
Unfoldings of Networks of Automata and
their Application in Supervision

Bartosz Grabiec
INRIA, IRISA

Campus de Beaulieu, F-35042 Rennes, France
Bartosz.Grabiec@irisa.fr

Claude Jard
ENS Cachan Bretagne, IRISA

Université Européenne de Bretagne,
Campus de Ker-Lann, F-35170 Bruz,

France
Claude.Jard@bretagne.ens-cachan.fr

ABSTRACT
In this article we present techniques of unfoldings of net-
works of automata. This type of techniques allows captur-
ing the causal relations of partial order between events of
a model of a distributed system. They are particularly tai-
lored to address the issue of supervision. Given a sequence
of actions observed during an execution of a distributed ap-
plication it is possible, using a model of the system, to deter-
mine transitions of the model that produced these actions
and to infer causal relationships or independence between
events. We also introduce a method of partial observations
into unfoldings. Using this method we can state some ac-
tions or transitions as unobservable and under some termi-
nation constraints we can infer possible explanations.

We explore unfoldings in the original context of supervi-
sion systems which are modeled by a network of timed au-
tomata and we show how the possible dates of occurrences
of actions can be inferred by using symbolic constraints.

1. INTRODUCTION
The notion of unfolding used to model behaviours of dis-

tributed systems [?] was introduced to equip these models
with a semantics known as partial order [?, ?]. In contrast
to the usual sequential semantics given in terms of transition
systems [?] and traditionally used in verification activities,
control and tests, the semantics of partial order defines ex-
ecutions as partial orders on events. It gives a possibility
to place in an execution the causal dependencies between
events and additionally it can identify creation of indepen-
dent or concurrent events. Superposition of sets of events
for all possible executions may constitute what is called an
event structure [?] or an unfolding. An event structure is
a set of events structured by a partial order relation and
a relation of conflict which allows finding valid executions.
This notion was essentially developed in the context of Petri
nets [?]. Here we present it in the context of networks of au-
tomata [?, ?].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

The question of supervision is a practical problem which
arises when we want to monitor on line activity of a real
system and collegiate events that are produced by the sys-
tem [?, ?]. For this purpose, usually some probes are placed
in the system and they produce events which carry useful
information for supervisor. These events are then transmit-
ted (often over a network in the case of distributed systems)
to be processed by a module called the supervisor. It is as-
sumed that the order of arrival of events to the supervisor
is not significant since it is in general the result of an asyn-
chronous process of collection. The supervisor must then
rebuild the dependences which can not be found directly us-
ing the local information associated with the events. For
this reason, we consider a model-based approach in which
the supervisor uses a model of the system. This model com-
prises of transitions labelled by information which can be
observed.

Our approach is summarized in Figure 1. The sequence
of observations is a series of symbols. The supervisor pro-
duces a set of explanations since several trajectories of the
model can produce the same set of symbols. An explana-
tion is a partial order of events. An event corresponds to
the execution of a transition in the model. Such a transition
is labeled by the symbol that is observed and which should
be then explained. The supervisor therefore infers from the
model possible dependencies between observed symbols. We
extend the approach by adding time constraints [?] to the
model (the model of networks of timed automata), which
makes it possible moreover to infer the dates of production
of the observed symbols.

In our previous works [?, ?, ?] we have developed a super-
vision approach based on unfoldings of Petri nets [?], mainly
in the untimed framework [?], with a particular motivation
for the distribution of calculations used in the supervision
[?], and more recently by tackling the questions of symbolic
constraints [?, ?].

One of the main new issues presented in the article is a
unified way of processing the model of networks of timed
automata [?]. The explicit use of networks of automata is
original and quite different from the usual approach in which
we first calculate the corresponding single automaton rep-
resenting all the components before proceeding to an anal-
ysis. The algorithmic complexity is higher but it is, how-
ever, highly compensated by the more compact (in terms of
memory size) representation as we do not calculate the set
of interleavings of actions which are parallel. Above all it
is a natural way to explain the causal relationships that we

Figure 1: Schema of the supervision system.

Figure 2: A finite state automaton. l1 is the initial
state, Σ = {a, b, c}.

believe are central to the work of supervision and diagnosis.
The rest of the article is structured as follows. We start

with a presentation of the concept of unfolding for the well-
known model of the finite state automaton. Then we present
the unfoldings for networks of finite state automata. Next
we describe the question of supervision and a method which
allows producing explanations of a sequence of observations
for model without time constraints. In the next parts the
timed model is introduced and a method for producing timed
explanations is described.

2. FINITE AUTOMATA

Definition 1. (Finite automaton) A finite state automa-
ton A is defined by a tuple A = (Q, q0, Σ, T), where Q is a
finite set of states, q0 ∈ Q is the initial state, Σ is the al-
phabet (a finite set of symbols) and T ⊆ Q × Σ × Q is the
set of transitions (or edges).

An example of graphic depiction of a finite state automaton
is given in Figure 2.

All executions of such an automaton can be represented
as labeled paths in a tree graph with the initial state as the
root. They can be formally defined with the use of notion of
unfolding. A transition is denoted by t = (α (t) , λ (t) , β (t)).

e3,l1

a c

e7,l2 e8,l2 e14,l2

e1,l2

b b

e4,l2

b b

e10,l2 e9,l1

e2,l2

b b

e5,l1

a c

e6,l2

b b

e12,l2 e13,l1e11,l2

e0,l1

a c

Figure 3: A prefix of the unfolding of the automaton
in Figure 2.

Unfolding of an automaton A, denoted by U (A) is given
by a set of events. Each event represents an occurrence of
a transition. It is defined by a pair e = (π (e) , τ (e)), where
π (e) is the event which precedes e in the unfolding, and
τ (e) is the transition assigned to e. There is also a fictitious
initial event ⊥ for which β (τ (⊥)) = q0.
U (A) can be defined inductively as follows.

Definition 2. (Unfolding of a single automaton) Given
a finite state automaton A = (Q, q0, Σ, T), the unfolding of
A, denoted by U(A), is the smallest set such that:

• ⊥ ∈ U (A),

• {∃π (e) ∈ U (A) ∧ ∃t ∈ T ∧ α (t) = β (τ (e))}
=⇒ (e, t) ∈ U (A)

Having two events e and e′ of U (A), e immediately precedes
e′ (denoted by e → e′) if π (e′) = e. Causality between two
events is defined as a reflexive and transitive closure of the
relation → (denoted by →∗). For an event e, its set of
causal predecessors is denoted by ↓ e = {f | f →∗ e}. This
notation is extended to sets: ↓ E =

S
e∈E ↓ e.

In general unfoldings are infinite sets e.g. unfoldings of
automata with loops. In Figure 3 there is a finite subset of
the unfolding of the automaton in Figure 2. The subset is
closed by precedence relation and is called a prefix of the
unfolding. Graphically, an event (π (e) , τ (e)) is represented
by an arc labeled by λ (τ (e)) which starts from the node
π (e) and is ended by the node e. The events are drawn as
ellipses which contain the name of the event and the reached
state.

The prefixes of unfoldings of finite state automata are
trees with bounded degree.

3. NETWORK OF AUTOMATA
We use the similar approach as in the previous section to

define the notion of unfolding of a network of automata.

Definition 3. (Network of finite state automata) A net-
work of finite state automata is a set {A1, ..., An} of n finite
state automata with Ai = (Qi, q0i, Σi, Ti). A global state of
the network is a tuple of Q1 ×Q2...×Qn. The initial global
state is (q01, ..., q0n). The activity of the automata is syn-
chronized on transitions having the same label. We define
the set of synchronizations Sync as the set of (t1, ..., tn) ∈
(T1 ∪ {ε}) × ... × (Tn ∪ {ε}) such that (t1, ..., tn) += (ε, ..., ε)
and there exists a such that ∀ti += ε.λ (ti) = a ∧ ∀ti = ε.a +∈
Σi.

An example of such a network is given in Figure 4.
As in the case of a single automaton, unfolding of a net-

work N , denoted by U (N) is given as a set of events. An
event is a vector e = (e1, . . . , en), where ei = (πi (e) , τi (e))
in which πi (e) denotes the predecessor of e considering the
automaton Ai, and (τ1 (e) , . . . , τn (e)) ∈ Sync. In the case
where the automaton Ai is not considered by the transition
we define πi (e) = ε.

Given two events e and e′, e precedes immediately e′ in
the automaton Ai (denoted by e →i e′) if πi (e′) = e. A
set of events is in conflict iff ∃e, e′ ∈ E, i ∈ [1, n] such that
πi (e) = πi (e′). From the causality point of view none of
the events can have conflicts in its causal history as it would
mean that there are two exclusive events. Such events are
the result of a local choice of a single automaton.

Definition 4. (Unfolding of a network) Given a network
N , U (N) is the smallest set satisfying:

• ⊥ ∈ U (N)

•

8
>>><

>>>:

(τ1(e), ..., τn(e)) ∈ Sync

∀i ∈ [1, n]

8
<

:

τi(e) = ε ⇒ πi(e) = ε

τi(e) += ε ⇒

πi(e) ∈ U(N)
α(τi(e)) = β(τi(πi(e)))

↓ e is conflict free

=⇒ e ∈ U (N)

Figure 4 presents an example of a prefix of unfolding of the
network figured on the left.

Graphically, an event e is represented by an arc going from
the node πi (e) to the node e, and labeled by 〈λ (τi (e)) , Ai〉.
Each node is represented by an ellipse, labeled with the name
of an event e and the local states reached by the correspond-
ing transition.

In general the prefixes of the unfoldings of the networks
are acyclic graphs with an unbounded degree. The inductive
definition can be directly used to construct an algorithm in
which the events are placed one by one in the unfolding if
they are not already there.

4. SUPERVISION WITH NETWORK OF AU-
TOMATA

4.1 Guided unfolding
Having the notion of unfolding, the question of supervision

can be addressed. We consider a sequence of observations
σ ∈ Σ∗. The problem is to construct all possible executions
of a network which are correct with respect to the observa-
tion. In other words we search for the explanations of what
is observed. The sequence of observations is finite, and so is
the unfolding.

The idea is that the order given by the sequence of obser-
vations σ does not necessarily correspond to the real order
of the corresponding events. The observation is just the
result of the observation process in the distributed system
that is be observed. It is the role of the supervisor, using the
model, to propose the possible causal relationship between
observations. It is clear that the actions of the same type
are totally ordered as they correspond to a local action of an
automaton or a synchronization. A good method to guide a
construction of an unfolding is to use the Parrikh function of

the sequence σ. The Parrikh function (: Σ∗ → N|Σ| counts
the number of occurrences of each symbol of the sequence.
We extend the information of an event e by the Parrikh
vector ς (e) of the sequence recognized by the set of causal
predecessors of e. By comparison of the Parrikh vector of an
event with the Parrikh vector of an observation, we ensure
that the latter does not exceed the former. For an action
a ∈ Σ, we denote by χa the Parrikh vector which has all
its components set to 0 except the one which corresponds
to the action a and equals 1. The events are denoted by
e =

“
(πi, τi)i∈[1,n] , ς (e)

”
.

The unfolding guided by the observation, denoted as E (N, σ)
may be therefore defined as:

Definition 5. (Supervision of a network) Given a net-
work N and a sequence of observations σ, ε (N, σ) is the
smallest set satisfying:

• ⊥ ∈ E (N, σ) with ς (⊥) = 0

•

8
>>>>>><

>>>>>>:

t = (τ1(e), ..., τn(e)) ∈ Sync

∀i ∈ [1, n]

8
<

:

τi(e) = ε ⇒ πi(e) = ε

τi(e) += ε ⇒

πi(e) ∈ E(N)
α(τi(e)) = β(τi(πi(e)))

↓ e is conflict free
ς (e) =

P
f∈↓e χλ(t) ≤ ((σ)

=⇒ e ∈ E (N, σ)

Figure 5 shows supervision obtained for the sequence of ob-
servations acbc. The result of this supervision actually rep-
resents the two following explanations: the actions a and
two c are carried out independently and then the action b is
fired. In the case of the action b there are two possibilities
as there are two actions labeled by b in the first automaton.
These explanations are obtained by:

• extracting executions of the unfolding. An execution
is defined by a subset of E of the unfolding E (N, σ)
which is closed by causality (↓ E = E) and without
conflict;

• requiring that the executions explain the whole se-
quence of observations i.e. ς (e) = ((σ).

Not only we infer the trajectories of automata but also
the possible causal links between observations. This is what
gives a real meaning of the method in the context of super-
vision, thanks to which

we get the extra information to the sequence of observa-
tions.

4.2 Partial observations
In many cases we cannot or we do not want to observe all

of transitions of the model. For this reason we introduce a
construction of an unfolding using only a sequence of partial
observations. To construct an such an unfolding we assume
that we observe only some chosen transitions of the network.
They can be any transitions of the model. We can observe
both some local transitions or some global transitions which
involve several automata.

For the construction of an unfolding based on some partial
observation σ we use a slightly modified technique which we
used in the section 4.1. To mark unobservable transitions we
use a boolean function ν (x), where x is an event or a tran-
sition. An event e is observable (i.e. ν (e) is true) if at least

e1,{l3}

b(3),A2 c,A2b(3),A2

e8,{l2,l4}

a,A1

e3,{l3}

b(3),A2 c,A2b(3),A2

e6,{l1,l4}

e2,{l2}

b(2),A1

b(1),A1 b(1),A1b(2),A1

b(1),A1

b(2),A1

e10,{l2,l4}

e5,{l1,l4} e7,{l2,l4}

a,A1

e9,{l1,l4}

e0,{l1,l3}

b(3),A2

b(3),A2 c,A2a,A1

e4,{l3}e11,{l2} e12,{l2}

Figure 4: A network of finite state automata on the left. Sync = {(a, ε) , (b (1) , b (3)) , (c, ε) , (b (2) , b (3))}. A prefix
(on the right) of the unfolding of the network. The initial event ⊥ is represented as e0 in the picture. Inside
each ellipse which denotes an event apart from its name there is a set of locations which was reached after
firing the corresponding transitions of an event. For example for the event e6 there are two local transitions
b (1) and b (3) which take part in the action b. After this action the network reaches the locations l1 and l4.

e1,{c=1}

b(3),A2 c,A2b(3),A2

e8,{a=1,c=1,b=1}

a,A1

e3,{c=2}

b(3),A2 c,A2b(3),A2

e6,{a=1,c=1,b=1}

e2,{a=1}

b(2),A1

b(1),A1 b(1),A1b(2),A1

b(1),A1

b(2),A1

e10,{a=1,c=2,b=1}

e5,{a=1,b=1} e7,{a=1,b=1}

a,A1

e9,{a=1,c=2,b=1}

e0,{}

b(3),A2

b(3),A2 c,A2a,A1

e4,{c=3}e11,{a=2,b=1} e12,{a=2,c=1,b=1}

Figure 5: Network of automata (on the left) and its unfolding (on the right) constructed on the basis of
the sequence of observations σ = acbc. The vector ς (e) is shown next to each event. For the convenience of
understanding it is represented as a set of equalities of the form x = y, where x stands for the number of
transitions labeled by “x” and y is the corresponding value. In the picture we distinguished using dashed
lines three events e4, e11, e12 for which ς (e) ! ((σ), where (e ∈ {e4, e11, e12}). For example for e12 the number of
transitions labeled by a is greater than 1 which is the case in σ. In the picture ⊥ ≡ e0.

one of its underlying transitions is observable. Formally we
can write it as follows: ν (e) ⇐⇒ (∃τi ∈ τ (e) , ν (τi)) ∨
ν (τ (e)). Let us notice that in this definition we distin-
guished two situations: one when a local transition is ob-
servable or not ((∃τi ∈ τ (e) , ν (τi)) is true or false), and the
other one when the global transition is observable or not
(ν (τ (e)) is true or false). We have made a distinction in
order to use the modified version of the method with the
Parrikh vector. Namely, in the vector we put an extra posi-
tion which is a number of events which cannot be observed
during the considered execution. Thus during construction
of the unfolding every time an event which is not observ-
able is produced the value of the mentioned position is in-
creased. On the contrary whenever there is an observable
event e we have to increase the value which corresponds to
the transition τ (e). However, in the latter case we may not
observe the whole global transition if it consists of several
local transitions and some of them are not observable. Then
we increase only the values of the vector which are assigned
to the local observable transitions. This way when we ob-
serve a whole global transition (i.e. all its underlying local
transition), only one position of the vector is modified. Such
approach let us easily to compare a sequence of observations
and a set of events produced by an execution in the unfold-
ing.

It is important to mention that one of the main prob-
lems when we want to infer some information about a sys-
tem which is only partially observable is that there may
be some infinite loops which are unobservable. For this
reason in our solution we bound for each possible execu-
tion E of the system the number of unobservable events i.e.
|{e ∈ E | ¬ν (e)}| ≤ M .

In Figure 6 we present an example of the unfolding of the
system in Figure 4. In the example we observe two tran-
sitions: a and b (3). It is worth noticing that we do not
observe the whole action b but just one of the local tran-
sitions which take part in it. Thus we do not care and we
cannot distinguish which of the two possible synchroniza-
tions takes place. Let us take one of the successful events
(i.e. a maximal event of a valid explanation) from Figure 6
e.g. e12. As an input we have a sequence of observations
aba. We can notice that among predecessors of e9 there are
two observable events {e2, e9} (we do not count the initial
event e0 ≡ ⊥) and two unobservable events {e1, e3}. When
we take all the transitions of the events {e1, e2, e3, e9, e12}
we get the vector in which we have two unobservable events
(in the picture ? = 2), two transitions a, and one b (3).

5. TIMED AUTOMATON
Currently we will explore an extended version of the pre-

vious models. Namely timed automata which have addition-
ally time constraints. This allows us to restrict the behavior
of the underlying model which is without time. Thus we
add to the underlying finite automaton clocks, invariants on
the states, guards and resets on transitions [?].

Definition 6. (Timed automaton) A timed automaton
A is a tuple (Q, q0, Σ, X, T, Inv) where

• Q is a finite set of states, q0 ∈ Q the initial state;

• Σ is a finite alphabet of actions;

• X is a finite set of clocks;

e0,{}

b(3),A2

c,A2a,A1

e6,{a=1,b(3)=1}

a,A1

e1,{?=1}

b(3),A2 c,A2

e2,{a=1}

b(2),A1

b(2),A1b(2),A1

e11,{?=1,a=2,b(3)=1}e10,{a=2,b(3)=1}

e7,{?=1,a=1,b(3)=1}

a,A1

e3,{?=2}

b(3),A2

e9,{?=2,a=1,b(3)=1}

a,A1

e12,{?=2,a=2,b(3)=1}

Figure 6: A prefix of unfolding of the network in
Figure 4 guided by the partial observation aba. For
the construction an extra parameter was used which
is the maximal number of unobservable events and is
equal to 2. The description of events is the same as
in Figure 5. ? denotes the number of unobservable
events in the set of predecessors of the considered
event. The dotted ellipses and arrows denote events
and transitions which are unobservable. The events
e10, e11, e12 are all possible explanations for the given
sequence of observations.

• T ⊆ Q × C (X) × Σ × 2X × Q is a finite set of tran-
sitions. t = 〈α (t) , γ (t) , λ (t) , ρ (t) , β (t)〉 represents a
transition from the state α (t) to the state β (t), la-
beled by the action λ (t), with guard γ (t) and a set
of resets ρ (t). C (X) is a set of conjunctions of con-
straints of the form x /0 c, where x ∈ X, c ∈ R and
/0∈ {<,≤, =,≥, >}. C< (X) is a set of conjunctions of
constraints of the form x < c or x ≤ c;

• I : Q → C< (X) assigns an invariant to any state.

In the similar manner to the previous definition of the net-
work we can define a network of timed automata. Thus
we consider each synchronization as a tuple with transitions
which share an action.

Definition 7. (Network of timed automata) A network
of timed automata (NTA) is a set N = {A1, . . . , An} of n
timed automata with Ai = (Qi, q0i, Σi, Ti, Xi, Ii). We make
the assumption that clocks are not shared between automata
(∀Ai, Aj ∈ N , Xi ∩ Xj += ∅). The set of synchronizations
Sync is defined as in the untimed case.

Figure 7 presents an example of NTA.
The operational semantics of such a system is defined as

follows. The state of the system is composed of the local
state of each automaton and a global date. We denote such
a state by

“
(qi, dori)i∈[1,n] , θ

”
. The local state (li, dori) of

an automaton is given by its location li and the dates of
last resets of clocks of the automaton given by the function
dori : Xi → R. To fire a global transition (ti)i∈[1,n] at
time θ′ ≥ θ, where θ is the current date, we require that
the invariants of all locations of all the automata are still
valid at the time θ′ (they are true for all the values of the

Figure 7: Timed automata with two clocks x and
y. Each of the locations is marked with a label and
invariants. The transitions are labeled with their
action (a, b or c), the guard on clocks and the set of
resets (in square brackets).

clock θ′−dor) and all the automata that need to fire a local
transition t can do this. In other words this means that
the initial location of the transition t has to be the current
location of the automaton and the guard has to be satisfied
at the moment θ. The resulting overall state is obtained
by changing the locations of the automata in accordance
with the considered local transitions and by reseting clocks
mentioned in the transitions. We must also ensure that the
invariants of the new locations are true at the time θ′.

Definition 8. (Operational semantics) The operational
semantics of NTA is defined by the following transition sys-
tem:

• The initial global state is
“
(q0i, Xi × {0})i∈[1,n] , 0

”
;

• The transitions are defined by the following SOS rule:

– for each i ∈ [1, n]

8
>>>>><

>>>>>:

Ii (qi) (θ′ − dori)∧

(ti += ε) =⇒

8
>>><

>>>:

α (ti) = qi ∧ γ (ti) (θ′ − dori)
q′i = β (ti) ∧ Ii (q′i) (θ′ − dor′i)

dor′i (x) =

(
θ′ if x ∈ ρ (ti)

dori (x) otherwise
“
(qi, dori)i∈[1,n] , θ

” (ti)i∈[1,n]∈Sync
−→

“
(q′i, dor′i)i∈[1,n] , θ

′
”

In the example presented in Figure 7 we have a network of
automata which produces four actions a, b and two actions c.
The possible explanations of these actions are shown in Fig-
ure 8. What we want to know are the possible dates of these
actions (denoted δ (a) , δ (b) and δ (c)). As we can see the ac-
tion c can be only produced at time 1. After this action we
can reset the clock and repeat it at time 2. After these two
actions automaton A1 fires action b but to do this it has to
be synchronized with the second automaton A2. Thus au-
tomaton A2 hast to go to the location l2 before the action c
and then it can choose between two transitions labeled by b.
If the automaton executes the action b which produces the
state in which automaton A1 is in location 11 we know that
δ (a) = δ (b) because of the guard x = 0. δ (b) ≤ 3 because
otherwise we would have another action c. Moreover, since
we know that the global time progresses we can infer that

Figure 8: Two possible explanations E1 and E2 with
time constraints C (E1) , C (E2) on dates of occur-
rences of events.

δ (b) ∈ [2, 3]. In the other case where the transition b was
the effect of the synchronization of b (1) with b (3), we have
δ (b) ≤ 3 like previously but also δ (b) ≤ δ (a) + 1 because
otherwise another action c would be produced. We can de-
duce in fact that max (δ (a) , 2) ≤ δ (b) ≤ min (δ (a) + 1, 3).
This is the type of information we will try to infer automat-
ically during the supervision.

6. SUPERVISION OF TIMED SYSTEMS
The question of supervision of timed systems can be placed

in the same context as in the case of systems without time
constraints. Let us imagine a sequence of observations made
only by a series of symbols of the alphabet Σ. The problem
is to find executions that can explain this sequence. What
is especially interesting is to infer the causal relationships
induced by the model.

The first idea is to proceed as in the untimed case and
to define the notion of unfolding of a NTA. The sequence
of observations can be also naturally seen as a TA without
time constraints. The notion of timed unfoldings has re-
cently been introduced in [?]. Its calculation is complex and
produces a structure of events in which each of the events
has assigned to it a symbolic expression which gives the pos-
sible dates of firing transitions. The concept of conflict also
has to be weakened in the notion of asymmetrical conflict
in order to keep concurrency.

We propose here a simpler approach to answer the ques-
tion of supervision. By definition, the introduction of time
constraints limits the possible executions of the model. Thus
we can consider the explanations produced for the underly-
ing untimed model (i.e. the unfolding guided by the ob-
servations) and then take into account the time constraints.
We will see furthermore that this phase of post-selection will
be able to infer the possible dates of observation. This is a
potentially rich information for supervision activities.

Let us thus consider a NTA and its untimed underlying
network N and a sequence of observations σ and let us take
the set of possible untimed explanations, i.e. all the sets of
events E ⊆ E (N, σ) such that ↓ E = E is without conflict
and ς (e) = ((σ).

We consider an explanation E. We denote by Ei the set
of events concerned by the automaton Ai (i.e. the events
e such that τi (e) += ε). We know that the closure →∗

i is
a total order on Ei since the processes are sequential. We
will denote by ↑i E the maximal event for this relation. For

each event, we will denote by δ (e) a date of the event and
by dori (e) a date of reseting clocks (Xi) of the automaton
Ai after the event occurred. dori (e) is defined as follows:

∀x ∈ Xi, ∀e ∈ E, dori (e) (x)
def
=

(
δ (e) if x ∈ ρ (τi (e))

dori (πi (e)) (x) otherwise

Definition 9. (Time validity) An explanation E which
does not take time into consideration is valid according to
the time constraints of the network iff:

∀i ∈ [1, n]

8
>><

>>:

∀e += ⊥ ∈ Ei

8
<

:

δ (πi (e)) ≤ δ (e)
Ii (α (τi (e))) (δ (e)− dori (πi (e)))
γ (τi (e)) (δ (e)− dori (πi (e)))

Ii (β (τi (↑i E))) (maxf∈Eδ (f)− dori (↑i E))

The definition of time validity incorporates the definition of
sequential semantics. We explain the formula line by line:

• the time cannot go back between the causal predeces-
sor of an event and itself;

• the invariants of the initial locations of the transition
are satisfied at the moment of firing the transition;

• the guards of the local transitions which form the tran-
sition of the considered event are also satisfied at the
time of firing;

• the invariants of the final locations of the transition
are satisfied at the end of the explanation.

These conditions can therefore reject the explanations which
are invalid if time constraints are taken into consideration.
Beyond that, we can pass to the symbolic representation
constraints having in mind that for each event e, δ (e) is a
real variable assigning the possible dates of firing the corre-
sponding transition of the event e.

For our example in Figure 8, the two possible explanations
are described with the following constraints:

• C (E1) ≡

8
>>>>>>>>><

>>>>>>>>>:

δ (⊥) ≤ δ (e1)
δ (e1) ≤ δ (e3) ∧ δ (e3) ≤ δ (e9)
δ (⊥) ≤ δ (e2) ∧ δ (e2) ≤ δ (e9)
δ (e9)− δ (e3) ≤ 1 ∧ δ (e9)− δ (e2) ≤ 1
δ (e3)− δ (e1) ≤ 1 ∧ δ (e3)− δ (e1) = 1
δ (e1)− δ (⊥) ≤ 1 ∧ δ (e1)− δ (⊥) = 1
[max (δ (⊥) , δ (e1) , δ (e2) , δ (e3) , δ (e9))+
−δ (e2) ≤ 1]

• C (E2) ≡

8
>>>>>>><

>>>>>>>:

δ (⊥) ≤ δ (e1)
δ (e1) ≤ δ (e3) ∧ δ (e3) ≤ δ (e10)
δ (⊥) ≤ δ (e2) ∧ δ (e2) ≤ δ (e10)
δ (e10)− δ (e2) ≤ 1 ∧ δ (e10)− δ (e2) = 0
δ (e10)− δ (e3) ≤ 1 ∧ δ (e3)− δ (e1) ≤ 1
δ (e3)− δ (e1) = 1 ∧ δ (e1)− δ (⊥) ≤ 1
δ (e1)− δ (⊥) = 1

After reduction and with assumption that δ (⊥) = 0, we
obtain

C (E1) ≡ (e1 = 1)∧(e3 = 2)∧(2 ≤ e9 ≤ 3)∧(0 ≤ e9 − e2 ≤ 1)

and

C (E2) ≡ (e1 = 1)∧ (e3 = 2)∧ (2 ≤ e10 ≤ 3)∧ (e10 − e2 = 0)

which confirms very well the previous informal analysis of
the executions of the timed model.

7. CONCLUSION
In this article we presented an original method using the

model of networks of timed automata to produce timed ex-
planations of a sequence of actions produced by a distributed
system under surveillance. Many possible applications can
be considered such as the correlation of alarms and the de-
tection of errors, monitoring behavior patterns to detect for
example intrusions, surveillance of non-functional time prop-
erties, etc. A detailed algorithimc analysis is still necessary.
Several extensions can be also naturally explored such as the
real distribution of supervision and the use of different and
more realistic models of time.

During our research we have developed a prototype tool
which implements the solutions presented in this paper. We
used this tool to prepare a more realistic example which is
described in the appendix.

8. ACKNOWLEDGEMENTS
This works has been done in the Distribcom research group

of IRISA-INRIA. It has been partly founded by the the na-
tional french project ANR DOTS under the reference ANR-
06-SETI-003.

APPENDIX
A. EXAMPLE 1

In the following example we present a network of timed
automata which models the alternating bit protocol. The
whole model consists of four automata presented in Figure
9. We assume that a user of the protocol can observe only
four transitions of the model i.e. !m0 (0) which is the first
emission of a message with bit 0, !m1 (2) which is the first
emission of a message with bit 1, ?m0 (0) and ?m1 (1) which
are the first reception of bit 0 and 1 respectively. It is worth
noticing that the user cannot observe the retransmissions
(!m0 (2) and !m1 (0)). This is a task of the protocol to re-
transmit and manage all of the unobservable transitions. Let
us also mention that the user do not observe any transitions
of the automata which model medium.

In our example we want to answer the folowing questions.

• Given the sequence of observations σ =!m0 (0), ?m0 (0),
?m1 (1), !m1 (2), ?m0 (0) is there an execution of the
given model which satisfies σ?
In other words we check if there is a possibility of send-
ing a message once (in our example !m0 (0)) and receiv-
ing it twice by the receiver (?m0 (2)).

• How do such possible executions look like?

• How can we avoid such executions when we take into
account time constraints of the model?

To address the first and the second question we can use
the method proposed in the article and we can construct
the prefix of the unfolding of the network. Because there

Figure 9: The alternating bit protocol. In the picture there are three different automata each of which has
its role in the protocol. Thus there is the sender AS, the receiver AR, and an automaton A (x, y) which is used
to simulate a medium for the communication in one direction. A(S→R) denotes a one-way communication
channel from the sender to the receiver, whereas AR→S is used for the opposite direction. Dotted lines denote
unobservable transitions. We can observe only transitions which are drawn with a solid line.

are some unobservable events and we want to terminate the
construction of the prefix at some point we give a limit of
maximum five unobservable events in all executions. All the
possible explanations with respect to the given sequence of
observations and the termination condition are presented in
Figure 10. There are eight successful executions each with
a different maximal event (drawn using double ellipses). In
fact during construction of the prefix the actual number of
events was much higher (307 events were generated for this
example).

Before we answer the last question below we give the con-
straints associated to the automata in Figure 9:

• for the sender AS there we have the following con-
straints:

γ (!m0 (2))
def
= cS ≥ β

γ (!m1 (0))
def
= cS ≥ β

ρ (!m0 (0))
def
= {cS}

ρ (!m1 (2))
def
= {cS}

• for the two automata AS→R and AR→S :

ρ (!x0 (0))
def
= ρ (?x0 (1))

def
= ρ (?x0 (2))

def
= {cA}

ρ (!x1 (0))
def
= ρ (?x1 (1))

def
= ρ (?x1 (2))

def
= {cA}

ρ (ε (1))
def
= ρ (ε (4))

def
= ρ (ε (2))

def
= ρ (ε (5))

def
= {cA}

∀i∈[1,5]I (yi)
def
= cA ≤ α

In the example we assume that each of the automata has
its own non-shared clock. In the time constraints above we
use two parameters α and β. With the parameter α we
can control the time which is spent to transmit a message
through the medium (the two automata AS→R and AR→S).
Whereas β is a threshold value of the minimal time amount
after which a message can be retransmitted by the sender.

To present our method we show on one of the successful
explanations how we can avoid the corresponding execution
just by adjusting the two variables α and β. For the follow-
ing example we choose the execution E shown in Figure 10
(on the right) ending with the event e301. Using Definition 9
we get the following system of constraints for this execution:

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

δ (⊥) ≤ δ (e1) ∧ δ (e1) ≤ δ (e4)
δ (⊥) ≤ δ (e11) ∧ δ (e4) ≤ δ (e11)
δ (⊥) ≤ δ (e27) ∧ δ (e11) ≤ δ (e27)
δ (e27) ≤ δ (e71) ∧ δ (e4) ≤ δ (e71)
δ (e11) ≤ δ (e152) ∧ δ (e71) ≤ δ (e152)
δ (e27) ≤ δ (e208) ∧ δ (e152) ≤ δ (e208)
δ (e208) ≤ δ (e263) ∧ δ (e71) ≤ δ (e263)
δ (e208) ≤ δ (e301) ∧ δ (e263) ≤ δ (e301)
δ (e301)− δ (e208) ≤ α ∧ δ (e208)− δ (e11) ≤ α
δ (e71)− δ (e27) ≤ α ∧ δ (e152)− δ (e11) ≤ α
δ (e4)− δ (e1) ≥ β ∧ δ (e4)− δ (e1) ≤ α (1)∧(2)
δ (e11)− δ (e1) ≤ α (3)
maxe∈E δ (e)− δ (e263) ≤ α

When we take and reduce the three formulas (1), (2) and
(3) we can simply deduce that β ≤ 2α. This means that it is
impossible to have the execution if we set the retransmission
time which is more then the double time of transmission by
the medium.

e7

!m1(1),SR

?a0(0),S

e49

?m1(1),SR !m1(0),S

!m1(0),S

e21

!m1(2),S

!a1(0),RS

e263

!a0(2),RS

?m0(0),R?m0(0),R

e305

e301

!a0(0),R!m1(0),SR

e302

e256

!a0(0),R !m1(0),SR

e298 e299

e4

?m0(1),SR

?a0(0),S e11

!m1(1),SR

!a0(0),R

e71

!m1(2),S

!a1(0),RSe152

!m1(0),S

!m1(0),S ?m1(1),SR

e27

?a0(0),RS

?m1(1),R

e3

!m0(0),SR!a0(0),R

e8

?a0(0),RS

?m1(1),R

e119

?m0(0),SR

!a1(1),R !m1(1),SR

e306

e0

?m0(0),R

!m0(0),SR

!a0(0),RS

?m0(0),R

!a0(0),RS !m0(0),S

e1

!m0(2),S !m0(1),SR

!m0(2),S

?m0(0),SR

e208

!a1(1),R!m1(1),SR

?m0(0),SR

e197

?m0(2),SR

e257

e198

?m0(0),R ?m0(0),R

!a0(2),RS e262

?m0(2),SR

e4

?m0,1,SR

?a0,0,Se11

!a0,0,R

!m1,1,SR

e71

!m1,2,S

!a1,0,RS

e27

?m1,1,R

?a0,0,RS

e152

?m1,1,SR

e208

?m0,0,SR

!a1,1,R

e301

e263

?m0,0,R

e0

!m0,0,SR

!a0,0,RS

?m0,0,R

!m0,0,S

e1

!m0,2,S!m0,1,SR

Figure 10: The preifx of the unfolding of the model in Figure 9 (on the left) constructed in accordance with
the descirbed search criteria. In the picture there are only events which were successful and their causal
predecessors. The rest of the events produced during the search procedure are removed. Dotted arrows are
unobservable transitions, dotted ellipses unobservable events. The events drawn using double ellipses are
the ones which satisfiy the sequence of observations. It is worth noticing that in some explanations the final
events are unobservable e.g. the event e305. On the right a subset of the prefix used as an example in the
text.

