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Abstract—Web services are software applications that are
published over the Web, and can be searched and invoked by
other programs. New Web services can be formed by composing
elementary services, such composite services are called Web
service orchestrations. Quality of Service (QoS) issues for Web
service orchestrations deeply differ from corresponding QoS
issues in network management. In an open world of Web services,
service level agreements (SLAs) play an important role. They are
contracts defining the obligations and rights between the provider
of a Web service and a client with respect to the services’ function
and quality.

In a previous work we have advocated using soft contracts of
probabilistic nature, for the QoS part of contracts. Soft contracts
have no hard bounds on QoS parameters, but rather probability
distributions for them.

An essential component of SLA management is the continuous
monitoring of the performance of called Web services, to check
for violation of the agreed SLA. In this paper we propose
a statistical technique for QoS contract run time monitoring.
Our technique is compatible with the use of soft probabilistic
contracts.

I. INTRODUCTION

Web services are building blocks for creating open dis-
tributed applications. They are software applications that are
published over the Web which can be searched for and called
by other programs. Web services may be composed together
to form new Web services. A composition involving a central
entity which calls different services (in sequence, parallel, etc)
is called a Web service orchestration. The central entity which
controls the flow in the composition is called the orchestrator.

In an open world of Web services, service level agreements
(SLAs) play an important role. They are contracts defining
the obligations and rights between the provider of a Web
service and its client with respect to the services’ quality. In
Web service orchestrations in particular, the orchestrator is a
client of the services called in the orchestration. In order to
design a contract with its own clients, the orchestrator can in
turn have contracts with the services it calls. Sometimes, the
called services are freely available and the orchestration has
no contracts with them. In this case, some estimation method
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(e.g., ping-based measurements) can be used to estimate
the service’s performance. The contracts with the services
and the QoS estimates can then be composed to derive the
orchestration’s contract.

In this article, we focus on the Quality of Service (QoS)
part of contracts, with emphasis on response time. Also, we
will only consider monotonic orchestrations for which it can
be proven that an improvement in the performance of the
services called in the orchestration results in an improvement
in the orchestration’s performance. Monotonicity is essential
for sound contract composition in orchestrations. Surprisingly,
monotonicity is not always achieved, though implicitly admit-
ted.

The response times of a service may vary over a large
range. Consequently, it may be problematic to have determinis-
tic contracts with hard bounds on response times. Such “hard-
contracts” can be over-pessimistic. In [1] we have proposed the
use of probabilistic contracts. Probabilistic contracts consist
of agreeing on some probability distribution for the QoS pa-
rameters in consideration. Using probabilistic contracts for the
contracted sub-services, in combination with measurements
based QoS estimates for the others, it is possible to synthesize
the probabilistic contract of the overall orchestration [1].

An essential component of SLA management is the run-
time monitoring of contracts. SLA monitoring must be con-
tinuous to timely detect possible SLA violations. In case
of a violation, the called service may have to incur some
agreed penalty. If the service is called by an orchestrator, the
orchestrator might consider reconfiguring the orchestration to
call an alternative service. We stress that it is not possible, in
a probabilistic framework, to ensure that violation detection
is certain (false alarms are unavoidable) and that all viola-
tions are detected (some violations may go unnoticed). The
monitoring of probabilistic contracts requires using methods
from statistics. We propose using statistical testing to check
if the observed performance deviates from the performance
promised in the contract.

The paper starts by presenting a small example of or-
chestration, which is used to illustrate the different notions
along the paper and has served to perform some experiments.
Then, we introduce the notion of monotonic orchestration and
probabilistic contracts. The core of the paper is dedicated



to the synthesis of monitors for each contracted service. We
present the approach in section IV and our experimental results
in section V. We end the paper by reviewing some related
works and giving a short conclusion.

II. EXAMPLE OF ORCHESTRATION

We perform our experiments on the CarOnLine example
developed in the SWAN project [3]. CarOnLine is a composite
service for buying cars online, together with credit and insur-
ance. A simplified graphical view of it is shown in Figure 1.
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Figure 1. A simplified view of the CarOnLine orchestration. The calls to
GarageA and GarageB are guarded by a timer that returns a “Fault” message
whenever the timeout occurs—this is not shown on the figure.

On receiving a car model as an input query, the CarOn-
Line service first sends parallel requests to two car dealers
(GarageA, GarageB), getting quotations for the car. The calls
to each garage are guarded by a timer, which stops waiting
for a response once the timeout occurs. If a timeout occurs,
the response of the call is a Fault value. The best offer is
chosen by the (local) function Mux which returns the minimum
non-faulty value. If both timeouts occurs, Mux returns a
Fault. Credit and insurances are found in parallel for the
best offer. Two banks (AllCredit, AllCreditPlus) are queried
for credit rates and the one offering a lower rate is chosen.
For insurance, if the car belongs to the deluxe category, any
insurance offer by service GoldInsure is accepted. If not, two
services (InsurePlus, InsureAll) are called in parallel and the
one offering the lower insurance rate is chosen. In the end,
the (car-price (p), credit-rate (c), insurance-rate (i)) tuple is
returned to the customer.

CarOnLine(car) ∆ CarPrice(car) >p> let(p, c, i)
where c :∈ GetCredit(p)

i :∈ GetInsur(p, car)

CarPrice(car) ∆ {Mux(p1, p2)
where

p1 :∈ (NetGA ! GarageA(car)) | T imer(T )
p2 :∈ (NetGB ! GarageB(car)) | T imer(T )

} >p> { if(p "= Fault)) ! let(p) }

GetCredit(p) ∆ Min(c1, c2)
where

c1 :∈ NetC ! AllCredit(p)
c2 :∈ NetCP ! AllCreditP lus(p)

GetInsur(p, car) ∆ { if(car = deluxe) ! GoldInsure(p)} |
{ ifnot(car = deluxe) ! {min(ip, ia)

where ip :∈ InsureP lus(p)
ia :∈ InsureAll(p, car)

}}

Table I
CARONLINE IN ORC.

The ORC program for CarOnLine is given in Table I.
ORC is a language for Web services orchestrations that was
proposed by J. Misra and W. Cook [4]. We haven chosen using
it for its elegance and availability of formal semantics [5], [6].
ORC defines three basic operators. For ORC expressions f, g,
“f | g” executes f and g in parallel. “f >x> g” evaluates
f first and for every value returned by f , a new instance of
g is launched with variable x assigned to this return value;
in particular, “f ! g” (which is a special case of the former
where returned values are not assigned to any variable) causes
every value returned by f to create a new instance of g.
“f where x :∈ g” executes f and g in parallel. When g
returns its first value, x is assigned to this value and the
computation of g is terminated. All site calls in f having x as
a parameter are blocked until x is defined (i.e., until g returns
its first value).

CarPrice calls GarageA and GarageB in parallel for
quotations. Calls to these garages are guarded by a timer
site Timer which returns a fault value T time units after the
calls are made. The let site simply returns the values of its
arguments—sites can only execute when all their parameters
are defined and thus can be used to synchronize parallel
threads. The value returned by CarPrice (here the variable
p) is passed as argument to GetCredit and GetInsur which
parallelly find credit and insurance rates for the price. The ser-
vice NetGA in NetGA ! GarageA(car) is a dummy service
that captures the contribution of the network to the response
time of GarageA as perceived by the orchestration. No such
call occurs in GetInsur. This is because the orchestration
does not enter into contracts with the insurance sites, which
are assumed to be freely available. The absence of a contract
requires estimating the insurance sites’ and the associated
network’s performance. This is discussed in the next section.

III. QOS PROBABILISTIC CONTRACTS

An orchestration could call two types of services. The first
category consists of the sub-contractors having promised to



answer according to some agreed contract. This is the case
for the Garage and Credit services in our example. But since
contracts only involve the local behaviour of the server, they
cannot reasonably include the contribution of the network,
which may for e.g., add to the response time of a call. This
justifies modeling the network access explicitly, by inserting
network calls before each contractual service call (NetGA,
NetGB, NetC and NetCP). The QoS of these network calls
can be estimated using measured QoS parameters of “pings”
to the considered services. Using pings, we can estimate the
round-trip time of a message, i.e., the sum of the client to
server latency and the server to client latency.

The second type of services are “public” services (e.g.
Google) that are freely available. No particular QoS contract
can be established with such services and QoS can only be
estimated via end-to-end measurements. Since such end-to-end
measurements include the contribution of network access to
QoS, there is no need for an explicit mention of the network in
this case. In our example, we consider that this is the case for
the insurance servers (GoldInsure, InsurePlus and InsureAll).

A. Monotonicity

An implicit assumption in contract based QoS management
is: “the better the component services perform, the better
the orchestration’s performance will be.” Surprisingly, this
property that we called “monotonicity” [7] can easily be
violated, meaning that the performance of the orchestration
may improve when the performance of a component service
degrades. This is highly undesirable since it can make the
process of contract composition inconsistent.

Consider the CarOnLine orchestration of Figure 1, but
slightly modified. The condition “car = deluxe” for decid-
ing calls to insurance services is changed as follows: if the
best price returned by the garages is p, then GoldInsure
is called if p ≥ limit where limit is a certain constant
value. If p < limit, InsurePlus and InsureAll are called
in parallel. Assume that the credit services AllCredit and
AllCreditPlus respond extremely fast (almost 0 time units)
and so the response time of the orchestration only depends
on the response time of the garage and insurance services. Let
response times of the garage and insurance services GarageA,
GarageB, GoldInsure, InsureAll and InsurePlus be
δA, δB , δG, δI1 and δI2 respectively. Also assume that the
price quotes p of GarageA are always greater than limit
and that the price quote of GarageB is always less than
limit. Now, the overall orchestration response time is δO =
max(δA, δB) + max(δI1 , δI2), assuming that both δA and δB

are less than the timeout value T.
Suppose that the performance of GarageB now dete-

riorates, and it does not respond before timeout time T .
GarageA’s price quote is now the best quote. Since we
assumed that the quotes of GarageA are always greater than
limit, GoldInsure is called and the orchestration’s latency
is δO′ = T + δG. In the case when δG # max(δI1 , δI2), it
is possible that δO′ < δO. In other words, the deterioration of

the performance of GarageB, could lead to an improvement
in the performance of the orchestration.

Such a pathological situation does not occur in our original
example since the response time of GetInsur depends only
on the external parameter car. Once car is fixed, response
times behave in a monotonic way. We say that our example is
monotonic. A systematic study of monotonicity can be found
in [7].

B. Probabilistic SLAs
It is typically the case that QoS contracts are stated in the

form of hard bounds on QoS parameters [8], [9]. For instance,
response times and query throughput are required to be less
than a certain fixed value and validity of answers to queries
must be guaranteed at all times. When composing contracts,
hard composition rules are used such as addition or maximum
(for response times), or conjunction (for validity of answers
to queries) [10], [11]. The problem is that tails in the random
response time distributions of services cannot be neglected in
practice as the following example reveals.
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Figure 2. Measurement records for response times, for Web service
StockQuote.

Figure 2 displays a histogram of measured response times
for a “StockQuote” Web Service, which returns stock prices
of a queried entity [16]. Here, the 90%, 95%, and 98%
quantiles correspond to response times of 6.494 ms, 13.794
ms, and 23.506 ms respectively. Setting hard bounds in terms
of response time would amount to selecting, e.g., the 98%
quantile of 23.506 ms, leading to an over pessimistic promise.

A pragmatic answer to this issue consists in ruling out “bad
instances” for the QoS parameter, e.g., by phrasing contracts
such as: “less than 13.794 ms in 95% of the cases” [12], [13].
This is fine. Unfortunately, such contracts do not compose
well and, therefore, do not support contract composition as
a mean to design contracts for the overall orchestration [1].
This is why we proposed in [1] probabilistic contracts,
where probability distributions are agreed upon instead of



hard bounds. Probabilistic contracts are specified through their
distribution function F (x) = Pr(δ ≤ x) where “Pr” denotes
the probability corresponding to the considered contract, δ is
the random response time, and x ≥ 0. Probabilistic contracts
do compose, as we shall see below.

In practice, probabilistic contracts will be stated as a
finite set of quantiles for the considered QoS parameters. For
example, the histogram of Figure 2 could be approximately
stated as: quantiles of 25%, 50%, 90%, 95%, and 98%,
corresponding to maximal response times of 2.5 ms, 4.5 ms,
6.4 ms, 13.8 ms, and 23.5 ms respectively. Such soft contracts
can be described in WSLA [13] by the introduction of the
notion of lists of quantiles in the XML template.

C. Synthesis of the orchestration contract

To synthesize the orchestration contract, we simply com-
pose the different probabilistic sub-contracts. Contract compo-
sition consists in running the following Monte-Carlo procedure
at design time [1]:
• The list of quantiles given by the sub-contractors defines

a probability distribution for the time responses;
• For public sites, for which no contract is available, we

replace the missing probability distribution by empirical
estimates of it, based on end-to-end time measurements;

• For given values of the external parameters of the orches-
tration, its execution structure is a partial order of calls
and actions. The latter is used to run timed Monte-Carlo
simulations to derive empirical estimates for the distri-
bution of the global response time of the orchestration.
Delays are aggregated using max-plus rules to deal with
concurrent tasks;1

• Having these empirical probability distributions, we can
properly select quantiles defining soft contracts for the
end user.

So far the resulting contracts depend on the values of
the external parameters of the orchestration. The latter are
typically not fixed a priori but rather vary with the call. The
resulting issue can be dealt with using one of the following
approaches. First, if few values can occur, a set of contracts can
be stated, one for each case—this could be a proper approach
for the parameter car of CarOnline example, which possesses
deluxe as its unique modality. A second approach could consist
in taking the most cautious probability distribution, when the
values for the external parameters range over their respective
domains. Finally, one could also randomize the external pa-
rameters and then take the resulting average contract.

The approach has been implemented in our TOrQuE (Tool
for Orchestration simulation and Quality of service Evalua-
tion) tool, which computed the experimental results shown in
the paper.

The use of simulations for contract composition raises an
obvious question: Can’t analytical methods be used to combine

1Observe that, in contrast to QoS of networks, QoS parameters of orches-
trations are correlated to the involved data. This makes SLA management for
orchestrations much more delicate.

the probabilistic contracts? Definitely this would be much
more efficient than running simulations. We insist on the use
of simulations for the following reasons:

1) Analytic composition of probability distributions works
typically only for simplistic distributions (eg, exponen-
tial distributions) which are not realistic performance
models in general.

2) Orchestrations have non-deterministic control-flow
choices, often depending on the value of a parameter.
The presence of timeouts can also affect such choices.
Traditional max-plus composition rules do not apply in
this case.

IV. MONITORING

In this section we describe our technique for monitoring
soft contracts. The performance of the contracted services is
monitored at run-time, when they are called by the orchestra-
tion.

A. Statistical monitoring of services

We want to compare the observed performance of a service
S to that promised in its soft contract FS . The soft contract
FS is a distribution on the response times of S. Let ∆ be a
finite set of sample response times of S—call it a population.
For X a set, let |X| denote its cardinality. Then

F̂S,∆(x) =def
|{ δ | δ ∈ ∆ and δ ≤ x}|

|∆| (1)

is the empirical distribution function, defined as the proportion
of sample response times less than x among population ∆.
Then, informally, the contract is met if:

∀x ∈ R+ : F̂S,∆(x) ≥ FS(x) (2)

holds, i.e., the observed empirical probability that the response
time is less than x is not smaller than that promised. R+ is
the set of positive reals, the domain of latencies. Equivalently,
a contract violation occurs if

∃x ∈ R+ s.t. F̂S,∆(x) < FS(x) (3)

The problem with equations (2) and (3) is that F̂S,∆(x) can
randomly fluctuate around FS(x), especially when |∆| is
small. A solution to this problem is to have a tolerance zone
for such deviations. We can thus rewrite the violation condition
as

sup
x∈R+

(FS(x)− F̂S,∆(x)) ≥ λ (4)

where λ is a small positive parameter which defines the
tolerance zone. Reducing λ improves the chances of detecting
contract violation, but it also increases the risk of a false alarm.
Thus, tolerance parameter λ has to be tuned in a meaningful
way. This is done in an offline “calibration phase”, performed
prior to the monitoring.



1) Calibration Phase: As sketched in Section III, during
contract composition, sample response times are drawn from
the contract distribution FS(x) for each service S involved in
the orchestration. Suppose the total number of samples drawn
for a given service S is M , i.e. the set of sampled delay
values for S during the simulation is ∆ = {δ1, . . . δM}. In
the calibration phase, we apply the following bootstrapping
method [2]:

a) Generate ∆∗ by re-sampling ∆ at random. This means
that ∆∗ is a randomly selected subset of ∆, of fixed
size |∆∗| = N . According to bootstrapping discipline,
N should be smaller than log(M). Using ∆∗, we can
produce a bootstrap estimate F̂S,∆∗(x) of FS(x) using
equation (1). Denote by Ω be the set of such randomly
generated ∆∗ ⊆∆. In our experiments, we have chosen
its cardinal |Ω| to be about 10, 000.

b) A false alarm level L (e.g., 5%) during monitoring
is agreed between the orchestrator and the service S.
Taking F̂S,∆∗(x) as a population, where ∆∗ ranges over
Ω, the tolerance parameter λ is tuned to the smallest
value such that

sup
x∈X

(FS(x)− F̂S,∆∗(x)) ≤ λ

holds for 100− L percent (e.g., 95%) of the ∆∗ ∈ Ω.
In fact, it is a result due to Kolmogorov [14], sect. 14.2, that,
for N large enough, the so obtained value for the tolerance
zone λ does not depend on the distribution FS . Yet, to avoid
dealing with size issues of N , we prefer calibrating tolerance
parameters for each site individually. But, clearly, there is
room for saving computations at this step.

2) Monitoring Phase: Once the tolerance parameter λ is
set, monitoring can be done in the following way: suppose
the first N responses of service S have latencies {δ1, . . . δN}.
Taking ∆ = {δ1 . . . δN}, we compute F̂S,∆(x) and then
check if condition (4) is violated. When the (N + 1)st delay,
δN+1 is recorded, we shift ∆ by one observation, making
it {δ2, . . . δN+1}. We compute F̂S,∆(x) for this new ∆ and
check violation of (4) again. This process is repeated for
further observed response times, each time shifting ∆ by one
observation.2 So ∆ is a sliding window of fixed size N . The
window size N is the same as the size |∆∗| in the calibration
phase.

Window length N appears as an additional design pa-
rameter for the monitoring procedure. N can be entirely
decided by the orchestrator and need not be a part of the
contract. The rationale for tuning N is as follows: Observe
that N is strongly correlated with the detection delay in case
of a contract violation. On the one hand, the proportion of
breaching data must be large enough in the window ∆ in order
for condition (4) to get violated. Thus, reducing N contributes
to the reduction of detection delay. On the other hand, reducing
N increases random fluctuations of F̂S,∆∗(x) when ∆∗ ranges

2Actually, we do not need to shift the window by 1; any fixed amount can
be used instead provided that successive windows overlap.

over Ω, thus resulting in the need for increasing tolerance
parameter λ to maintain the agreed false alarm rate, which in
turn increases the delay for detecting violation. This results in
a tradeoff leading to an optimal choice for N . Anyway, this
need not be part of the agreed contract.

B. How to measure deviation from contracts
Is there a natural way of assessing how much the sub-

contractor possibly deviated from its contract? A natural
answer in our approach consists in considering the one-sided
Kolmogorov-Smirnov gap, defined as follows:

δ(GS , FS) = sup
x∈X

(FS(x)−GS(x))

where FS is the distribution function according to the contract
agreed with site S and GS is the actual distribution function
of site S. Observe that the quantity that we compute from
measurements while performing monitoring according to (4)
does converge to δ(GS , FS) when the sample size ∆ gets
large. The one-sided Kolmogorov-Smirnov gap relates to the
classical Kolmogorov-Smirnov distance [14] d(GS , FS) be-
tween distributions:

d(GS , FS) =def supx∈X |FS(x)−GS(x)|
= max(δ(GS , FS), δ(FS , GS))

Observe that The Kolmogorov-Smirnov distance ranges over
[0, 1] and so does our one-sided gap. This measure is used
in assessing the magnitude of changes in the section on
experiments.

C. Discussion on criticality
At a first sight, not all sites in an orchestration have an

equal impact on the QoS of the orchestration. Some sites may
be critical, in that a slight degradation/improvement in their
performance will directly result in a degradation/improvement
in the performance of the overall orchestration. Other sites may
not be critical, a degradation in their performance would not
affect the performance of the orchestration very much. Thus,
one can imagine adapting the monitoring process according
to a site’s criticality: A site having an adverse impact on the
orchestration’s performance will be monitored more strictly,
while some slack can be given to a service whose performance
does not significantly affect the orchestration’s performance.

To address this in the context of classical timing perfor-
mance studies, e.g., for scheduling purposes, the notion of
critical path was proposed. However, this notion must be
revisited under our probabilistic approach.

For instance, consider the example of Figure 3. The
overall execution time of this orchestration is t6 = t1 +
max(δS1 , δS2)+ δjoin. It seems that only the “slowest” among
the two sites S1 and S2 matters. This is a wrong intuition,
however. Assume that the two sites S1 and S2 behave inde-
pendently from the probabilistic point of view. Setting δ =
max(δS1 , δS2), Fi(x) = P(δSi ≤ x), and F (x) = P(δ ≤ x),
we have F (x) = F1(x) × F2(x). Next, suppose that the two
sites S1 and S2 possess unbounded response times. Thus, for
any x > 0 we have 0 < Fi(x) < 1 for i = 1, 2. In this case,



Fork

Join

Call S1 Call S2

t1 = δfork

t6 = max(t2, t3) + δjoin

t3 = t1 + δS2t2 = t1 + δS1

Figure 3. A ’Fork-Join’ partial order having calls to two services, S1 and
S2. The time of completion of each of the event is shown next to it. δX is
the latency of event X .

since F (x) = F1(x) × F2(x), any change in F1 or F2 will
result in a change in F . Thus, both sites S1 and S2 are equally
critical, even if, say, F1(x) > F2(x) for every x, meaning that
there are good chances that S1 will respond faster. Of course,
if F1 and F2 possess disjoint supports, meaning that there
exists some separating value xo such that F2(xo) = 0 but
F1(xo) = 1, then we know that δS1 < δS2 will hold with
probability 1, so that S1 is never on the critical path.

This discussion justifies that all sub-contractors are indi-
vidually monitored in isolation for possible contract violation,
as they all have impact on the overall orchestration QoS in
general.

V. EXPERIMENTAL RESULTS

We now describe the implementation of our monitoring
technique and the results obtained. We first discuss the kind of
soft contracts we use in the simulations. After this, we present
results on the statistical monitoring of contracts, as explained
in section IV-A.

A. Contract of the orchestration
Recall that we take the contract of a service S, FS to

be a probability distribution of the response time. Expecting
a service provider to able to give a precise probability for
every possible value of latency is however impractical. So,
we take the contract with provider S to be a set of quantiles
of latencies {x1 . . . xk} with the corresponding probabilities
{FS(x1) . . . FS(xk)}. Hard contracts are just a special case
of our soft contracts, in which only one such quantile exists.
We thus requires the provider to pass from promising a
performance probability of one quantile to multiple quantiles.

During simulation, two possibilities may be considered
when using FS = {FS(x1) . . . FS(xk)} for sampling response
times:
• Use FS as it is, by sampling each time one of the

quantiles {x1 . . . xk}, in proportion with FS . This would
lead to over-pessimistic distributions, however.

• Hypothesize a constant probability density within each
quantile, except for the last one where exponential distri-
bution is hypothesized. From our experiments regarding
Web services response times, we preferred this second
approach.

While monitoring, we check for violation of condition (4) only
for the set of quantiles that have been promised by the service

S in its contract FS . The set of postive reals R+ in equation
(4) is thus replaced by the set X = {x1 . . . xk} of latency
quantiles promised in the contract.

B. Statistical monitoring of contracts

We ran CarOnline orchestration and monitored the single
service GarageA according to section IV-A. We only show
the monitoring of one service, since the process of monitoring
is identical for any other service of the orchestration. There
was no particular reason for choosing to monitor GarageA, we
could have done the same with any other service of CarOnline.
The contract of GarageA, the finite set of quantiles and their
corresponding probabilities, is given in the first and second
column of Table II, respectively. The false alarm rate agreed
with the orchestrator is 95%.

Contract Delay CDF Experimental Delay
Quantile (msec) Quantile (msec)

100 0.1 150
200 0.2 250
300 0.3 350
400 0.5 500
500 0.7 600
700 0.85 800

1000 0.9 1100

Table II
Contract and experimental distributions of GarageA. The

Kolmogorov-Smirnov distance between them is 0.133.

As mentioned in the end of section IV-A, we need to find
a good value for the window length N for the calibration and
the monitoring phase (it directly affects the detection delay).
For this, we ran the calibration and monitoring on GarageA for
three different window lengths: 10, 30 and 50. The violations
were detected after 10 to 25 calls (with lots of variations)
when N = 10, 20 to 30 calls when N = 30 and between 40
to 80 calls when N = 50. N = 30 was preferred to N = 10
because less variations were observed in the detection delay,
and is clearly preferred over N = 50 where the detection delay
was too large.

With N = 30, the calibration phase (IV-A1) on this dis-
tribution of GarageA gave the tolerance parameter λ equal to
0.167. After the calibration phase, the CarOnline orchestration
was run 1000 times as follows: From run 1 to 700, GarageA’s
actual performance was exactly that as the promised dis-
tribution. From run 700 to 1000, we slightly deteriorated
GarageA’s performance to follow a “slower” distribution. The
delay quantiles and their corresponding probabilities of this
slower distribution is given in the third and second column of
Table II, respectively.

The result of the monitoring is shown in Figure 4. The
value of supx∈X(FS(x) − F̂S,∆∗(x)) is plotted for each call
made to GarageA. The red horizontal line shows the value
of λ, 0.167. The detection occurs around the 728th run, i.e.
around 28 calls later.
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Figure 4. Monitoring GarageA.

VI. RELATED WORK

Most of the work in QoS monitoring is dedicated to
the design of service monitoring architectures [17]. Service
monitoring needs to be integrated in the infrastructure at large
in order to enable detection and routing of the service oper-
ational events. In contrast, the algorithms needed to compute
QoS metrics and to compose them to obtain the QoS of
the orchestration, received less attention. QoS composition is
often viewed as a constraint satisfaction/optimization problem,
for which an optimal solution can be found using various
techniques like linear programming [18], [19], constraint satis-
faction programming [20] or genetic algorithms [21]. All these
above composition techniques consider the QoS parameters
of a service to be fixed, hard bound values. A distinguished
feature of our proposal is that we believe that in reality, these
parameters exhibit significant variations in their values and
are better modeled by a probability distribution. The notion of
probabilistic QoS has been introduced and developed in [22],
[23] with the ambition to compute an exact formula for the
composed QoS, which is only possible for restricted forms
of orchestrations without any data dependency. We decided in
[1] to use probabilistic QoS to define “soft” contracts. The
main difference is that we did not hesitate to use Monte-
Carlo simulation to compute the global QoS in order to cover
more complex orchestrations. Regarding run-time monitoring,
it leads directly to the use of statistical testing techniques
to detect violation of QoS contracts. Such techniques have
already been used in [24] to adapt SLA checkers to the
variation of the environment, but in a context of deterministic
contracts.

VII. CONCLUSION

We proposed an approach to design monitors for service
components having a QoS contract with a considered orches-
tration. For so-called monotonic orchestrations, we advocated
the use of probabilistic contracts (“soft” contracts).

Since our approach is statistical, it involves agreeing on
a false alarm rate for monitoring, with the sub-contractor.

Accordingly, our method proceeds in two steps. The first
step consists in a calibration phase relying on Monte-Carlo
simulation using the probabilistic distributions promised by
the sub-contractors, in combination with measurements (esti-
mates) for the other services. Calibration takes into account
the probabilistic criticality of each service. The second step
consists in the run-time monitoring of contracts for possible
violation. An important feature of this monitoring process
is that it is not deterministic: sometimes false alarms may
occur and sometimes violations can go undetected. This is
unavoidable because contracts are probabilistic.

There are very few papers on probabilistic contracts. This
paper seems to be the first attempt to design monitors in this
context. The simulation technique we use is very general and
allows the designer to consider complex orchestrations mixing
control and data aspects: the only (realistic) assumption is
monotonicity. We implemented these ideas in a software tool
and made several simulation experiments on a small example,
which proved the feasibility and relevance of the approach.

We plan to extend our work in two directions. The first
direction is the real deployment of the method on the Web,
based on the ORC run-time environment. The second direction
is to generalize what we have done on response times to
others QoS parameters. This includes addressing the fact that
different QoS parameters are often correlated.
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