
Flexible Probabilistic QoS Management of

transaction based Web services orchestrations

Sidney Rosario

INRIA

Centre Rennes Bretagne Atlantique

Rennes, France

sidney.rosario@inria.fr

Albert Benveniste

INRIA

Centre Rennes Bretagne Atlantique

Rennes, France

albert.benveniste@inria.fr

Claude Jard

ENS Cachan Bretagne,
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Abstract—In this paper we extend our previous work on soft
probabilistic contracts for QoS management, from the particular
case of “response time”, to general QoS parameters. Our study
covers composite QoS parameters dealing not only with time
aspects but also with Quality of Data. We also study contract
composition (how to derive QoS contracts for an orchestration
from the QoS contracts with its called services), and contract
monitoring. Our approach supports comprehensive and flexible
QoS management within a probabilistic framework.

I. INTRODUCTION

Web services and their orchestrations are now considered

an infrastructure of choice for managing business processes

and workflow activities over the Web infrastructure [27].

BPEL [3] has become the industrial standard for specifying

orchestrations. Besides BPEL, the ORC formalism has been

proposed to specify orchestrations, by W. Cook and J. Misra at

Austin [17]. ORC is a simple and clean academic language for

orchestrations with a rigorous mathematical semantics. For this

reason, our study in this paper relies on ORC. Its conclusions

and approaches, however, are also applicable to BPEL.

Contract based QoS management: When dealing with

the management of QoS, contracts—in the form of Service

Level Agreements, SLA [7]—specify the commitments of

each subcontractor with regard to the orchestration. Standards

like web service Level Agreement (WSLA) [14] allow for

specifying (and monitoring) QoS parameters of web services

through contracts. Though there is no such standardization

for QoS parameters of web services, most SLAs commonly

tend to have QoS parameters which are mild variations of

the following: response time (latency); availability; maximum

allowed query rate (throughput); and security.

From QoS contracts with sub-contractors, the overall QoS

contract between orchestration and its clients can be estab-

lished. This process is called contract composition. Then, since

contracts cannot only rely on trusting the sub-contractors,

monitoring techniques must be developed for the orchestrator

to be able to detect possible violation of a contract, by a sub-

contractor. Finally, upon contract violation, the orchestrator
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may consider reconfiguration, i.e., replacing some called ser-

vices by alternative, “equivalent” ones — we do not address

this last task here.

Hard Contracts versus Soft Probabilistic Contracts: To

the best of our knowledge, with the noticeable exception of

[15], [12], [13], all composition studies consider performance

related QoS parameters of contracts in the form of hard

bounds. For instance, response times and query throughput

are required to be less than a certain fixed value and validity

of answers to queries must be guaranteed at all times. When

composing contracts, hard composition rules are used such as

addition or maximum (for response times), or conjunction (for

validity of answers to queries). Whereas this results in elegant

and simple composition rules, we have argued in [23], [22] that

this general approach by using hard bounds does not fit the

reality well. Indeed, real measurements of response times for

existing Web services reveal that they vary a lot and are better

represented through their histogram. Thus we have proposed

using soft probabilistic contracts instead. In such contracts,

hard bounds are replaced by probabilistic obligations, i.e., a

QoS parameter Q is considered probabilistic and a distribution

function, or distribution for short, FQ(x) = P(Q ≤ x) is
agreed for all relevant values x of Q. The obligation is that
the called service should behave “no worse” than FQ regarding

Q, in a sense that will be formalized later.
Contributions of this paper: In this paper we extend

and systematize the approach of [23], [22] by extending it

beyond the only case of Response Time. Our first contribution

consists in proposing a comprehensive approach for Soft

Probabilistic QoS Contracts encompassing a large class of QoS

parameters taking values in partially ordered domains, together

with means to build composite QoS parameters and contracts

and reason about them.

A second contribution consists in a procedure to per-

form flexible contract composition, which consists in relat-

ing the obligations binding the pair {client, orchestration},
to the obligations binding the different pairs {orchestration,
called service}.
A third (minor) contribution consists in the extension of

the technique proposed in [22] for contract monitoring to our

generalized case. This extension turns out to be straightfor-

ward, as we shall see.



Last but not least, we discuss languages features that are

useful in making our approach effective. Not surprisingly,

QoS domains must be declared along with their characteristics

allowing to perform contract composition. We also found it

very useful to introduce a language feature that is generic with

respect to the various QoS domains and performs a filtering

of responses from called services or from pools thereof,

according to best QoS performance. We illustrate this with

the ORC language [17]. Our whole approach is supported by

the TOrQuE tool (Tool for Orchestration Quality of Service

evaluation), from which we present experimental results for

contract composition.

Organization of the paper: Our study is supported by

the UsedCarOnLine Example that we present and discuss in

section II. Based on this example, we discuss in particular

why QoS domains should be partially, not totally, ordered.

Section III develops our general framework for flexible QoS

management, including the procedure for contract composi-

tion. Experiments are reported in section IV.

II. THE USEDCARONLINE EXAMPLE

A. Informal description

The UsedCarOnLine example is shown in Figure 1. In search
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Figure 1. Schematic representation of the UsedCarOnLine example.

for a used car, a client calls the UsedCarOnLine orchestration

with a car type — small car, family car, SUV, etc — as

the input. The orchestration calls two garages, GarageA and

GarageB, in parallel, with the client’s car type as an input

parameter. The garages respond with their price quote for that

car. Another dimension to the response from the garage is

the car’s environmental friendliness that we assess using a

green level.1 The green level is used to select the environment

friendlier car in Best Offer. The calls to the garages are guarded

by a timer Timeout. If only one garage has responded when a

timeout occurs, it is taken as the best offer and any eventual

response of the other garage is simply ignored. If no garage

responds before timeout, then a Fault message is returned to

the client, indicating an exception.

After selecting the best offer for the car, UsedCarOnLine

finds insurance and credit offers for this car. For credit offers,

two services AllCredit and AllCreditPlus are called in parallel

and the offer having the lower interest rate is chosen. The

insurance services called depends on the type of car which

needs to be insured. If the car requested by the client is of some

“deluxe” category, then only one service — GoldInsure— can

offer insurance for such cars, and any offer made by it is taken.

If the car is not a “deluxe” car, then two services, InsureAll

and InsurePlus are called in parallel and the insurance that

costs the least amongst the two offers is selected. In the end,

the (price, credit, insurance) is sent back to the client.

Each query to the orchestration comes as a token having

data and QoS attributes. Each of these tokens are broadcast

to the two garages and timers, which all produce a token at

their output. These tokens are then combined when selecting

the best offer. And so on. The traversal of any of the displayed

sites by a token modifies both data and QoS attributes for the

output tokens. Finally, one output token exits the orchestration

for each given input token.

B. The ORC specification for UsedCarOnLine

The ORC program for UsedCarOnLine is given in Table I.

ORC offers three primitive operators. For ORC expressions

f, g, “f | g” executes f and g in parallel. “f >x> g” evaluates
f first and for every value returned by f , a new instance of

g is launched with variable x assigned to this return value;

in particular, “f ! g” (which is a special case of the former
where returned values are not assigned to any variable) causes

every value returned by f to create a new instance of g.
“f where x :∈ g” executes f and g in parallel. When g
returns its first value, x is assigned to this value and the

computation of g is terminated. All site calls in f having x as
a parameter are blocked until x is defined (i.e., until g returns
its first value).

The operator :∈Q is a new operator introduced for our QoS

studies, where Q is the (static) parameter of this operator. Q
is a QoS parameter whose domain is a partially ordered set

(DQ,≤) that is an upper and lower lattice; by convention,
“best” will refer to a minimal element among a set. The

expression “f where x :∈Q g” does not take the first value
returned by g as x. Instead it waits for a “best quality” response
among all responses from g to that call, irrespective of the
time taken to generate them — since the domain of Q is only

1 This refers to the current situation in France where a bonus/penalty system
is attached to each car: when buying a clean car, you may get up to a 700
Euro bonus and you pay a penalty if the car is environment hostile. There are
finitely many tax levels in this system.



Assumptions QoS parameters :
δ : inter-query time, Dδ = R+

Guarantees QoS parameters :
d : latency, Dd = R+

Q : clean level, DQ = {0 . . . 4}

UsedCarOnLine(car) ∆ CarPrice(car) >p> let(p, c, i)
where c :∈ GetCredit(p)

i :∈ GetInsur(p, car)

CarPrice(car) ∆ { let(p)
where

p :∈Q {GarCall(GarageA[δ, d, Q](car)) |
GarCall(GarageB[δ, d, Q](car))}

} >p> { if(p "= Fault)) ! let(p) }

GarCall(g) ∆ let(a) where a :∈ { g | RTimer(T )}

GetCredit(p) ∆ Min[δ, d](c1, c2)
where

c1 :∈ AllCredit[δ, d](p)
c2 :∈ AllCreditP lus[δ, d](p)

GetInsur(p, car) ∆ { if(car = deluxe) ! GoldInsure[δ, d](p)} |
{ ifnot(car = deluxe) ! {min(ip, ia)

where ip :∈ InsureP lus[δ, d](p)
ia :∈ InsureAll[δ, d](p)

}}

Table I
UsedCarOnLine in ORC. We have shown in light gray the add-ons to ORC.

partially ordered in general, a best response may not be unique.

Observe that :∈ is a particular case of :∈Q by taking for Q
the latency or response time of the call — in this case it is not

needed to wait for all the responses from g to get the best one,
since the first one received will, by definition, be the best.

C. QoS management and contracts

Semantics of QoS parameters: The orchestration

wishes to establish SLA or QoS contracts with its clients. It

wishes to provide Guarantees on response time (or latency)

when subject to a query and Guarantees on the “green level”

profile of its used car offers.

In turn, the orchestration will assume that its client com-

plies with the Assumption that the query rate will not exceed

some agreed profile; query rate is equivalently captured by

inter-query time. Such an assumption is needed to avoid

overloading and thus making it impossible for the orchestration

server to process queries in due time. Thus, contracts are

implications assumptions ⇒ guarantees.

The example of table I begins with QoS parameters dec-

larations, split into Assumptions and Guarantees. For each of

these a list of QoS parameters and their domains is given.

Then, for each site call, a sub-list of all the QoS parameters

is declared as QoS attributes for this site. For example, the

declaration of the triple [δ, d,Q] in GarageA[δ, d,Q](car)
indicates that site GarageA knows the listed three QoS

parameters. A token traversing this site will therefore exit with

the following QoS attributes, which are the QoS Guarantees

offered by the site: 1/ the latency d in traversing this site,

and 2/ the green level Q associated to the response of this

site. On the other hand, this site computes the elapsed time

δ since the previous token was received; this belongs to the
Assumptions under which the site should work and must

therefore be monitored by the site, see section III-C.

Now, some sites have only a subset of the QoS parameters

in their scope, e.g., both AllCredit and Min know [δ, d] but
ignore green level Q. Tokens traversing such sites keep their
value unchanged for the ignored QoS parameter Q. If more
than one input token are combined to form a single output

token, as for Min, then two cases can occur: 1) All input
tokens carry the same value for Q. In this case the output
token has the same value for Q as the inputs. 2) The input

tokens carry different values for Q. In this case the output
token carries a special value inconsistent for Q. However if a
token exiting the orchestration has the value inconsistent for

Q, but Q appears as a parameter in the orchestration’s contract

with its client, then the orchestration will throw at error in this

case. In the UsedCarOnLine example we are in the first case.

Probabilistic contracts: As advocated in [23], [22],

guarantees on latency as well as assumptions regarding inter-

query time must be of statistical nature. The “green level” QoS

parameter relates to the general concept of Quality of Data

(QoD) and has a different nature. Typically, QoD is qualitative

(cheap/medium/expensive or silver/gold/platinum and so on);

in our case, the green level may, for instance, be captured

by the french categories of bonus/penalty, see footnote 1.

If new cars were considered, QoD contract regarding green

level would boil down to a hard constraint: make only offers

involving cars with a green level not less than x. Since we deal
with used cars however, availability is not always guaranteed

and the distribution of “green level” in the available population

of used cars at a given garage may very well be random. Thus

“green level” will also be a random QoS parameter.

Why considering partially ordered domains for QoS

parameters?: There are two kinds of reasons for that.

First, some QoS domains may not be totally ordered.

Consider the case of a pool of garages — here it consists

of the two garages GarageA and GarageB — from which we

expect getting a good offer. The larger the number of responses

from the pool by its different garages, the better is the chance

of getting a good offer. Therefore, a natural QoS parameter for

a pool is the subset of members of the pool having responded.

Now, subsets of a given set are partially ordered by inclusion.

Another reason for considering partial orders is the need

for building composite QoS parameters. For example, in our

case, we could make the pair {latency, green level} a single
parameter. This composite QoS parameter would be naturally

partially ordered using the product of the two orders: {latency’,
green level’}≥ {latency, green level} iff latency’≥ latency and

green level’ ≥ green level. Of course, we could instead totally

order this pair by introducing a utility function (as in economy)

u(latency, green level) taking values in, e.g., N or R+; utility

functions may be sometimes arbitrary, however.

Now, there may be compelling reasons for considering

composite QoS parameters, as we follow a probabilistic ap-

proach. Focus again on the two parameters “latency” and

“green level”. It clearly makes sense to assume that these



two parameters are “uncorrelated” — formally, that they are

probabilistically independent. For other cases, QoS parameters

may not be assumed to be independent. They they must be

packaged as a composite parameter endowed with a joint

probability distribution taking correlation effects into account.

Which tasks do we need to perform?: Again, we follow

here the approach of [23], [22], that is, we must be able to

perform, within our framework of soft probabilistic contracts:

contract composition (how to relate the contract offered by

the orchestration to the sub-contracts agreed with the different

called service) and contract monitoring (how to check whether

a called service meets its QoS contract). Of course, these two

tasks must be complemented with that of reconfiguration of

the orchestration, i.e., replacing a failing service by another

“equivalent” one — we do not address this point here.

In the rest of the paper we will develop a framework

for flexible QoS management based on a probabilistic ap-

proach. We leave aside the particular issue of monotonicity [8]:

QoS management implicitly assumes that, the better a called

service performs, the better the orchestration will perform.

This reference provides conditions for monotonicity as well

as guidelines for the design of monotonic orchestrations.

III. A FRAMEWORK FOR FLEXIBLE QOS MANAGEMENT

A. QoS domains and probabilistic contracts

QoS domains play a different role for Assumptions and

Guarantees. Assumptions concern the flows of queries sub-

mitted to the orchestration or services. In contrast, Guarantees

are performance obligations of the orchestration or the called

services, i.e., they concern the servers supporting the consid-

ered services, and/or the performance of the orchestration seen

as a composite service. Hence we address QoS domains for

Assumptions and Guarantees separately. We first begin with

Guarantees and then discuss Assumptions.

QoS domain for Guarantees: such a QoS domain is a

tuple (D,≤,⊕) where:

• (D,≤) is a partial order which is a complete lower
and upper lattice; thus infimums, denoted by ∧ and

supremums, denoted by ∨, can be considered, with the
usual algebraic properties. The two operators ∧ and ∨
will be useful in combining QoS of services that are

called concurrently or in conflict.

• (D,≤,⊕) is a commutative semi-ring, meaning that ⊕
is a commutative and associative operation on D that

distributes over ∧. This operator will be used when

composing QoS for services called in sequence.

Examples of such QoS domains include:

• (R+,≤,+) for latency. Best is shortest for latencies. Re-
sponses awaited in conflict yields the min of the latencies;

the basic example is the ORC statement “f where x :∈
g”. Synchronous waiting for responses of concurrent calls
yields the max of the latencies — since all returns must be

received. Latencies add for calls performed in sequence.

• ([0 . . . L],≤,∨) for green level. 0 is the best value (lowest
tax, or, equivalently, max bonus) and L the worst. If

a composite service consists of a sequence of calls

involving environmental issues, one could consider that

the worst level encountered in the successive responses

yields the level of the whole.

QoS domain for Assumptions: such a QoS domain is a

partial order (D,≤) that is a complete lower and upper lattice.
Examples of such QoS domains include:

• (R+,≥) for inter-query time. From the server’s point of

view, best is longest, whence the choice of ≥. The inter-
query time is measured by the orchestration and each

service, by comparing the dates of successive queries.

For Q a QoS parameter, we will denote by DQ its domain.

QoS domains compose by taking their products when seen as

partial orders or as semi-rings.

Probabilistic contracts: The domain DQ of a QoS

parameter Q can be randomized by equipping it with a

probability P.2

Consider first the case where (DQ,≤) is a total order.
For this case we can reuse the approach of [22] where the

probabilistic behavior of Q is represented by its distribution:

FQ(x) = P(Q ≤ x).

Now, suppose that FQ,S has been agreed for the QoS pa-

rameter Q, between the orchestration and some called service
S. How to formalize that “S performs at least as good as

agreed”? (In this case the orchestration should be happy with S
regarding QoS parameter Q.) We need an order on probability
distributions. It turns out that such a stochastic order for

distributions exists [2], [21]. For F and G two probability

distributions over a totally ordered domain D, say that

G ≤s F iff ∀x ∈ D ⇒ G(x) ≥ F (x) (1)

This definition reads as: there are more chances of being less

than x if the random variable is drawn according to G than

according to F — whence the reverting of inequalities. If X
and Y are two random variables with respective distributions

F and G, then

G ≤s F if and only if E (ϕ(X)) ≤ E (ϕ(Y )) (2)

holds, for any real valued increasing function ϕ. Now, if FQ,S

has been agreed as said above, and service S actually responds
with probability distribution GQ,S , the agreement is met iff

GQ,S ≤s FQ,S holds.

Stochastic ordering has been considered in [21] for the

case when (D,≤) is only a partial order. Observe that the
characterization provided in (2) can be taken as a definition of

stochastic ordering in this case. We give a new characterization

here, not given in [21]. This is obtained by considering ideals

of D, i.e., subsets I of D that are downward closed:

x ∈ I and y ≤ x =⇒ y ∈ I

Examples of ideals are: for R+, the intervals, [0, x] for all x;
for R+×R+ equipped with the product order, arbitrary unions

2 We omit the technicalities behind this notion, e.g., measurability and so
on; a demanding reader may, for simplicity, restrict herself to finite domains.



of rectangles [0, x] × [0, y]. Now, if Q is a QoS parameter

over a partially ordered QoS domain (DQ,≤), we define its
distribution by

FQ(I) = P(Q ∈ I),

for I ranging over the set of all ideals of DQ. Again, we then

define, for F and G two distributions over DQ,

G ≤s F iff for any ideal I of D ⇒ G(I) ≥ F (I) (3)

We now have the needed apparatus for defining probabilistic

contracts — in this paper we restrict ourselves to contracts

involving only two parties; we will discuss the case of or-

chestration versus called service, but the same concepts apply

to client versus orchestration.

Following the established approach of WSLA [14], a

contract must specify the obligations of the two parties.

Since we deal with the asymmetric pairs {client, orchestration}
or {orchestration, called service}, we will use an asymmetric
wording for the obligations. Let us focus from now on, on a

pair {orchestration, called service} and take the point of view
of the called service:

• the obligations that the orchestration has regarding the

service are seen as assumptions by the service; the

orchestration is supposed to meet them and the service is

bound to its obligations as long as assumptions are met;

• the obligations that the service has regarding the orches-

tration are seen as guarantees by the service; the service

commits to meeting them as long as assumptions are met.

Definition 1 (probabilistic contract): A probabilistic con-

tract is a pair {A,G} = {Assumptions, Guarantees}, which
both are lists of tuples (Q,DQ, FQ), where Q is a QoS

parameter with QoS domain DQ and distribution FQ.

The precise mathematical semantics of such a contract

will be made clear when discussing contract composition and

monitoring. The QoS declaration part of table I provides an

example of QoS parameter declaration. Specific contracts are

established with each called service regarding relevant QoS

parameters for this service, by providing a distribution for it.

Details regarding this will be provided in section IV.

B. Contract composition

Contract composition is the process by which the or-

chestration can build a contract with its client, considering

the contracts it has with the services it calls. Due to the

assume/guarantee type of reasoning, contract composition is an

intricate problem. It is further complicated by the fact that our

contracts are probabilistic and orchestrations involve complex

interactions between control, QoS parameters, and data — see

[22] for a detailed discussion of the latter point.

Fortunately, QoS management of orchestrations exhibits

a special structure regarding causality between assumptions

and guarantees. Consider again the UsedCarOnLine example

of figure 1. Consider first the latency, which is declared a

Guarantee. Causality regarding latency flows outward in the

following sense: from knowing the latencies of each service,

one can deduce the overall latency of the orchestration. In

contrast, the throughput (represented by the inter-query time)

is declared an Assumption. Regarding throughput, causality

flows inward, from client to services, in the following sense:

knowing the dates of arrival of the calls to the orchestration,

one can observe the dates of resulting calls, for the different

services. Accordingly, contract composition is performed as

explained next, using Monte-Carlo simulations.

Contract composition procedure

In this procedure, all probability distributions are assumed

independent in the probabilistic sense, for QoS parameters as-

sociated to different services and for different QoS parameters

associated to a same service.

a) Initial Conditions:

• Assumptions: the distribution of the Assumptions AO for

the orchestration is specified — for our example: inter-

query time.

• Guarantees: the distribution of each Guarantee GS is

specified, for each called service — for our example:

latency and green level (whenever relevant). Sometimes,

the orchestration may contain calls to “public” services

(like Google) which are freely available and cannot be

contracted. For such services, a contract is replaced by

an estimation of the service’s performance, which can be

done through measurements.

b) Inward Sweep:

1) Generate calls to the orchestration randomly, according

to the agreed distribution for their inter-query time;

2) For each query to the orchestration, run a Monte-Carlo

simulation of the orchestration. Corresponding occur-

rences and dates of calls to (a subset of) the different

services are observed.

3) Collect the dates of the successive calls to a same service

during the series of calls to the orchestration. This yields

the successive inter-query times for each called service

and allows to specify the Assumptions for each called

service. Also, the resulting QoS parameters “latency”

and “green level” for the orchestration are stored for

possible subsequent reuse.

c) Outward Sweep: at this point all Assumptions have

been specified. Denote the orchestration by the symbol O. For
each service S, the pair (O,S) has both its Assumptions AS

and Guarantees GS specified. Then, two cases may occur.

• For the good case, all contracts {AS , GS} form an

acceptable contract for all services S. In this case, we
can reuse the data generated at step 3) of the inward

sweep to get an empirical estimate of the distributions

constituting the Guarantees offered by the orchestration

to its client, completing contract composition.

• For the bad case, some pairs {AS , GS} do not constitute
an acceptable contract, i.e., guarantees GS may be too

demanding considering the Assumptions AS . We can then

adopt two alternative iterative approaches: For the first

approach, we iterate on Guarantees offered by the called

services, i.e., given the Assumptions AS for each service



S, contracts are re-negotiated, which results in a new
setting for the Guarantees GS . For the second approach,

we iterate on Assumptions applied to the orchestration,

i.e., we redesign AO. With any of the two approaches, we

have updated the Initial Conditions and are now ready to

re-run the process, until all contracts are accepted.

This iterative approach resembles the technique of policy

iteration, used in dynamic programming and game theory to

find similar equilibria [6]. We have no convergence proof yet,

but policy iteration techniques are known to converge in a few

iterations in many cases — as exemplified by our experiments

of section IV.

Discussing the independence hypothesis

Independence of all distributions is assumed while per-

forming contract composition. Is this acceptable? Consider

first the case where different QoS parameters are associated to

a service. If independence is not an acceptable hypothesis, then

just make the tuple of these QoS parameters a new composite

QoS parameter, see section II-C — our framework is powerful

enough to allow for this. Of course, this comes with a price:

estimating independent probability distributions is cheaper

(requires less data) than estimating a joint distribution. Now

consider the case of different services. The independence

hypothesis is generally accepted here. It is needed if contracts

are to be negotiated on a pairwise basis, between the orchestra-

tion and each individual service. Otherwise, group negotiation

would be needed, a much heavier process.

C. Contract monitoring

Once contracts have been agreed, they must be monitored

by the orchestration for possible violation. Contract monitoring

is studied in detail in [22] for the case of a single QoS parame-

ter, namely the latency. The same technique, however, extends

without change, to our case. We nevertheless reproduce it here

because QoS domains can be partially, not totally, ordered in

our case. Monitoring applies to each contracted distribution F
individually, where F is the distribution associated to some

QoS parameter X having partially ordered domain D. By
monitoring the considered service, the orchestration can get

an estimate of the actual distribution of X , we call it G. The
problem is, for the orchestration, to decide whether or not G
complies with F , where compliance is defined according to
formula (3), rewritten as

sup
I∈ID

F (I) − G(I) ≤ 0 (4)

where ID denote the set of ideals of D. However, G(I) in (4)
is not given to the orchestration, it can only be estimated by

collecting actual values for QoS parameter X . To this end, we
consider the following basic empirical estimate for G, namely:

Ĝ∆(I) = |{x∈∆|x∈I}|
|∆|

where ∆ is a sample of values for X collected at run time

by the orchestration and |A| is the cardinal of set A. Estimate
Ĝ∆ converges toward G when the size of ∆ grows to infinity.

In practice, successive values for Ĝ∆ are updated on-line at

run time by collecting in ∆ buffered values for X in a buffer

of size N large enough. If ∆t is the content of the buffer at

time t, we thus get an estimate Ĝ∆t
, which we denote by Ĝt

for simplicity. Then, the indicator in (4) is replaced by:

χt =def sup
I∈ID

F (I) − Ĝt(I)

At a first sight, a violation should be declared at the first

instant t when χt > 0 occurs. The problem is that estimate

Ĝt(I) can randomly fluctuate around G(I), especially for N
not large enough. Hence, applying the brute force stopping rule

χt > 0 will inevitably result in many false alarms. A counter-
measure consists in having a tolerance zone above the critical

value 0. This yields the following stopping rule for declaring
violation: χt ≥ λ, where λ > 0 is a design parameter of
the procedure, defining the tolerance zone. We do not provide

here the details of how monitoring is implemented, the reader

is referred to [22], section V for this.

D. Language features for flexible QoS management

As evidenced from the UsedCarOnLine example of figure

1, ORC requires some additional language features to make

it QoS-enabled. QoS parameter declarations, including the

specification of probability distributions,3 fully comply with

the state-of-practice in WSLA. We will therefore rather focus

on the needed operators:

(a) Wait synchronously for the returns of concurrent service

calls and combine the QoS values for the collected

returns. This does not require any specific language

feature. The designer should simply state herself how the

combination is performed by specifying a formula for

the combination. Default combination is by assigning the

worst collected value to the tuple.

(b) Combine QoS values of same parameters, for calls per-

formed in sequence. Again, this does not require any spe-

cific language feature but the declaration of the operation

⊕ for this type of QoS parameter, see section III.

(c) Wait asynchronously for the returns of concurrent service

calls and select a best candidate among the responses,

based on a given QoS parameter. This leads to consider-

ing the :∈Q operator, see table I. An in-depth study of

this operator and its mathematical semantics is beyond

the scope of this paper and will be reported elsewhere.

To summarize, only one specific new operator needs to be con-

sidered to make ORC QoS-enabled, namely the :∈Q operator.

IV. EXPERIMENTS ON CONTRACT COMPOSITION

We do our experiments on the UsedCarOnLine example of

section II. Our experiments are on the contract composition

technique detailed in this paper. Experiments on contract

monitoring are not done here, the interested user may refer

3In practice, distribution F will be abstracted by either a finite set of
quantiles (F (x1), . . . , F (xK), for a fixed family x1, . . . , xK of values for
the QoS parameters) or a finite set of percentiles (e.g., the set of values
y1, . . . , y9 such that F (y1) = 10%, . . . , F (y9) = 90%). Such contracts are
easily expressible in terms of the WSLA standard [14].



to [22] for this. All experiments were done on a machine with

a 1,000 MHz Pentium Centrino CPU, with 2 GB of memory.

The sites GarageA, GarageB, AllCredit, AllCreditPlus,

GoldInsure, InsurePlus and InsureAll were assigned latency

behaviours inferred from measured values of calls to services

over the web. For this, we invoked six web services —

USWeather, Bushism, XMethods, StockQuote, Caribbean and

CongressMembers — found in the XMethods online reposi-

tory [29]. We made 20,000 calls to each of these six services

and recorded the response time for each of these calls. We

then increasingly reordered these measurements and picked a

certain number (in our case seven) quantiles. The response

times are assumed to be uniformly distributed between these

quantiles, except after the highest one, after which the response

time decreases exponentially. The estimated distribution for

each of the contract sites of UsedCarOnLine is given in figure

2. Other ways of using these measurements were experi-

mented [22] but are not reported here, due to lack of space.
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Figure 2. Interpolated distributions for each of the contracted sites, and the
end to end distribution for UsedCarOnLine.

All the other sites of UsedCarOnLine like let, if, etc are

internal to the orchestration. Their response times are negligi-

ble in comparison to that of the contracted sites, and so are

assumed to respond instantaneously with zero delay.

We take the “green level” to be a random parameter with

values in {0 . . . 4}, for the two sites where it is contracted with
(i.e., GarageA and GarageB). The corresponding probability

is given in the second and third column of Table II.

Sweep 1: We first do an inward sweep, as described in

the contract composition method of section III-B. We generate

random calls to the orchestration following the exponential

distribution for inter-arrival times with a rate parameter of 5

requests/second. We ran 100,000 iterations of the orchestra-

tion. The resulting throughput for each of the contracted sites

is given in Table III. The end to end latency for UsedCarOnLine

is given by the UsedCarOnLine curve in figure 2.

Sweep 2: During the negotiation phase, say that

GarageB finds that the request rate of 5.028 calls per second

Green Level Probability Probability Probability
GarageA GarageB UsedCarOnLine

0 0.25 0.2 0.207
1 0.25 0.25 0.25
2 0.25 0.25 0.25
3 0.15 0.25 0.236
4 0.1 0.05 0.055

Table II
Probability for “green level”, for GarageA, GarageB and the

UsedCarOnLine orchestration.

Site Name Throughput Throughput
(sweep 1) (sweep 2)

GarageA 5.028 5.0
GarageB 5.028 5.0
AllCredit 5.028 4.99

AllCreditPlus 5.028 4.99
GoldInsure 1.679 1.674
InsureAll 3.342 3.332
InsurePlus 3.342 3.332

Table III
Average throughput for each of the contracted sites.

is too demanding for the performance it guarantees. This

corresponds to the Bad Case as mentioned in section III-B. In

this case, UsedCarOnLine could reduce its own input rate so that

GarageB is not invoked that often. Another possibility would

be that GarageB agrees to support this request rate, but at a

decreased performance. The new contract is given in figure 2

by the GarageB’ curve. The resulting throughputs for the sites

is given in table III and the end to end orchestration delay in

this case is given by the UsedCarOnLine’ curve. In our case,

the process converges after a single iteration (the throughputs

remain almost unchanged for the two sweeps), despite the

drastic decrease in GarageB’s response time (almost twice

slower). In the general case, this could need more sweeps.

The quality distribution for whole UsedCarOnLine program after

Sweep two is given in the last column of table II. The overall

execution time for both the sweeps was about 23.5 seconds.

V. RELATED WORK

Proposals for QoS-based SLA composition are few and no

well-accepted standard exists to date. Menascé [16] discusses

QoS issues in Web services, introducing the response times,

availability, security and throughput as QoS parameters. He

also talks about the need of having SLAs and monitoring them

for violations. He does not however, advocate a specific model

to capture the QoS behaviour of a service, or a composition

approach to compose SLAs. Agarwal et. al [1] view QoS based

SLA composition as a constraint satisfaction/optimization

problem solved by linear programming. Cardoso et al. in [10]

follow a rule based approach to derive QoS parameters for a

workflow, given the QoS parameters of its component tasks.

Zeng et al. [30] use Statecharts to model composite services

and use linear programming techniques such that it optimizes a



specific global QoS criteria. In [18], the authors propose using

fuzzy distributed constraint satisfaction programming (CSP)

techniques for finding the optimal composite service. Canfora

et. al [9] use Genetic Algorithms for deriving optimal QoS

compositions. Compared to the linear programming method of

Cardoso et. al [10], the genetic algorithm is typically slower

on small to moderate size applications, but is more scalable.

A distinguishing feature of our proposal is that we deviate

from using hard bounds and handle soft probabilistic contracts.

In [11] the authors use WSFL (Web Service Flow Lan-

guage) and enhance it with the capability to specify QoS

attributes. Web service Performance Analysis Center (sPAC)

[24], is another similar approach for performance evaluation of

services and their compositions. For both works, probabilistic

models are translated into simulation engines for performance

analysis. The fundamental difference from our approach is that

the approach assumes a “closed world” scenario, assuming

that the services of the orchestration can be instrumented with

measurement code to get information about its performance.

We rely on contracts, instead.

The notion of probabilistic QoS has been introduced and

developed in [12], [13] with the ambition to compute an exact

formula for the composed QoS, which is only possible for

restricted forms of orchestrations without any data depen-

dency. We propose using simulation techniques to analyze

the QoS of a composite service, this allows us to use non-

trivial distributions as models for performance and also permits

analysis of orchestrations whose control flow have data and

time related dependencies. A distinct feature of our approach

is that the quality domains can be partially ordered which

allows expressing rich and possibly complex QoS parameters.

VI. CONCLUSION

In this paper we have proposed a framework for QoS

management based on soft probabilistic contracts. This work

extends our previous work which focussed only on response

time, to include composite QoS parameters. We also give

a statistical method for monitoring in this case. In future

work, we will try and formalise the extension to ORC used

in this paper. Reconfiguration of the orchestration in case of

violations of the contract also needs to be studied.
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