrast, we propose here an optimistic approach, which
requires to dynamically compute the conflicts, and sometimes to backtrack on
the constraints.

We propose to refine the conflict notion by defining a relation of direct con-
flict.

Definition 9 (Direct conflict). Let O = (B, E, F, F,.) be an occurrence net.
Two events e1,es € E are in direct conflict, which we denote by ey conf eq, iff

—#{ea U fea] Uler]}
—#{e1 U fe1] Uleza]}
.61 n .62 7é @

The first two conditions amount to say that ®e; U ®es is a co-set. Direct
conflicts are central to our study for they are at the root of all conflicts.

Ezample 3. The branching process presented in Fig. 1b contains direct conflicts
e1 conf e, e4 conf e5 and e1 conf e4. 1 and ey are only weakly ordered (e; /" e2).

3.1 Time Branching Processes

We shall now extend the notion of branching process with time information,
allowing us to define the symbolic unfolding of PSwPNs. We do this in a way
similar to extending configurations to time processes, by adding a function la-
beling events with their firing date. In a branching process however, some events
may be in conflict, which means that some of them may not fire at all. We will
account for this situation by labeling an event that never fires with 4oc0.

The introduction of time in Petri nets reduces the admissible discrete be-
haviors, but induces new kinds of causal relations. For instance, in the TPN of
Fig. 2(a), the firing of ¢; is only possible if ¢3 is fired before to, which liberates
the conflict between ¢; and t5.

In the unfolding method of TPNs proposed in [6] these relations are handled
by using read arcs in the unfolding, so that the firing of an event is duplicated
according to the local state in which it is fired. The drawback in this approach is
that it can lead to numerous unnecessary duplications of an event. For instance,
considering now the TPN of Fig. 2(b), the firing of ¢4 is possible in the states
(p1,pa), (p2,pa) or (p3,p4), leading to a duplication of the event in each case.

Jolgol OA-OA-O s

b0 [0, 5] t2 0,5 pa
| 3
s 3.9 | 4 [10,10]

(a) (b)

t1 [5,5] m——

Fig. 2. Time-induced causality in time Petri nets

In our approach we try to express more local conditions by referring only to
events in direct conflict. In the example of Fig. 2(b), this is expressed by the
relation e;, conf e;, that allows the derivation of the constraints on the firing
date of these two events. The cost of this approach is that until ¢, has not been
fired, no restriction is put on the firing of ¢4, and additional constraints are only
added afterwards.

Definition 10 (Time branching process). Given a SWPNN = (P, T,W, W,
, Ws, mo, eft, Ift) , a Time Branching Process (TBP) of N is a tuple {3,0) where
B = (B,E,F,F,l) is a branching process of Untimed(N') and 6 : E — R>oU{co}
18 a timing function giving a firing date for any event in E.

As for time processes we define the notion of validity of the timing function
of time branching process. In the sequel, we will say that a TBP is valid if its
timing function is valid.

Definition 11 (Valid timing function for a TBP). Given a PSwPN N =
(P, T,W, W, , Wg,mg,eft,Ift, [I, D) and a valuation v € Dy of the parameters,
let I' = (B,E, F, F.,1,0) be a time branching process of Ny. 0 is a valid timing
function for I iff (L) =0 and Ve € E (e # L),

O(e) 00 A 6(e) > max({0(°D) | b € *e U %}) (4)

A adur(e, 8(e)) > v(eft(i(e))) (5)

A adur(e,6(e)) < v(Ift(i(e))) (6)

A Ve € E s.t. € confe, 0(e) =0 (7)

A Ve eEste/ €, ()< 9(6’)] (8)

v |:9(8) =00 A Jbe®, 0(°) = oo] (9)

% |:9(€) =o0 A Je' € E s.t. (econfe' Ve /€

A 0(e") # oo A adur(e, 8(€')) < v(lft(l(e)))} (10)

O(es) =16
Nb(e1) = 400
Nb(es) = 400
Vl(es) = oo

Fig. 3. A TBP with symbolic constraints for the PSwPN of Fig. 1a.

Additionally, if I{eo,e1,...,en} C E st.eg /e / -+ e, / ey then
i € [0..n] s.t O(e;) = 0.
In these constraints, the usual operators are naturally extended to R U {o0}.

Eq. 4 ensures that time progresses. Eq. 5 constrains the earliest firing date
and Eq. 6 the latest firing date of event e according to the parametric time
interval associated to the transition [(e). Also, an event e has a finite firing date
iff it actually fires: this means that no other event e’ in conflict with e can have
a finite firing date e (Eq. 7). Finally with read arcs, in case the event e is weakly
ordered before an event €', then with Eq. 8, e must fire before €’.

While Eqgs. 5 to 7 define when an event can be fired, i.e. they give it a
constrained but finite firing date, the last two equations define the cases in which
an event cannot fire at all, giving it an infinite firing date. First, if one of the
preconditions of event e has an infinite production date, then e has an infinite
firing date (Eq. 9). Second, e may have an infinite firing date if it is in direct
conflict with another event that has a finite firing date (Eq. 10). This implies
that this event with a finite firing date will fire before e would have been forced
to fire i.e. before its activity duration reaches the upper bound of the interval.
Note that this is the only way to introduce infinite firing dates in the equation
system. Those will then be propagated by Eq. 9.

Ezxample 4. We consider the PSwPN of Fig. 1a. One of its TBP with symbolic
constraints is presented on Fig. 3. For the values a = 2 and b = 4 of the pa-
rameters, a valid timing that verifies these constraints is (e;) = oo, 8(e2) = 3,
O(es) =8, O(eq) = 15 and O(es5) = oc.

3.2 Temporally Complete Time Branching Processes

Valid time branching processes as defined by Def. 10 and 11 do not necessarily
contain correct executions, since a TBP is a priori incomplete in the sense that

all timed constraints of the PSWPN may not be included yet in the TBP: by
extending the TBP with additional events, new conflicts may appear that would

add those constraints. We will therefore consider temporally complete TBP as
defined below:

Definition 12 (Temporally complete TBP). Let N = (P, T, W, W,, W, myg,
eft, Ift, IT, D) be PSwPN and v be a valuation of its parameters. A valid TBP
(B,E,F,F,,1,0) of N,, is temporally complete if for all the extensions (t,e) of
(B,E,F,F,1),

Ve' € E s.t. 0(e’) # oo, adur(*e,t,0(e’)) < v(Ift(t)) (11)

This definition basically says that the firing date of all events in the TBP
should be less or equal than the latest firing date of all possible extensions. Since
the conflicts that have not yet been discovered will result from these extensions,
this implies that all the events in the TBP are possible before these conflicts
occur. It further ensures that all the parallel branches in the TBP have been
unfolded to a same date. A similar condition can be stated for time processes.

Ezxample 5. For the TBP of Fig. 3, the timing given in example 4, although valid,
admits the firing of ¢ as an extension after ez, and its maximal firing date is 13
which is inferior to the firing date of e4. Thus, this TPB cannot be complete.

3.3 Extensions of a TBP

We now show how a given TBP can be extended with additional events, even-
tually leading to the construction of the whole unfolding.

Proposition 1. Let N' be a PSwPN and v a valuation of its parameters. Let
(B,E,F,F,,1,0) be a temporally complete TBP of N, and let (t,e) be an exten-
sion of B = (B, E, F, F.,1). Let ' be the branching process obtained by extending
B by (t,e). Then there exists 0 such that (3',0') is a valid TBP of N,.

While the TBP obtained by the extension (¢, e) is valid, it is not necessarily
temporally complete: only the conflicts present in 8" are considered but e could
be prevented by conflicts that have not yet been added through other extensions.
We have the following result however:

Proposition 2. Let (3,0) be a temporally complete TBP of a PSwPN and let
(t,e) be the extension of B with the smallest latest firing date. Then ((3,0) ex-
tended by (t,e) is a temporally complete TBP.

3.4 Symbolic time branching processes

If we consider all the possible valuations of the parameters and all the possible
valid timing functions for a given branching process of Untimed(/A') we obtain
what we call a symbolic TBP.

Definition 13 (Symbolic time branching process). Let N' be a PSwPN.
A symbolic time branching process (STBP) I' is a pair (8,D) where § =
(B,E,F,F,,1) is a branching process of Untimed(N), D is a subset of Q! x
(RU {+oo B! such that for all X\ = (vy, ...)5 01, -+ O, . ..) €D, if we note
E ={e1,...,en,...}, v the valuation (vy,...,v|q)) and O the timing function
such that V1,05 (e;) = 0;, then (8,0) is a valid TBP of N, .

In practice, the set D can be represented as a union of pairs (£;, D;) where
&; is a subset of the events of 8 and D; is a rational convex polyhedron (possibly
of infinite dimension) whose variables are the events in &; plus the parameters
of the net. Each point A in D; describes a value of the parameters and the finite
values of the timing function on the elements of &;. For all elements not in &,
the timing function has value +oc.

Now we can extend the notion of prefix to STBPs.

Definition 14 (Prefix of an STBP). Let N be PSwPN whose set of param-
eters is IT. Let (8,U; &,U; Di) and (B',\J; &;,D') be two STBPs of N. (B,D)
is a prefix of (8',D') if B is a prefix of B’ and D is the projection of D' on the
parameters plus the events of 3.

Finally, we can define the symbolic unfolding of a PSwPN.

Definition 15 (Symbolic unfolding). The symbolic unfolding of a PSwPN
N s the greatest STBP according to the prefix relation.

This unfolding has the same size as the one computed for underlying Petri
net. However, some events may not be able to take a finite firing date, in any
circumstances. These events are not possible and will be useless. Thus, it will be
sufficient to compute a prefix of the unfolding in which they are discarded.

3.5 Correctness and completeness

In this subsection we give two results proving the correctness and completeness
of our symbolic unfolding w.r.t. to the concurrent semantics of (P)SwPNs, that
we have given in Section 2 as time processes.

We first establish a result on the configurations of TBP. For every TBP
I'=(B,E,F,F,,l,v,0), we define the set F«o, = {e € E | f(e) < oo} of all the
events which may fire in the TBP.

Proposition 3. Let I' = (B, E,F,F,.,l,v,0) be valid TBP. Then E. is a
configuration.

The correctness result for our approach states that all the time processes we
can extract from our TBPs, and in particular those contained in the symbolic
unfolding, are valid:

Theorem 1 (Correctness). Let N = (P, T, W, W,, W, mg, eft,Ift, II, D7) be

a parametric stopwatch Petri net and let v € Dy be a valuation of its parameters.

Let (B, E, F, F,,1,0) be a temporally complete time branching process of N,. Let

Ecoo ={e € E|0(e) < oo} and O is the restriction of 6 t0 E<.
(E<oo,0<00) is a valid time process of N,.

Finally the following completeness result states that all valid time processes
can be represented by a TBP. Therefore, since the symbolic unfolding contains
all the valid TBPs, it also contains all the time processes of the PSwPN.

Theorem 2 (Completeness). Let N = (P, T,W,W,, W, mq, eft,Ift, I, D7)
be a PSwPN and v € Dy be a valuation of the parameters. Let (B, E, F, F,,1)
be a branching process of the underlying Petri net and (E,0) be a time process
of the SWPN N,.

There exists a temporally complete time branching process of N, (B', E', F",
EL U0, such that Ve € E, e’ € E' s.t. l(e) =1U'(¢/) and O(e) = &' (€').

The idea of the proof is to construct a TBP by adding all the events in conflict
with some events of the time process.

4 Complete Prefixes of the Symbolic Unfolding

In this section, we show how to compute a complete prefix of the symbolic un-
folding of a TPN. Consequently, from now we replace v(eft(t)) by eft(t), v(Ift(t))
by Ift(¢), and we assume that adur(B,t,60) = 6 — TOE(B,t), and ° = . In these
conditions, we prove this prefix is finite.

A consistent state of the unfolding (B, F, F, F,.,1,D) of a TPN N = (P, T, W,
Wy, mo, eft, Ift) is a pair (A, A) such that A C B is a cut and A € D and

— Vb e A, 0,(°b) # o,
—VteT, *tU° CI(A) = maxyea{0x(*0)} < TOE(t, A) + Ift(t).

To compute a finite prefix we need to consider a finite number of states. How-
ever, the firing dates of the events grow continuously in the unfolding. Therefore,
we define an equivalence relation between two consistent states by considering
the age of the tokens (a reduced age since even ages can grow infinitely). Finally,
we prove that the same transitions are firable from two equivalent states.

Definition 16 (reduced age of a condition). For any co-set A, any timing
function 0, and any condition b € A, we define the (reduced) age of b in A as

age(bh, 0, A) = min{iglea,ic{e('b’)} —0(°b),max{K(t) |t € T Nt €l(b)*}}

eft(t) if Ift(t) = 400

where K (t) = { Ift(t) otherwise.

Definition 17 (Equivalent consistent states). Two consistent states (A1, A1)
and {As, A2) are equivalent iff I(A1) = [(A2) and Vb € A1,Vby € Ay, s.t. 1(by) =
(b2)7 age(blv 9)\1 5 Al) = age(b27 QAQ 9 AQ)

Theorem 3 (Firing a transition in equivalent states). Let s; = (A1, A1)
and so = (Ag, A2 be two equivalent consistent states of the unfolding (B, E, F, F,,
I,D) of a TPN N = (P, T,W,W,, mg, eft, Ift). If a transition ¢ is firable from s;
in an event ey at a date 0, (e1) > maxpeca, (0, (°D)), before all the other enabled
transitions (i.e. Vt € en(1(A1))0x, (e1) < TOE(t, A1) + Ift(t)), then

1. t is firable from so in an event es at the date 0y, (e1) — maxpea, (0, (*D)) +
maxpe 4, (0x, (*D)), before all the other enabled transitions,
2. the states reached after the firing are equivalent.

Knowing that the same behaviors are possible after equivalent states we can
stop the construction of the unfolding by defining the notion of cut-off event.

Definition 18 (Cut-off event). Let N = (P, T, W, W, mg,eft, Ift) be a TPN.
and let 3 = (B,E,F,F,,l,D) be a symbolic time branching process of N'. An
event e € E is a cut-off event if there exists ¢’ € E such that:

— e <e,

= U(e’) = (e),
—VYAeD, IN €D s.t. (Cer, N) and (Ce, A) are equivalent.

Definition 19 (Cut-off-free maximal prefix). Let N be a TPN and let I' =
(B, D) be its symbolic unfolding. The cut-off-free maximal prefix CFP(N). is the
greatest prefix of I' that does not contain any cut-off events.

We prove that the prefix computed contains at least the firing of each fireable
transition of the unfolding, ad we show that this prefix is finite.

Theorem 4 (Completeness of the prefix). Let N = (P, T, W, W,., my, eft, Ift)
be a TPN whose symbolic unfolding is (B, E, F, F,.,1, D). Let CFP(N) = (B*, E*,
F* F*1*,D*). Then YA € D, Ye € E s.t. Ox(e) # oo, 3* € D*, Je* ¢
E*, s.t. Ox(e*) # oo and l(e*) = I(e).

Theorem 5 (Finiteness of the prefix). For any (1-safe) time Petri net N,
the cut-off-free mazimal prefic CFP(N) is finite.

5 Conclusion

In this paper we have proposed a new technique for the unfolding of safe para-
metric stopwatch Petri nets that allow a symbolic handling of both time and
parameters. To the best of our knowledge, this is the first time that the para-
metric or stopwatch cases are addressed in the context of unfoldings. Moreover,
when restricting to the subclass of safe time Petri nets, our technique compares
well with the previous approach of [6]. It indeed provides a more compact un-
folding, by eliminating the duplication of transitions, and also removes the need
for read arcs in the unfolding. As a tradeoff, the constraints associated with the
firing times of events may seem slightly more complex.

We have partly implemented the technique in our tool, ROMEO, whose 2.9.0
version can currently compute unfoldings of safe time Petri nets. The compu-
tation of the finite prefix is however not yet implemented. We propose instead
to couple the method with a supervision technique that makes the unfolding
finite based on a finite set of observations. This approach, that also works with
parameters and stopwaches, is detailled in [10] with a case study.

Further work includes investigating non-safe bounded models and application
of the unfolding technique to revisit the problems of model-checking and control.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

P. A. Abdulla, S. P. Iyer, and A. Nylen. Unfoldings of unbounded Petri nets. In
Proceedings of CAV, volume 1855 of LNCS, pages 495-507. Springer, 2000.

T. Aura and J. Lilius. A causal semantics for time Petri nets. Theoretical Computer
Science, 243(2):409-447, 2000.

P. Baldan, N. Busi, A. Corradini, and G. M. Pinna. Functorial concurrent semantics
for Petri nets with read and inhibitor arcs. In CONCUR, volume 1877 of LNCS,
pages 442—457. Springer, 2000.

B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems
using time Petri nets. IEEE trans. on Soft. Eng., 17(3):259-273, 1991.

. B. Berthomieu, D. Lime, O. H. Roux, and F. Vernadat. Reachability problems

and abstract state spaces for time Petri nets with stopwatches. Journal of Discrete
Event Dynamic Systems - Theory and Applications (DEDS), 17(2):133-158, 2007.
T. Chatain and C. Jard. Complete finite prefixes of symbolic unfoldings of safe
time Petri nets. In Proceedings of ICATPN, volume 4024 of LNCS, pages 125-145.
Springer, 2006.

T. Chatain and C. Jard. Sémantique concurrente symbolique des réseaux de Petri
saufs et dépliages finis des réseaux temporels. In Proceedings of NOTERE, Tozeur,
Tunisia, May-June 2010. IEEE Computer Society Press.

. J. Esparza. Model checking using net unfoldings. Science of Computer Program-

ming, 23:151-195, 1994.

J. Esparza and K. Heljanko. Unfoldings, A Partial-Order Approach to Model Check-
ing. Monographs in Theoretical Computer Science. Springer, 2008.

B. Grabiec, L.-M. Traonouez, C. Jard, D. Lime, and O. H. Roux. Diagnosis using
unfoldings of parametric time Petri nets. In Proceedings of FORMATS, LNCS,
Vienna, Austria, September 2010. Springer. To appear.

T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? Journal of Computer and System Sciences, 57:94-124, 1998.
V. Khomenko and M. Koutny. Branching processes of high-level Petri nets. In
Proceedings of TACAS, volume 2619 of LNCS, pages 458-472. Springer, 2003.
Didier Lime and Olivier (H.) Roux. Formal verification of real-time systems with
preemptive scheduling. Journal of Real-Time Systems, 41(2):118-151, 2009.

K. L. McMillan. Using unfolding to avoid the state space explosion problem in the
verification of asynchronous circuits. In Proceedings of CAV, volume 663 of LNCS,
pages 164—177. Springer, 1992.

P. M. Merlin. A study of the recoverability of computing systems. PhD thesis, Dep.
of Information and Computer Science, University of California, Irvine, CA, 1974.
L.-M. Traonouez, D. Lime, and O. H. Roux. Parametric model-checking of stop-
watch Petri nets. Journal of Universal Computer Science (J.UCS), 15(17):3273~
3304, December 2009.

