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Abstract

Twenty-five years ago, one recognized that dynamic behaviors of computer systems distributed on a net-
work can be nicely captured and modeled by discrete partial orders. This paper recalls the main interactions
between the two scientific domains, distributed systems and partial orders. This is done for three subjects: 1/
on-the-fly coding of the message causality, 2/ abstraction, and 3/ on-line verification of ordering properties.

1. Introduction

A distributed application running on a network of processors involves a set of autonomous sequential pro-
cesses, cooperating to a common goal. The cooperation is implemented by the asynchronous exchange of
messages.

The behavior of such an application can be modeled by a set of events. An event represents an action
performed by a process. It is supposed to take place at a given time in the local reference time of the
process. Typically, the events are produced by an actual instrumentation of the computer code: some
printing statements for example, executed by some sensors added to the software processes. We qualified
these events as observable (low-level) events.

It is well-known since the eighties [12] that sets of events of distributed runs can be structured as partial
orders of causality. This is done by considering that two events are (causally) ordered if they take place on
the same process, or if they are separated by a message exchange. Two events that are not causally ordered
are said concurrent.

Precisely, let us consider a set of n sequential processes, denoted {Pi}1≤i≤n, which communicate with
each other through reliable directed communication channels. We can view the execution of each process
Pi isolated as a sequence of events, corresponding to the state changes that take place in the process. This
defines a total order Õi = (Oi, <Oi), where Oi is the set of events and the relation <Oi is just the (local) time.
The proper granularity defining the observable events varies from application to application. In addition to
these observable events (O), we must consider the communication events (C), which partially synchronize
the observable events. Following Lamport’s definition of the happened before relation, we say that event x
directly happened before event y, denoted by x <d y, if

- x and y are events in the same process and x precedes immediately y; or
- x is the sending of a message m and y is the receiving of m.



Birth and death of processes can also be modeled by the happened before relation, provided that a child
process is started by the reception of the first message from its father, and that its death is the sending of
its last message to its father.

The transitive closure of the <d relation is the happened before relation <O∪C . A suborder Õ′ = (O′, <O′)
induced by an order Õ = (O,<O) is an order such that O′ ⊆ O and ∀x, y ∈ O′, x <O′ y iff x <O y. The
partial order of causality between the observable events is the suborder Õ = (O,<O) induced by the order
Õ ∪ C. For x ∈ O, we note ↓Ox the set of all predecessors of x in Õ, x excluded, and ↓im

O
x (resp. ↑im

O
x) is the

set of all immediate predecessors (resp. successors) of x in Õ. We note ≺O the covering relation. Cov(Õ) is
its graph representation (the Hasse diagram).

Let us now consider a particular application, called “trace checking” [8], in which all the observable events
are sent (asynchronously using other communication channels) to a particular process, called the “observer”.
The role of the observer is to check some properties on the set of observed events during the execution of
the system (see Figure 1). The goal is to perform the verification on the fly, event by event. We will see a
method based on the on-line construction of a state graph by the observer.
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Figure 1: The trace checking application.

This application addresses the three aspects we mentionned, and particularly how the observer can com-
pute the partial order between the observable events from the information communicated by the processes.

2. Dependency tracking (on-the-fly coding)

There exist two major ways to track the dependency information:

• Transitive dependency tracking [15, 13, 14, 4]: complete happened before information is tracked. That
is, the set of predecessors are accumulated upon the different receptions.

• Direct dependency tracking [10]: processes do not learn of dependencies resulting from chains of two or
more messages.

2.1. Transitive tracking and vector timestamps

This method [4] is based on a management of local counters piggybacked upon interaction. Loosely speaking,
the principle of the method is to associate to each observed event x the set of its (observed) predecessors



↓Ox.
The set ↓Ox can be coded at run time by a list Vx whose jth component contains the number of prede-

cessors of x on process Pj : Vx.j =|↓Ox ∩Oj |. Property 1 shows how to retrieve the information from the
coding (site(y) is the name of the process Psite(y) on which y actually occurs):

Property 1 ∀x, y ∈ O, y ∈ ↓Ox ⇔ Vy.site(y) < Vx.site(y)

The Fidge’s algorithm:
- each process Pi maintains a list Li, initialized to Li.i = 0,
- when an event x is observed: Vx := Li;Li.i := Li.i + 1,
- upon sending a message to Pj : Li is piggybacked towards Pj,
- upon receiving from Pj : Li := max(Li, Lj)1 where Lj is the piggybacked list from Pj.

In our example of Figure 1, Va = [000],Vb = [000],Vc = [010],Vd = [010],Ve = [011],Vf = [110],Vg =
[221],Vh = [212]. The major problem with this method is the size of the lists Li and Vx, which can be equal
to the number of processes created during the execution. That means that if there is a lot of births and
deaths of processes, the size of the lists continuously grows, even if the number of processes simultaneously
“alive” remains small.

2.2. Direct dependency tracking and scalar timestamps

The idea of the Direct Dependency coding of Zwaenepoel et al.[10, 5] is to have on each site Pi a list whose jth

component is the number of events which occurred on Pj before the last interaction from Pj to Pi. Using our
notations, we associate to each observed event x the set Dx = {y ∈ O : y ! x} where ∀x ∈ Oi,∀y ∈ Oj , y ! x
iff i = j and y <i x or ∃x′, y′ (y′ is the sending of a message on Pj , x′ the corresponding receipt on Pi) such
that y <Oj y′ and x′ <Oi x.

As previously, we can code the set Dx by a list of integers, whose ith component contains the number of
the direct predecessors of x on process Pi: Dx.i =|{y ∈ Oi : y ! x}|. Property 2 shows how to retrieve the
information from the coding:

Property 2 ∀x, y ∈ O, y ∈ Dx ⇔ Dy.site(y) < Dx.site(y)

The Zwaenepoel’s algorithm:
- each process Pi maintains a list Li, initialized to Li.i = 0,
- when an event x is observed : Dx := Li;Li.i := Li.i + 1,
- upon sending a message to Pj : Li.i is piggybacked towards Pj,
- upon receiving from Pj : Li.j := max(Li.j, Lj .j).

The algorithm shows that we just have to piggyback a simple scalar, so this method offers a weak and
bounded intrusion. Unfortunately, the examination of the timestamps associated with the observable events
does not permit to decide their ordering, which can be lost by an “invisible” transitivity. This trouble can
be avoided by the satisfaction of the NIVI assumption (NIVI for Non InVisible transitive Interaction), which
states that after an interaction from Pj to Pi, we must have an observed event on Pi before any interaction
from Pi to any other process Pk. This is the case in our example of Figure 1.

1max is performed component by component.



Another way of thinking is to consider that Dx approximates ↓Ox. In fact, the causal order is an extension
of the order induced by the direct dependency tracking. Pursuing this concept of approximation, we can come
back to the Lamport’s seminal paper [12] on message causality. This paper also proposed a notion of scalar
timestamp, which was in fact a particular coding L: for a given observable event x, L(x) = height(↓Ox). This
coding defines a weak order, which is an extension of the causal order. It can be refined, and [3] has proposed
a coding by intervals, which becomes exact if and only if the partial order of observable events is an interval
order. Many questions remain open in that subject, and the idea is to find interesting codings for particular
classes of distributed runs. The main difficulty is to preserve abstraction. In most cases, subclasses that are
realistic in terms of communication patterns (remote procedure call paradigm, synchronization barriers, ...)
are not stable when considering suborders.

3. Event Filtering

The actual ordering of observed events in front of the observer may be arbitrary. At a given moment, the
observer has already received a subset H of O. What subset H of O must be known by the observer to
compute the suborder H̃ induced by Õ ? If any subset is suitable for the computation, we say the coding
offers a strong consistency.

3.1. Transitive dependency

We saw in the previous section that the vector timestamps compute the set ↓Ox for any observable event
x. Once such a set is known, it becomes straightforward to compute the happened before relation on any
subset of observed events, the set of observed events being itself any subset of the set of observable events,
as expressed by the Property 3.

Property 3 ∀H ⊆ O,∀x ∈ H, ↓im

H
x ⊆ ↓Ox ∩H ⊆ ↓H x

3.2. Direct dependency

Unfortunately, the direct dependency coding does not ensure strong consistency. To compute the order H̃,
the set H must be downward closed in Õ (also called an IDEAL of Õ). Formally, ∀x ∈ H,∀y ∈ O, y <O x
implies y ∈ H. This implies that the observer cannot integrate an event x into the order H̃ before the
reception of all predecessors of x. Now, we can state :

Property 4 ∀O ⊆ I : NIV I(O),∀H ⊆ O : IDEAL(H),∀x ∈ H, ↓im

H
x ⊆ Dx ⊆ ↓H x

3.3. On–line construction of the covering digraph of the order

Compared to the vector timestamps coding, the direct dependency coding decreases the intrusion due to
piggybacking. The price to be paid is that we are only able to construct suborders on ideals of Õ. So
when the observer receives an event e, a new suborder can be computed only if all predecessors of e have
already been observed. Then we can awake the construction of suborders using events which have only e as
missing event in their past. Using the chain decomposition induced by processes of Õ, the algorithm runs in
O(|O|+ n2) for each event.



4. Event Glueing

In many applications, an interesting feature of the observer is to be able to construct “macro-events” from
observable events of a lower level. So, correlated events can be presented as a single event. A reasonable
goal is that this abstraction remains an order, and that it can be constructed on the fly. Glueing events of
a set O can be defined by an equivalence relation ∼⊆ O × O. The result of the abstraction is the quotient
of O by ∼, denoted O/∼, i.e. the set of classes ({[x]∼}x∈O). An example is given in Figure 2a.

Figure 2: Figure a (on the left) : the macro-events are formed with the surrounding events. Figure b (on
the right) : the quotient builds a loop.

Unfortunately, the quotient does not preserve the underlying order (see Figure 2b). We must restrict the
∼ relation.

Definition 1 An equivalence relation ∼⊆ O×O is consistent with the order <O if the following condition
holds: for all x0 . . . x2n such that x2i ∼ x2i+1 and x2i+1 ≺O x2(i+1) for 0 ≤ i < n, if x0 = x2n then
x1 ∼ . . . ∼ x2n.

The trivial abstractions, corresponding to ∀x ∈ O, [x]∼ = {x} and ∀x ∈ O, [x]∼ = O, are consistent with
any order.

Property 5 If ∼ is consistent with Õ, Õ∼ is a partial order.

This notion of consistency implies the notion of convex abstraction developed in [2], which is too precise
to preserve the order.

To find non trivial abstractions, we propose to label the events.

Definition 2 Let us consider a set of types T , and a typing function T labeling the events of O. The
equivalence relation ∼ is said type closed if ∀x, y ∈ O, T (x) = T (y) =⇒ x ∼ y. A type closed consistent
equivalence is said a CTC-equivalence.

The set of CTC-equivalences of O × O is ordered by set inclusion saying that a relation is thinner than
an other if every class of the former is included in a class of the latter.

Property 6 This order forms a lattice.



The minimal element M is called the atomic decomposition of the run observed as O. In the particular
case of the NIVI condition, it corresponds to the notion of atom defined in [1]. We keep the same name
“atom” for the classes of the ∼M CTC-equivalence. [7] has shown that we can decompose in atoms a
distributed run O in a time O(|O|2). In [6], we proposed an incremental version of this algorithm to be able
to abstract an execution on the fly.

5. Checking of Regular Properties

5.1. State graph and the ideal lattice

For a process Pi, the notion of local state can be easily defined by the occurrence of an observable event,
which represents the current state. Due to the sequential nature of the processes, the set of its preceeding
events on Pi are in the past and the set of successors are in the future. It is tempting to consider the notion
of global state as the union of local states of each process in the system. Unfortunately, all the unions are not
consistent with the causality induced by communication (sending a given message must precede the receipt
of this message). So, a global state is a set of observable events that have their causal predecessors in the
past. Thus, we can define the notion of global state as sets H of observable events that are closed by causal
precedence, i.e. H = ↓OH, or ideals of the partial order Õ, denoted I(O).

The set of global states, usually called the state graph in model-checking, is thus the ideal lattice of Õ,
which is known to be distributive. See Figure 3 to have a look of the state graph of our example.
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Figure 3: The Hasse diagram of the causal order of Figure 1 and its distributive lattice of ideals, which can
grow on-line.

Since our goal is to compute on the fly the state graph of a distributed execution, we studied correlations
between ideal lattices yielded by a poset and by one of its subposet when the missing vertex is a maximal
one. The ideals grow by adding one element at a time:

Property 7 Let Q̃ be a poset, ∀I, J ∈ I(Q), I ≺I(Q) J ⇐⇒ I ⊂ J and |J \ I|= 1.

J \ I is called the label of the edge I ≺I(Q) J .



Let P̃ be a poset and x one of its maximal element. As one can see in Figure 3, Ĩ(P ) is structured in
three different parts. The upper part IP (x) is formed with the ideals containing x: IP (x) = {I ∈ I(P ) :
I ∩ {x} 1= ∅}. The medium part I(x) is formed with the ideals containing the immediate predecessors of x

and not containing x: I(x) = ↑im

I(P )
(↓P x) \ IP (x). I(x) and IP (x) are two isomorphic sublattices. The lower

part is formed with the remaining ideals. This is formalized as follows.

Property 8 Let P̃ be a poset, let x ∈ Max(P, P̃ ), let P̃ ′ be the subposet P̃ \ {x} and
Cov(Ĩ(P ′)) = (I(P ′), EI(P ′)). Let I(x) = ↑im

Ĩ(P ′)
(↓ eP

x). Let G(Q) = (Q, EQ) be an acyclic directed graph

isomorphic to Cov(Ĩ(x)) by a map φ.
Then, the acyclic directed graph G(Z) = (Z, EZ) where Z = Q 3 I(P ′) and EZ is defined by:

1. ∀q1, q2 ∈ Q×Q : q1q2 ∈ EZ ⇐⇒ φ(q1)φ(q2) ∈ EI(P ′)

2. ∀p, q ∈ I(P ′)×Q : pq ∈ EZ ⇐⇒ q = φ−1(p)
3. ∀p1, p2 ∈ I(P ′)× I(P ′) : p1p2 ∈ EZ ⇐⇒ p1p2 ∈ EI(P ′)

is isomorphic to Cov(Ĩ(P )) by the map ϕ: z 4−→
{

φ(z) ∪ {x} if z ∈ Q
z otherwise

5.2. On the fly computation of the state graph

Assuming that the number of processes involved in a distributed computation is finite, using our previous
theorem, we are now able to give an algorithm for an on the fly computation of a distributed execution state
graph (assuming the knowledge of the covering causality relation) [9].

Let P̃ be an order, let {Pi}1≤i≤n be a chain decomposition of P̃ given by the processes and let ∆ be the
map (which extends the vector clock coding of causality) defined by:

∆ : I(P ) −→ Nk

I 4−→ (| I ∩ Pi |)1≤i≤k

This map embeds the lattice into the (Nk,≤Nk) lattice.

Property 9 ∀I, J ∈ I(P ), the following properties are equivalent:

(i) I ≤I(P ) J
(ii) ∆(I) ≤Nn ∆(J)
(iii) All maximal chains from I to J in Ĩ(P ) have length len(I, J) =

∑n
i=1(∆(J)[i]−∆(I)[i]).

∀i ∈ {1, . . . , k}, ∆(J)[i]−∆(I)[i] ≥ 0. And there is at least one maximal chain.

The “on-line state construction algorithm”

Input:
(1) Cov( eP ) with a chain decomposition 2{Pi}1≤i≤n.

(2) For any y ∈ P , δ(y) = (|↓
im

eP
y ∩ Pi|)1≤i≤n.

2The chain decomposition on eP is an extension of the chain decomposition on fP ′, that is: ∀i, 1 ≤ i ≤ n such that i #= site(x)
we have {Pi} = {P ′

i} and {Psite(x)} is {P ′
site(x)} with x added as maximal element.



(3) A vertex x ∈ Max(P, eP ) and the set D(x) = ↓
im

P
x.

(4) When P ′ = P \ {x} and eP/P ′ = fP ′, Cov(Ĩ(P ′)), such that:

(a) Each y ∈ P ′ is directly related to its corresponding ↓
im

P ′y in Cov(Ĩ(P ′)).

(b) Each edge yz in Cov(Ĩ(P ′)) is labeled by Iz \ Iy where Iy (resp. Iz) is the ideal of fP ′ corresponding to

the vertex y (resp. z) in Ĩ(P ′).

(c) Outgoing edges of any vertices in Cov(Ĩ(P ′)) are stored ordered by increasing index of the chain their
label belong to.

Body:
(1) Find ↓

im

P ′D(x) in Cov(Ĩ(P ′)).

(2) Build a directed graph G(Q) isomorphic to Cov( gI(x)), by a map φ (where I(x) = {I ∈ I(P ′), ↓
im

P ′D(x) ≤I(P ′)

I}).
(3) For any I ∈ I(x), create the directed edge (I, φ−1(I)) with label x and store this edge according to the storage

order.

(4) Create a link between x and φ−1(↓
im

P ′D(x)).

Output:
1. Cov(Ĩ(P ′)), such that:

(a) Each y ∈ P is directly related to its corresponding ↓
im

P
y in Cov(Ĩ(P )).

(b) Each edge yz in Cov(Ĩ(P )) is labeled by Iz \ Iy where Iy (resp. Iz) is the ideal of eP corresponding to the

vertex y (resp. z) in Ĩ(P ).

(c) Outgoing edges of any vertices in Cov(Ĩ(P )) are stored ordered by increasing index of the chain their
label belong to.

Property 10 [9] Ĩ(O) can be computed in time complexity: O(n(| I(O) | + | O |2)).

5.3. Model-checking

In this section we are interested in the problem of verifying properties of traces during the construction of
the ideal lattice. Model-checking is a well known verification technique which consists in deciding whether
a logical temporal formula is satisfied by a program. Model-checking is based on the standard model of
transition systems which are essentially labeled digraphs used to represent the set of possible behaviors of
the program. Numerous works have been developed these ten last years to justify the interest of temporal
logics (linear or branching time) in this context, and to design general model-checking algorithms based on
graph traversals. We will show that the ideal lattice can be viewed as a labeled transition system. Therefore,
no doubt that the aforementioned techniques can be applied to the particular graph of ideals.

We want to describe some general algorithms, able to compute a large class of properties. These properties
are specified by finite automata. Consequently one often uses the term automaton verification instead
of model-checking. However, as every formula of linear time temporal logic (LTL) interpreted over finite
sequences can be automatically translated into a finite automaton which accepts the same models, we already
reach the power of LTL.



A (deterministic) labeled transition system is a triple T = (Q, A,−→) where Q is the set of states, A the
alphabet of actions, and −→⊆ Q × A × Q is the deterministic transition relation. The covering digraph of
the ideal lattice Ĩ(O) of the poset O can be viewed as a labeled transition system:

Tr(I(O)) = (I(O),Σ,−→)

where the set of states is the set I(O), Σ is the alphabet of actions (which occur as observable events), and
−→ is defined by I

a−→ J iff I ≺I(O) J and a is the label edge, denoted λ(J − I).
Let us now define the class of regular properties defined by finite automata on finite words. To each

maximal path of the lattice, the successive encountered labels form a word on Σ. The set of such words is
λ(lin(O))3 where lin(O) is the set of linear extensions of O.

A finite (deterministic) automaton is a 5-uple φ = (Σ, Q, q0, F, δ), where

- Σ is the action alphabet,
- Q is the set of states,
- q0 is the initial state,
- F ⊆ Q is the set of accepting states,
- δ ⊆ Q× Σ×Q is the transition function.

These automata allow to specify properties about the potential or necessary sequencing of actions.
Let L(φ) = {u ∈ Σ∗ : δ∗(u, q0) ∈ F} be the language defined by φ. Confronting such an automaton with

the covering digraph of the lattice requires to consider for each ideal I the set Path(I) of all paths from the
bottom to I.

The satisfaction of a property φ in an ideal I is defined by: I |= φ iff λ(Path(I)) ⊆ L(φ)
The satisfaction relation |= states that an ideal I satisfies φ iff every path in Path(I) is labeled with a

sequence accepted by the automaton φ.
The upper element of Ĩ(O) is the ideal O which contains all events of the trace. The satisfaction of φ by

the lattice I(O) is then defined by: I(O) |= φ iff O |= φ
From the above definitions, we can easily deduce that: ∀I ∈ I(O) , I |= φ ⇔ φ(I) ⊆ F where

φ(I) = δ∗(λ(lin(O|I)), q0) is the set of states of the automaton φ reachable by paths ending in I. The
checking algorithms will be automatically derived from these expressions of the satisfaction relations.

As was evoked in the preceding paragraph, the checking algorithms are essentially based on the compu-
tation of φ(I). It is easy to see that φ(I) can be computed on–line during the lattice construction since it is
sufficient to attribute the ideals by states of the automaton φ. In fact, the attribute φ(I) of an ideal I can
be computed from the attributes of its immediate predecessors in the lattice:

φ(I) =
⋃

J∈↓im

I(O)
I

(
⋃

q∈φ(J)

δ(λ(J − I), q))

The algorithm can be implemented by a breadth-first traversal of the lattice during which each ideal is
attributed with a boolean array of size |Q|, the ith element indicating whether some sequence leading to
I can put the automaton in state i. If we want to extend the algorithm in order to count the number of
sequences accepted by the automaton, it suffices to replace the boolean array by an array of integers.

Since each ideal is attributed with a state of the property automaton, the complexity of the checking
algorithms is linear in the product of the size of the lattice and the size of the automaton.

3For simplicity, we denote by λ(e1 . . . en) the word λ(e1). . . . .λ(e1).



6. Conclusion

This paper has presented some practical links between finite partial order theory and the analysis of dis-
tributed runs of computer systems. This was illustrated on the problem of trace-checking. Several notions
seems interesting at the interface between these two disciplines:

- the on-the-fly coding of causality, with possible use of approximations seen as order extensions;
- the question of abstraction by glueing events, which seems close to notions of hierarchical decomposition

of orders,
- the relation between states and ideals, which forces to revisit the question of lattice construction in an

on-line context. The user of sub-lattices (like the lattice of maximal antichains [11]) could have some
applications in the context of trace-checking.
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