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Abstract

This paper presents a teaching experiment to introduce formal methods and distributed algorithms at the
undergraduate level in the department of computer science and telecoms of the ENS de Cachan in France.
The course intends to teach some basic notions on formal modeling and analysis of distributed software.
We used the free-software SPIN. This kind of experiment was found to be useful for our students since
they gain an understanding of the importance and necessity of formal methods for designing even simple
protocols.
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1 Context

1.1 The ENS de Cachan in France

ENS de Cachan is a prestigious public institution of research and higher education,
founded in 1912. It is one of the French “Grandes Ecoles” which are considered to be
the pinnacle of French higher education. Students who enter the ENS have a double
status: they are both students, registered in State Universities, and “normalien”,
i.e. members of the ENS. ENS de Cachan has two campuses, one located in Cachan
near Paris, and one locate in Rennes in Brittany (West of France). Admission is
decided by a highly selective national competition usually taken after a two-year
post-baccalauréat preparatory program. The first year of education corresponds
to the international BA/BS bachelor degree. Our students enter then in a Master
program, before becoming a PhD candidate for most of them. They stay four years
in the school.

1.2 Computer Science and Telecommunication department

This recently created department (2003) is devoted to Communication and Infor-
mation Technology and Sciences. Its goal is to develop training and research in
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computer science, on the border of telecommunication. It is located in the Brittany
extension of the ENS de Cachan on the Ker-Lann campus, in the south of the city
of Rennes. The curricula are organized within the scope of the Master’s degree en-
titled “Computer Science and Telecommunication” co-delivered by ENS de Cachan
and the IFSIC Institute at the University of Rennes 1.

In addition to the usual set of degrees offered at IFSIC (Higher Training Insti-
tute for Computer Science and Communication), Department students are offered
complementary courses in the fields of mathematics applied to statistics and sig-
nal processing, electronics and optics. But above all, these future researchers are
offered personalized coaching, to help them maturing their taste for research and
their professional objectives. For instance, this includes personal tutoring by profes-
sional academic staff, seminars, team work, internships in France and abroad, and,
most important of all, a daily contact with researchers. We train 15 students each
year, among which a dozen “normaliens” from ENS de Cachan and a few university
students selected on the basis of their qualifications and by interview.

Telecommunications have been a leading research and development activity in
Brittany for a long time. The Department is closely associated with the TRISA
Research Institute (www.irisa.fr), a Joint Research Unit between CNRS, INRIA,
University of Rennes 1 and INSA of Rennes. IRISA includes more than 180 per-
manent academic research staff, and as many PhD students. Together with the
technical and administrative support staff, this sums up to more than 500 people.
This makes TRISA one of the largest Computer Science laboratory in France.

2 The course on distributed algorithms. Its objectives.

The course takes place in the first semester of the first year of the school. It is a
specific course offered to the department students. It is clearly their first approach of
the area of distributed computing. This is quite unusual, but we found important
to introduce the parallel and communication aspects of computer systems in the
same time as the traditional concepts of sequential systems. After all, distributed
computing is at the heart of modern systems and we are in a Computer Science and
Telecoms department... Distributed computing means designing and implementing
programs that run on two or more interconnected computer systems. For this
level of course (undergraduate), we are assuming students will study distributed
programs for a fully functioning Internet [5]. The intent is to use a network; not
to study networks (this will be taught in the second year). Modern distributed
programming includes multimedia systems, client-server systems, web programming
and collaborative systems. What common fundamental principles and difficulties
do they possess that will serve our students’ needs for the next ten years?

Our students have been mainly selected on a basis on an excellent background
and performance in mathematics. When there were recruited, they had the choice
to follow a degree course in maths or in computer science. Maths in France are
clearly the most prestigious way and those who decided to join the computer sci-
ence track (by interest or realism, considering the possible opportunities of carrier)
have to manage this frustration. This context benefits to the formal methods. A
challenge for the teachers is to prove that computer science can be rigorous and
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mathematically based. The situation is different in standard universities in France,
where students often choose Computer Science against Mathematics to learn more
practical things.

The last point is that we found distributed computing is an excellent playground
to start a research oriented activity based on small collective projects. Distributed
algorithms remain small, but presents surprisingly complex and counter-intuitive
behaviors. This makes the students strongly aware of problems of software engi-
neering.

To sum up:

* our context is favorable of the use and promotion of formal methods,

* we chose to start directly by teaching some aspects of distributed computing at
the early stage of the degree course in computer science,

e it is a good place for research-oriented activities, and

e the intrinsic complexity of even small distributed algorithms is a good carrier
of the promotion of formal methods in the context of a mathematically based
software engineering.

From the algorithmic point of view, the objective of the course is to put em-
phasis on the difficulty of designing correct distributed algorithms. The study of
several classical paradigms (reliable transfer, mutual exclusion, termination) serves
to design a general methodology of description. The course is divided into six ses-
sions of two hours long. It also comprises several projects, conducted by groups of
2-3 students.

3 About the use of SPIN

3.1 SPIN and Promela

SPIN [4] is a popular open-source software tool, used by thousands of people world-
wide, that can be used for the formal verification of distributed software systems.
The tool was developed at Bell Labs in the original Unix group of the Computing
Sciences Research Center, starting in 1980. The software has been available freely
since 1991, and continues to evolve to keep pace with new developments in the field.
In April 2002 the tool was awarded the prestigious System Software Award for
2001 by the ACM. Since 1995, (approximately) annual SPIN workshops have been
held for SPIN users, researchers, and those generally interested in model checking.
SPIN is an automata-based model checker. Systems to be verified are described
in Promela (Process Meta Language), which supports modeling of asynchronous
distributed algorithms as non-deterministic automata. Properties to be verified are
expressed as Linear Temporal Logic (LTL) formulas, which are negated and then
converted into Buchi automata as part of the model-checking algorithm. In addition
to model-checking, SPIN can also operate as a simulator, following one possible ex-
ecution path through the system and presenting the resulting execution trace to the
user. Unlike many model-checkers, SPIN does not actually perform model-checking
itself, but instead generates C sources for a problem-specific model checker. This
rather antique technique saves memory and improves performance, while also al-
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lowing the direct insertion of chunks of C code into the model. SPIN also offers a
large number of options to further speed up the model-checking process and save
memory.

Promela programs consist of processes, message channels, and variables. Pro-
cesses are global objects that represent the concurrent entities of the distributed
system. Message channels and variables can be declared either globally or locally
within a process. Processes specify behavior, channels and global variables define
the environment in which the processes run.

3.2 Selected usage

Assuming our students are familiar with a standard sequential imperative program-
ming language like C, the best originality of Promela is its non-deterministic control
flow constructs if (selection command) and do (repetition command), based on the
concept of guarded commands introduced by Dijkstra [2]. The selection is a list of
guarded commands, of which one is chosen to execute. If more than one guards are
true, one statement is non-deterministically chosen to be executed. If none of the
guards are true, the result is undefined. Because at least one of the guards must
be true, the empty statement “skip” is often needed. The repetition executes the
guarded commands repeatedly until none of the guards are true.

This type of abstract construct is a bit disconcerting for the students. On
one hand, specifying behaviors in Promela is a good opportunity to explore the
existing continuum between the different abstraction levels, which are concerned
with modeling activities, from the code level to the possible logical level used to
express properties. A crucial question in formal methods is actually to choose a
relevant level of abstraction.

On the other hand, I must admit that a graphical representation like the com-
municating finite state machines of Figure 1 is better suited for a pedagogical pre-
sentation on the blackboard. In practice, I used automata, even extended automata
to take into account variables and symbolic conditions to model more complex dis-
tributed algorithms. The translation to Promela was based on a systematic way to
code communicating automata into Promela programs (see the code of Figure 2).

The other graphical aspect is to present the execution traces and the different ex-
amples and counter-examples. It is quite easy to use informal message diagrams on
the blackboard in exact correspondence with the message sequence charts displayed
by SPIN (see Figure 3).

Once the Promela program is written, the interactive simulator is used to val-
idate the code and we discuss how to instrument the code to perform verification.
The course is not a course on verification. It just explains the general idea of ex-
haustive simulation provided by the enumeration of the possible reachable states. It
is clearly out of scope at this level to present the temporal logic, its translation into
Buchi automata and the on-the-fly construction of the graph product, on which
the satisfaction of properties is computed. We thus preferred to use the simple
method of assertions, which can be easily inserted into the Promela code, at the
price of inventing special global variables to compute the invariants. The difficulty
is to explain that these variables are not part of the model, but are just there for
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verification purpose.

SPIN possesses the interesting feature to detect violations of assertions and when
this occurs, to graphically present the shortest scenario leading to the violation in
term of message sequence charts. This was quite impressive for the students, since
we had in a few seconds for our small examples the discovering of counter-examples
for various conjectures difficult to reject by hand. It was also a good example to
see how computers may help the design of other computers despite the theoretical
barrier of computability, seen in another course in parallel.

To sum up:

* the presentation of the algorithms is based on a graphical representation on the
blackboard as well as the execution traces, shown as message diagrams.

e the formalization is completed using a translation towards Promela and the in-
sertion of global assertions,

* the ability of SPIN to rapidly present non-trivial counter-examples is impressive
and proves the interest of automated tools in that case.

4 Introduction using the simplest protocol

We start the course by introducing the simplest protocol that we can imagine be-
tween two processes A and B communicating asynchronously through reliable FIFO
queues. I present the problem of modeling the interaction between a user A and a
timer B. The user has only two states: it can be awoke or sleeping. When awoke, it
can ask to set the timer (message a) and decides to sleep. After a certain period of
time (not modeled here and abstracted as a spontaneous transition), it can either
wake up and ask for the stop of the timer (message b), or it is awoke by a timeout
ringing (message c¢), sent by the timer process. Symmetrically, the timer process
has two states: timer set or not. The timer is set upon receiving the set message. It
is stopped when it decides to send the timeout message or when it receives the stop
message. Messages from A to B are stored in a FIFO communication channel link-
ing A and B, while the messages in the other direction are stored in a second FIFO
communication channel linking B and A. In case of bounded channels, we consider
that sending a message on a full channel will block the communication until a pos-
sible reception. The protocol is explained using the formalism of communicating
automata illustrated in the left part of Figure 1.
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Fig. 1. Our first protocol. Left part: a buggy version. Right part: a corrected one.

The translation into Promela is shown on Figure 2. Notice the introduction of
the global variable alternate to check that it is not possible to have two consecutive
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message @ in the communication channel from process A to process B. My favorite
joke is to prove informally that is not possible: the only mean to put a second a in
the channel is to execute again the transition from state 0 to 1 of the process A. And
this implies for it to go back to state 0, which demands for the process B to consume
the first message a. This is false, but the shortest counter-example needs to consider
two cycles in the protocol with an asynchronous collision between messages b and
c in the channels. This happens at depth 8 in the state graph, which is not easy
to guess by hand. Figure 3 shows a screen shot of this invalidation. We concluded
that distributed algorithms are complex objects, since even for the simplest one, it
is difficult to obtain an evidence of correctness. A corrected version is proposed as
shown in the right of Figure 1, where a supplementary message d is introduced to
acknowledge the stop of the timer.

/* */

/* My favorite first example of complex behaviors in distributed systems.
Buggy version including assertion */

#define N 8 /* Size of channel AB */

mtype = {a,b,c}; chan AB = [N] of {mtype}; chan BA = [1] of {mtypel};

bit alternate = 1; /* For verification purpose */

active proctype A() {do

atomic{ assert(alternate); alternate = 0; AB'a };
if :: BA?c; :: atomic{ AB!b; alternate = 1 } fi od}
active proctype B() {do
:: atomic{ AB7a; alternate = 1 };
if :: AB?b; :: BA'!'c fi od}
/% */

Fig. 2. The wrong Connect-Disconnect protocol expressed in Promela

Exhaustive simulation is a good method to find bugs. Of course, it suffers from
the state explosion phenomenon. It is not the sole viable approach for analyzing
systems, especially when tempting to obtain a formal proof of correctness. It is easy
to discuss this aspect with the students on the erroneous version of the protocol,
which has an infinite state space. We were lucky that the situation with two consec-
utive a in the AB communication channel was occurred when bounding the channel
by three messages (bounded channels are required by SPIN, which is based on an
enumerated model-checking). In general, one cannot assert that bounding channels
by a given value is enough to check a given property. This is undecidable, even for
our simple model of two communicating finite state machines. It is interesting to
note that we can predict in our small example the number of states in function of
the size n of the AB channel, using the formula L%QJ + 3n + 3. This formula has
been used to test several model-checker in the world.

At this point of the course, it is possible to try to build a formal proof of
correctness of the “corrected” protocol. This rises the question of how to express the
desired properties. One possibility is to use the temporal logic framework provided
by SPIN. As I explained above, it was not realistic to implement the idea until
now, since their first course on logic was put after my presentation. But this could
be changed next year, and will offer a good opportunity to show an interesting
application of logic. In Linear Temporal Logic, the property of the alternation of
message a can be written as O[(la A CQla) = O—=(=(1bVic)U!a)].
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Fig. 3. Screen shot of the Spin session discovering the shortest path to the error.

Another kind of formal proof has been discussed during the following SWP
project, in which some liveness property can be proved using transition invariants
in a Petri net model.

5 The SWP project

The next step of the course is a homework project, based on the study of a simplified
transport protocol, supposed to represent the essence of the Internet TCP. This
“Stop and Wait Protocol” was described in [1], an invited paper in a conference
on formal methods in 2003. Stop-and-Wait protocols have been shown to operate
correctly over media that may lose packets, however, there has been little discussion
regarding the operation of these protocols over media that can re-order packets. The
model is analysed using a combination of hand proofs and automatic techniques
based on the analysis of Coloured Petri net models. After a collective discussion
to explain the content of the paper, present the Petri net model and the associated
proofs, the goal of the project is to obtain similar results using SPIN. The results
are the following:

e A proof of the counter intuitive property for a Stop-and- Wait protocol that the
number of packets that are stored in the network can grow without bound. This is
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true for any positive values of the maximum sequence number and the maximum
number of retransmissions.

e It is shown that the protocol may fail: loss of packets is possible and duplicates
can be accepted as new packets by the receiver, even though the sender and
receiver perceive that the protocol is operating correctly.

/* */
/* "Stop and Wait protocol" from J. Billington, Forte’2003.
* A simplified transport Protocol after Internet/TCP */
#define true 1
#define false O
#define empty O
#define MaxData 2
#define MaxRetrans 1
#define MaxChannel 3 /* 2*MaxRetrans+1 */
#define MaxSeqNo 1
chan mess_channel = [MaxChannel] of {int,int}; /* Sender->Receiver (no_seq, data) */
chan ack_channel = [MaxChannel] of {int}; /* Receiver->Sender (no_seq) */

active proctype Sender() /* Sender automaton */ {
bit sender_ready = true; /* Two states automaton */

int seq_no = 0; /* Sequence numbering of data */

int retrans_counter = 0; /* Retransmission counter */

int data = 0; /* VERIF: the transmitted data */

int m; /* Last number of the received ack */
do :: atomic{sender_ready && data<MaxData -> data++; /* send_mess */

printf ("MSC: Send request: %d\n", data);
mess_channel!seq_no,data; sender_ready = false; }
:: atomic{(retrans_counter<MaxRetrans) && !sender_ready -> /* timeout_retrans */
mess_channel!seq_no,data; retrans_counter ++; ¥
:: atomic{ack_channel?m -> /* receive_ack */
if :: (m==(seq_no+1)%(MaxSeqNo+1)) && !sender_ready -> retrans_counter = 0;
seq_no = m; sender_ready = true;
(m!=(seq_no+1)%(MaxSegNo+1)) -> skip; /* receive_dup_ack */ fi; } od}

active proctype Receiver() /* Receiver automaton (one single state) */ {
int rec_no = 0; /* Sequence number of received messages */
int rec_indication = 1; /* VERIF : Test of non detection of duplicated acks */
int data; /* Last received data */

int sn; /* Its sequence number */
do :: mess_channel?sn,data -> /* receive_mess */
if :: (sn==rec_no) -> rec_no = (rec_no+1)%(MaxSeqNo+1);

printf ("MSC: receive indication : %d\n",data);
assert (data==rec_indication);/* VERIF */
rec_indication++; /* VERIF */
(sn!=rec_no) -> skip fi;

ack_channel'!rec_no; od}

active proctype devil () /* Simulation of the network level
(lossy channels with possible reordering) */ {
int s,d;
do :: atomlc{mess channel?s,d -> skip; } /* Loose message */
: atomic{(len(mess_ channel) > 1) -> mess_channel?s,d; mess_channel!s,d; }
/* Reorder message */
: atomic{ack_channel?s -> skip; } /* Loose ack */
: atomic{(len(ack_channel) > 1) -> ack_channel?s; ack_channel!s; }
/* Reorder ack */ od}

Fig. 4. The Stop and Wait protocol expressed in Promela

The motivating fact is that it seems these failures (based on the problem of the
incrementation of the sequence numbers using a finite modulo) could be reproduced
in the real TCP, by a particular positioning of its large set of parameters.

Figure 4 shows the complete Promela program we obtain. We can notice the
introduction of the “Devil” process to simulate losses and reordering of messages
in the communication channels. As previously, some global variables have been
introduced to be able to write assertions. To this goal, we maintain the exact
numbering of data, to be able to check the correct sequence of receptions at the
user level. In the screen shot of Figure 5 we detect a shortest counter-example in
the case of reordering and for a small modulo of 2. Without reordering, as expected,
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SPIN does not detect faults during verification, which can be performed only for
small values of the different parameters because of the classical state explosion
problem.
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Fig. 5. Screen shot of the Spin session discovering the shortest path to the error.

The different models and results obtained by the students were presented during
a short oral presentation (project defense), followed by a general discussion about
what they have learnt.

The rest of the course, using a similar approach, is dedicated to the study of
other basic distributed algorithms. For the problem of termination detection, I
chose the Dijkstra’s algorithm using a ring of processes. In this algorithm, a colored
token circulates on the ring. If the token comes back to the initiator without having
changed its color, the termination can be claimed. One can show it is correct in
an asynchronous environment (recall that the original algorithm was designed for
synchronous communication) under the assumption that no application message
can be delayed more than the total time needed for the token to complete its tour
on the ring. SPIN was able to produce a counter-example in the latter case.

The last part of the course presents the consensus problem and mainly the
result of Fisher, Lynch and Paterson on the impossibility of achieving a consensus
in presence of process failures [3].
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6 Conclusion

6.1 What do the Students Learn ¢

At the beginning of the course, our students are almost unaware of distributed
computing and formal description techniques. Experiments using cases studies mo-
tivate them because they see it “with their own eyes”. The main lesson is that it is
difficult to understand the behavior of a protocol without the help of formal tools.
Even for a simple protocol, they understand that automatic tools are necessary in
order to detect errors. We expect that they will remember that techniques exist
and hopefully that they will convince more people about their usefulness. The eval-
uation of the understanding of students is done throughout the case studies and the
presentation of their home-works.

6.2 Future evolutions

I want to improve the practical aspect of the work in order to enforce the proof
of potential impact of this kind of formal approach. To that respect, the SWP
example is promising. The idea is to try to use the possible failures found on the
simple model to force real TCP to make a mistake. From the application point of
view, a duplication that is not detected may have spectacular effects (imagine a
banking application for example). A realistic experiment is to use the NS simulator
in which most of the TCP parameters can be changed. A more ambitious project
is to settle a real experiment on the Internet. But before that, we have to evaluate
if the parameters of our network environment make the fault possible (if it is the
case, the probability of occurrence will be very low in practice of course).
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