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Abstract—Web services orchestrations and choreographies
require establishing Quality of Service (QoS) contracts with the
user. This is achieved by performing QoS composition, based on
contracts established between the orchestration and the called
Web services. These contracts are typically stated in the form of
hard guarantees (e.g., response time always less than 5 msec).

In this paper we propose using soft contracts instead. Soft
contracts are characterized by means of probability distribu-
tions for QoS parameters. We show how to compose such
contracts, to yield a global contract (probabilistic) for the or-
chestration. Our approach is implemented by the TOrQuE tool.
Experiments on TOrQuE show that overly pessimistic contracts
can be avoided and significant room for safe overbooking exists.

I. INTRODUCTION

Web Services Orchestrations have attracted growing in-

terest over the last years [4], [13]. They are now considered

an infrastructure of choice for managing business processes

and workflow activities over the Web infrastructure [2]. In

this context, the Web services for composition are mainly of

transactional nature.

BPEL [4] has become the industrial standard for spec-

ifying orchestrations. Numerous studies have been devoted

to relating BPEL to mathematical formalisms for workflows,

such as WorkFlow nets (WFnets) [5] a special subclass of

Petri nets, or the pi-calculus [7]. This has allowed developing

analysis techniques and tools for BPEL [8], [10] including

functional aspects of contracts [6], as well as techniques for

workflow mining from logs [9].

When applied to the management of OEM/supplier co-

operations, orchestrations must make precise the duties and

responsibilities of the different actors in such chains. This is

achieved by relying on contracts [3]. Contracts specify the

requirements each subcontractor must satisfy; from these, the

overall contract between orchestration and its customers can

be established. This process is called contract composition.

While functional aspects of contract composition rely

on the above mentioned formal models and techniques [6],

Quality of Service (QoS) aspects must be handled as well.

The Web Service Level Agreement (WSLA) framework [12]

is a standard proposed by IBM for specifying (and moni-

toring) QoS parameters in Web Services. There are no pre-

defined QoS parameters in WSLA, the contracting parties are

free to negotiate and define their own QoS parameters in a
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flexible manner. This flexibility is essential because different

organisations often associate different semantics to the same

parameter name.

Nevertheless, most SLAs commonly tend to have QoS

parameters which are mild variations of the the following

measures:

• response time (latency);

• availability;

• maximum allowed query rate (throughput);

• security.

In this paper we do not consider aspects of security in QoS.

To the best of our knowledge, with the noticeable excep-

tion of [20], all composition studies consider performance

related QoS parameters of contracts in the form of hard

bounds. For instance, response times and query throughput

are required to be less than a certain fixed value and validity

of answers to queries must be guaranteed at all times. When

composing contracts, hard composition rules are used such

as addition or maximum (for response times), or conjunction

(for validity of answers to queries).

Whereas this results in elegant and simple composition

rules, we argue that this general approach by using hard

bounds does not fit the reality well. Figure 1 displays a
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Fig. 1. Measurement records for response times, for Web service
StockQuote.



histogram of measured response times for a “StockQuote”

Web Service which returns stock prices of a queried en-

tity [29]. These measurements show evidence that the tail of

the above distribution cannot be neglected. For example, in

this histogram, quantiles of 90%, 95%, and 98%, correspond

to response times of 6,494 ms, 13,794 ms, and 23,506 ms

respectively. Setting hard bounds in terms of response time

would amount to selecting, e.g., the 98% quantile of 23,506

ms, leading to an over pessimistic promise, for this service.

In fact, users would find it very natural to “soften”

contracts: a contract should promise, e.g., a response time

in less than T milli-sec for 95% of the cases, validity in

99% of the cases, accept a throughput not larger than N
queries per second for 98% of a time period of M hours,

etc. This sounds reasonable but is not used in practice, partly

because soft contracts based on quantiles as above are not

supported by composition rules.

In this paper we propose a fully probabilistic approach

to soft QoS contract composition. We advocate that soft

contracts should be based on probability distributions, not

on quantiles, for the following reasons. Contracts expressed

as quantiles do not compose as such. In contrast, compos-

ing probability distributions is simply achieved by running

Monte-Carlo simulations. Assume a combined executable

functional-and-QoS model of the orchestration is available.

Then, drawing QoS parameters for the called sites in accor-

dance with their probabilistic contracts and feeding Monte-

Carlo simulations with these, yields an estimate of the

probability distribution for the different QoS parameters of

the orchestration. Thus, while probabilistic contracts seem, at

a first glance, technically involved, they compose easily. This

is a major advantage when considering contract composition.

Such a combined executable functional-and-QoS model

of the orchestration can be obtained by enhancing orches-

tration specifications with QoS attributes seen as random

variables, and then combining them properly. This requires

exhibiting concurrency and sequentialization in the orches-

tration in a precise way, which amounts to representing

orchestrations as partial orders of events. Mathematical

models of orchestrations typically provide this. For example,

the partial order semantics of WFnets [5] is such a math-

ematical model. Our group has developed a tool TOrQuE

(Tool for Orchestration Quality of Service evaluation) that

directly produces executions as partial orders, from an ORC

program. ORC is a simple and clean academic language for

orchestrations with a rigorous mathematical semantics, de-

veloped by Cook and Misra at Austin [23]. The Monte-Carlo

results reported here were obtained by this tool. However,

it should be clear that our approach of soft probabilistic

contracts applies to any orchestration formalism as soon as

the orchestration can be animated as a partial order of events.

Using these tools, we show in particular that the orches-

tration QoS parameters obtained by Monte-Carlo simulations

using probabilistic contracts are much less pessimistic than

those based on hard bound reasoning, thus showing evidence

of opportunities for well sound overbooking.

The paper is organized as follows. Section II gives a

survey of the existing literature on QoS-enabled WS compo-

sition. In section III, we present our general approach and the

TOrQuE tool supporting it. In section IV, we introduce the

running example used throughout (an orchestrated service

for buying cars online), and we present simulation results,

exhibiting the potential for overbooking. Finally, section V

presents conclusions and outlooks.

II. RELATED WORK

In this section we survey the work done on QoS-based

Web Service composition. Proposals for such QoS-based

compositions are few and no well-accepted standard exists

to date. The METEOR-S project [14] has studied QoS

enabled compositions in workflows. In METEOR-S, Agarwal

et. al [15] view QoS based composition as a constraint

satisfaction/optimization problem. Services have selection

criteria which are constraints, for which an optimal solution

is found using integer linear programming. Cardoso et al.

in [16] aim to derive QoS parameters for a workflow,

given the QoS parameters of its component tasks. Using

a graph reduction technique, they repeatedly re-write the

workflow, merging different component tasks and also their

QoS attributes according to different rules.

Zeng et al. [17] use Statecharts to model composite

services. An orchestration is taken to be a finite execution

path. For each task of the orchestration, a service is selected

from a pool of candidate services, using linear programming

techniques such that it optimizes a specific global QoS

criteria. In [18], the authors propose using fuzzy distributed

constraint satisfaction programming (CSP) techniques for

finding the optimal composite service.

Canfora et. al [19] suggest using Genetic Algorithms for

deriving optimal QoS compositions. They use techniques

similar to [16] for modeling QoS of services. Compared to

the linear programming method of Cardoso et. al [16], the

genetic algorithm is typically slower on small to moderate

size applications, but is more scalable, outperforming linear

programming techniques when the number of candidate

services increase.

A distinguishing feature of our proposal from the above

composition techniques is that we do not consider the QoS

parameters of a service to be fixed, hard bound values. We

believe that in reality, these parameters exhibit significant

variations in their values and are better modeled by a

probability distribution. This alternative approach has two

advantages. First, it reduces pessimism in contract compo-

sition, as we shall see. And, second, it allows for “soft”

monitoring of contract breaching (have a delayed response

once upon a time should not be seen as a breaching). We

propose using simulation techniques to analyse the QoS of

a composite service.

III. GENERAL APPROACH AND THE TOrQuE TOOL

A. General approach

The Open World paradigm: For QoS analysis, actors

for consideration are:

• the orchestration;



• the Web services called by the orchestration;

• the transport network infrastructure.

All these actors contribute to the overall QoS characteristics

of the orchestration. Therefore, to be able to offer QoS

guarantees, the orchestration needs QoS data from the other

two types of actors.

In the context of networks, QoS studies assume knowl-

edge of end-to-end resources and traffic, and use these

to predict or estimate end-to-end QoS [11]. This can, for

example, be used for evaluating the end-to-end performance

of streaming services, supported by a dedicated cross-domain

VPN. Once defined and deployed, the considered VPN has

knowledge of his resources and traffic. For our case, the

situation, however, is different:

• The orchestration has direct knowledge of the resources

of its own server architecture. It knows the traffic it can

support, and it can monitor and measure the ongoing

traffic at a given time.

• The resources and extra traffic for each called Web

service is not known to the orchestration—other users

of these sites belong to the “open world” and the

orchestration just ignores their existence.

• The resources and extra traffic for the transport network

infrastructure are not known to the orchestration—other

traffic belongs to the “open world” and the orchestration

just ignores it.

Contracts have therefore emerged as the adequate paradigm

for QoS of orchestrations and, more generally, of composite

Web services in open world contexts.

Contracts: A contract consists of an agreement on

QoS parameters of the kind listed before. Contracts provide

the orchestration with the information needed to construct its

own offer to customers.

In all cases, the orchestration will not contract regarding

transport. The reason is that the orchestration does not want

to know the network domains it may traverse. If, however,

QoS information regarding the transport layer is wanted,

this can be coarsely estimated by sending “pings” to the

considered site. On the other hand the orchestration may

contract with the Web services it is calling—some sites,

however, such as e.g., Google, may be targeted to huge

sets of users and would therefore not enter in a negotiation

process with any orchestration. Therefore, in designing its

contracts with its own customers, the orchestration: 1/ uses

the contracts it has agreed upon with its subcontracting Web

services, 2/ may estimate QoS parameters for other Web

services it is using, and, 3/ may estimate QoS parameters

for transport.

Classically, contracts are formulated as hard bounds on

some QoS parameters. As argued in the introduction, it is

preferable to characterize contracts in terms of probability

distributions over QoS parameters. Hard bounds on parame-

ters will then be replaced by “soft” bounds, of probabilistic

or statistical nature.

Contract composition: From the above discussion,

the need for probabilistic contract composition emerges. We

have developed the following Monte-Carlo technique for

QoS contract composition to be performed at design time:

• Contracts with the called sites have the form of proba-

bility distributions for the considered QoS parameters.

From these, we draw successive outcomes for the tuples:

{response to queries, associated QoS parameters}

If no contract is available for a given site, we replace the

missing probability distribution by empirical estimates

of it, based on QoS measurements.

• Using a partial order execution model for the orchestra-

tion, we run QoS-enhanced Monte-Carlo simulations of

the orchestration, thus deriving empirical estimates for

the global QoS parameters of the orchestration.

• Having these empirical estimates, we can properly select

quantiles defining soft contracts for the end user.

B. The TOrQuE tool

The TOrQuE (Tool for Orchestration simulation and

Quality of service Evaluation) tool implements the above

methodology. Its overall architecture is shown in Figure 2.

The steps involved in the QoS evaluation and the TOrQuE

measure!
ments

random
generator

Time
Stamper

Trace
Reconstructor

batch!wise
processingoffline

SLA Design

Fig. 2. Overall architecture of the TOrQuE tool.

modules that perform them are commented next.

1) The orchestration model: To ease the development

of this tool, we decided to replace the (complex) BPEL

standard for specifying Web services orchestrations by a

light weight formalism called ORC [23]. ORC has a rigorous

mathematical semantics based on SOS rules. The authors of

this formalism have developed a tool [24] which can animate

orchestrations specified in ORC.

2) Getting QoS enhanced partial order models of exe-

cutions with the “Trace Reconstructor”: Jointly with the

authors of ORC, we have developed an alternative mathe-

matical semantics for ORC in terms of event structures [25].

Event structures [21] provide the adequate paradigm for

deriving partial order models of ORC executions, in which

causality and concurrency relationships between the different

events of the orchestration is made explicit. Partially ordered

executions can be tagged with QoS parameters which can

then be composed. For example, figure 3 shows how the

response time of a fork-join pattern is computed from that

of its individual events. These max-plus rules are used to

combine delays in the partial order. The QoS parameter



Fork

Call S1 Call S2

Join

t3 = t1 + δS2t2 = t1 + δS1

t6 = max(t2, t3) + δjoin

t1 = δfork

Fig. 3. Deriving response time for a fork-join pattern. The “Fork” and
“Join” are the branching and synchronization events, S1 and S2 are two
Web Services called in parallel. δa denotes the time taken for event a to
execute.

tagging of the partial ordered executions and their com-

position is implemented in TOrQuE’s trace reconstructor

module (see figure 2). Arbitrary patterns encountered in ORC

specifications can be handled by this module.

3) Drawing at random, samples of QoS parameters for

the called sites, with the “Time Stamper”: To perform

Monte-Carlo simulations using the Trace Reconstructor, we

need to feed it with actual values for the QoS parameters.

For the called sites, these values should be representative of

the contracts established between them and the orchestration.

This is achieved by drawing such parameters at random from

the probability distribution specified in each contract.

If no contract is available with a given site, the needed

probability distribution may alternatively be estimated from

measurements. For example, calling the considered site a

certain number of times and recording the response times

provides an empirical distribution that can be re-sampled

by simple bootstrapping techniques [22]. The Time Stamper

module supports both techniques: sampling from contract’s

probability distribution or bootstrapping measured values.

4) Exploiting results from Monte-Carlo simulations to

set contracts for the orchestration with the “SLA Design

Unit”: This is mainly a GUI module that displays simulation

logs and histograms or empirical distributions of the QoS

parameters and allows selecting appropriate quantiles.

IV. RESULTS: OPPORTUNITIES FOR OVERBOOKING

In this section we report the results obtained from the

simulations of the TOrQuE tool which validate our approach

of using probabilistic contracts.

A. Illustrative example

We perform our experiments on the CarOnLine exam-

ple developed in the SWAN project [30]. CarOnLine is

a composite service for buying cars online, together with

credit and insurance. A simplified schematic description of

the service is given in figure 4.

On receiving a car model as an input query, the CarOn-

Line service first sends parallel requests to two car dealers

(GarageA,GarageB), getting quotations for the car. We

guard the calls to each garage by a timer, which kills the

waiting when timeout occurs. The best offer (minimum price)

Min

Min Min

request

noyes

sync

min > limit

response

GarageA GarageB

AllCredit
AllCredit

Plus
GoldInsure InsurePlus InsureAll

Fig. 4. A simplified view of the CarOnLine orchestration. The calls to
GarageA and GarageB are guarded by a timer that returns a “Fault” message
whenever the timeout occurs.

is selected and credit and insurances are parallelly found

for the offer. Two banks (AllCredit,AllCreditPlus)

are queried for credit rates and the one offering a lower

rate is chosen. For insurance, if the car price of the best

offer is greater than a certain limit, any insurance offer

by service GoldInsure is accepted. If not, two services

(InsurePlus,InsureAll) are parallelly called and the one

offering the lower insurance rate is chosen. In the end,

the (car-price,credit-rate,insurance-rate) tuple

is returned to the requester.

The ORC program for CarOnLine is given in table I.

ORC defines three basic operators. For ORC expressions f, g,

“f | g” executes f and g in parallel. “f >x> g” evaluates

f first and for every value returned by f , a new instance of

g is launched with variable x assigned to this return value.

“f where x :∈ g” executes f and g in parallel. When g
returns its first value, x is assigned to this value and the

computation of g is terminated. All site calls in f having x
as a parameter are blocked till x is defined (i.e., till g returns

its first value).

CarPrice parallelly calls GarageA and GarageB for quo-

tations. Calls to these garages are guarded by a timer site

Timer which returns a fault value T time units after the

calls are made. The let site simply returns the values of its

arguments—sites can only execute when all their parameters

are defined and thus can be used to synchronize parallel

threads. The value returned by CarPrice (here the variable

p) is passed as argument to GetCredit and GetInsur which

parallelly find credit and insurance rates for the price.

Figure 5 shows a diagram of the event structure corre-

sponding to the CarOnLine program written in ORC. The

event structure is generated by our tool and it collects all

the possible executions of CarOnLine, taking into account



CarOnline(car) ∆ CarPrice(car) >p>

let(p, c, r)
where c :∈ GetCredit(p)

r :∈ GetInsur(p)

CarPrice(car) ∆ {Mux(p1, p2)
where

p1 :∈ GarageA(car) | T imer(T )
p2 :∈ GarageB(car) | T imer(T )

}
>p> if(p "= Fault)) ! let(p)

GetCredit(p) ∆ Min(r1, r2)
where

r1 :∈ AllCredit(p)
r2 :∈ AllCreditP lus(p)

GetInsur(p) ∆ {if(p ≥ limit) ! GoldInsure(p)}
|

{if(p ≤ limit) !

min(ip, ia)
where

ip :∈ InsureP lus(p)
ia :∈ InsureAll(p)

}

TABLE I

CARONLINE IN ORC.

timers and other interactions between data and control. Each

execution has the form of a partial order and can be analysed

to derive appropriate QoS parameter composition, for each

occurring pattern. Each site call to a service M is translated

into three events, the call (M ), the call return (?M ) and the

publish action (!), which adds to the length of the structure.

For more information regarding these event structures, the

reader is referred to [25].

In orchestrations, exceptions and their handling are fre-

quently part of the orchestration specification itself. In addi-

tion, collecting measurement data from existing Web services

regarding this type of parameter is difficult (actually, in our

experiments, no exceptions were observed). For these two

reasons, we did not include exceptions in our simulation

study.

B. Analyzing Response Times: approach

Probabilistic contracts for the sites: The sites in the

CarOnLine example were not implemented as real services

over the internet. In order to assign realistic delay behaviour

to these sites during the simulations, we associated their

behaviour to that of actual Web Services over the internet.

For this, we measured response times of calls to these actual

Web Services. The response time recorded were used in a

bootstrap mode and also to fit distributions which would be

sampled during simulations.

We considered six different Web Services for this pur-

pose [29]: StockQuote which returns stock prices for a

queried enterprise, USWeather which gives the weather

forecast of a queried city for a week from the day of the call,

CongressMember which returns the list of the members of

the US Congress, Bushism which returns a random quote

of George W. Bush, Caribbean which returns information

related to tourism in the Caribbean, and XMethods which

queries a database of existing Web Services over the web.

GarageB

?GarageB

MyTimer

?MyTimer

Mux

MuxMux

GarageA

?GarageA

MyTimer

?MyTimer

?Mux

ifnotfault

?ifnotfault

Mux

?Mux

ifnotfault

?ifnotfault

?Mux

ifnotfault

?ifnotfault

?Mux

ifnotfault

?ifnotfault

ifgt

?ifgt

GoldInsur

?GoldInsur

ifle

?ifle

InsurPlus

?InsurPlus

Min

?Min

InsurAll

?InsurAll

!

AllCreditPlus

?AllCreditPlus

Min

?Min

AllCredit

?AllCredit

!

Fig. 5. A labelled event structure collecting all possible executions
of CarOnLine, as generated by our tool. The three dangling arcs
from the shaded places are followed by copies of the boxed net.

We made 20,000 calls to each of these six Web Services

and measured their response times. The calls were made in

sequence, a new call being made as soon as the previous call

responded. We could roughly categorise these services into

three categories based on their response times:

• Fast: The service Caribbean with response times in the

range 60-100 ms or the CongressMember service with

response times between 300-500 ms.

• Slow : Service StockQuote which responded typically

between 2 and 8 seconds.

• Moderate: The services like USWeather, XMethods and

Bushism, with response times in the 800-2000 ms range.



Fitting distributions on measured data: To validate the

use of certain families of distributions, we performed their

best fit on the measured data. When applied to the mea-

Fig. 6. Fitting of a T Location-scale distribution on the plot of
20,000 measured delays of the service USWeather.

sured response times of the six different web services, we

observed that T location-scale distributions served as good

approximations in most cases. Moreover, Gamma and the

Log-Logistic distributions were also reasonably good fits for

the response times. Figure 6 shows the results of the fit of

a T Location-Scale distribution on the response times of the

service USWeather.

While the quality of fit is reasonably good, this point

is anyway not central in our study. We only see the use of

certain families of distributions as an alternative to bootstrap

techniques, when measurements are not available. In general,

however, we prefer using bootstrapping techniques.

Orchestration Engine Overhead: The events of an or-

chestration could be seen as one of these two types : 1/

the service call events which are calls to a external sites.

2/ the events internal to the orchestration, implementing

the processing and coordination actions of the orchestration.

Depending on the relative cost (in terms of execution time)

of these events the following scenarios can be considered:

• Zero delay: The delay due to the internal events is zero

(or negligible) when compared to that of the site calls.

The overall delay of the orchestration would depend

solely on the response times of the services it calls in

this case.

• Non-zero delay: The delays of the internal events in this

case are non zero, comparable to the delays of site calls.

Since the performance of our prototype can not be regarded

as representative of that of a real orchestration engine, we

considered only the first scenario.

C. Simulation results

All the measurements and simulations were performed on

a 2 GHz Pentium dual core processor with 2 Gb RAM. We

consider two cases of simulations, depending on the timeout

value T for the calls to the garages (see site T imer(T ) in

table I ) : 1) No timeout (equally, T is infinite) 2) T is a

finite value, which is lesser than the maximum response time

of a garage.

Case 1: No timeouts

Based on the way delays of site calls are generated, we

performed two types of simulations: those in which delays

generation is done by 1/ bootstrapping measured values, 2/

sampling a T location-scale distribution, previously fit to

measured data.

1) Bootstrap based Simulations: In these simulations,

we associated each service in the CarOnLine example with

delay behaviours of one of the six web services mentioned

previously. The associations are shown in Table II.

Site Service

GarageA USWeather

GarageB Bushism

AllCredit XMethods

AllCreditPlus StockQuote

GoldInsure Caribbean

InsureAll CongressMembers

InsurePlus CongressMembers

TABLE II

RESPONSE TIME ASSOCIATIONS FOR SITES IN CARONLINE

The service “Min” in CarOnLine (figure 4) is consid-

ered to be a local service at the orchestrator with negligible

response times. During any run of CarOnLine, the response

time of a call is picked uniformly from the set of 20,000

delay values of its associated site.

Results using hard contracts: Consider the following

“hard contract” policy—which is close to current state of

practice. Contracts have the form of a certain quantile, e.g.:

“the response time shall not exceed x ms in y% of the cases.”

More precisely, let contracts of the orchestration with a

site be of the form

P(δi < Ki) ≥ pi (1)

where i = 1, ..., m ranges over the sites involved in the

orchestration, δi is the response time of site i, Ki is the

promised bound of site i, and pi is the corresponding proba-

bility (so that δi < Ki holds in y% of the cases, where y =
100 × pi). Assuming the called sites to be probabilistically

independent, what the orchestration can guarantee to its

clients is

P(δ < K) ≥
m∏

i=i

pi (2)

where δ is the response time of the orchestration and K
is the max-plus combination the Ki’s, according to the

orchestration’s partial ordering of call events.

By setting the delay contracts (maximum delay values)

of each of the sites involved in CarOnLine to their 99.2%

quantile values, we get the end-to-end orchestration delay



bound to be K = 66, 010 ms, which can be guaranteed for

94.53% of the cases.

Recall that, if only the quantile (i.e., the pair (Ki, pi))
is known as part of the contract with each called site, then

quantile (2) cannot be computed. The reason is that quantiles

do not compose.

Results using probabilistic soft contracts: We now com-

pare the above results with our approach using probabilistic

contracts. To this end, we performed 100,000 runs of the or-

chestration in the bootstrap mode. The empirical distribution

of end-to-end delays of the orchestration is shown in figure 7.

The minimum delay observed in this case is 1511 ms and

the maximum is 369559 ms. The 94.53% delay quantile of

this distribution is 23,189 ms, to be compared with the more

pessimistic value 44,243 of ms that we obtained using the

usual approach.
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Fig. 7. Empirical distribution of end-to-end orchestration delays for 100000
simulations in the bootstrapping case.

2) T Location-Scale Sampling based Simulations: In

this mode of simulation, T location-scale distributions are

sampled to generate delay values for site calls. The delay

values of the six Web Services were fitted with a T Location-

scale distribution, giving the estimated µ, σ and ν parameters

of the distribution. The pdf for this distribution is:

p(x) =
Γ(ν+1

2
)

σ
√

νπΓ(ν
2
)

[
ν +

(
x−µ

2

)2

ν

]−( ν+1
2 )

The association of sites of CarOnLine and the Web services

remains unchanged, as given in table II.

Results using hard contracts: On setting the delay con-

tracts of each of the sites to their 99.2% quantile values,

we get the end-to-end orchestration delay bound to be K =
1469, 539 ms, which can be guaranteed for 94.53% of the

cases.

Results using probabilistic soft contracts: As before,

we assume zero delay for all the internal orchestration

actions and perform 100,000 runs of the orchestration in

this configuration. End to end orchestration delays from the

simulations were recorded. In this case, the 94.53% quantile

is found to be 14,658 ms.

The results are summarized in Table III.

Mode
Soft contract

94.53% quantile
Hard contract

94.53% quantile

BootStrap 23,189 44,243
T Location Dist 14,658 1,469,539

TABLE III

NO TIMEOUT CASE: COMPARISON OF DELAY QUANTILES

The time taken for the 100,000 simulations in the boot-

strap mode was 37.74 sec and in the T Location-sampling

mode was 42.13 sec.

Case 2: Finite Timeouts

Using hard contracts in orchestrations having timeouts

raises difficulties. As an illustration, consider again Figure 3.

Let K1 and K2 be the two hard bounds (in ms) for response

times in the contracts of sites S1 and S2, respectively.

Assume that timers are used to guard the two site calls, with

timeout occurring at λ ms. Then, clearly, the contract that

results for this orchestration entirely depends on the relative

position of λ, K1, and K2. If λ > Ki for i = 1, 2, then a

timeout is supposed to never occur (unless one of the site

contracts is violated). On the other hand, if λ < Ki for

i = 1, 2 then, even if the sites respect their contracts, this may

at times be seen by the orchestration as a timeout. Clearly,

using timers in combination with hard contracts makes little

sense.

In contrast, probabilistic soft contracts allow using timers

with no contradiction. The reason is that Monte-Carlo simu-

lations have no problem simulating timers and their effect on

the distribution of the orchestration response time. As a con-

sequence, we only present the results from our simulations

without a comparison to the hard contract based composition.

We again perform simulations in two modes: Bootstrap

and T Location-scale based simulations.

1) Bootstrap based Simulations: As before, we asso-

ciated each service in the CarOnLine example with delay

behaviours of one of the six web services measured. The

associations are the same as before, given in table II. We now

have timeouts for the calls to sites GarageA and GarageB.

The 99.2% delay quantiles for these two sites are 3,304 msec

and 4,183 msec respectively. We perform simulations with

different timeout values: 3,000, 4,000 and 5,000 msec. The

results are given in table IV.

2) T-Location Scale Sampling based Simulations: We

maintain the associations of table II and perform simulations

by sampling the fitted T Location-scale distributions. The

results of these simulations summarized in Table IV. The

average time for 100,000 simulations in the bootstrap mode

was 34.29 sec and in the T Location-sampling mode was

43.75 sec.



Mode
Soft contract

94.53% quantile
Timeout Value T

BootStrap 23,040 3,000
BootStrap 22,681 4,000
BootStrap 22,834 5,000

T Location Dist 13,258 3,000
T Location Dist 13,364 4,000
T Location Dist 13,582 5,000

TABLE IV

FINITE TIMEOUT CASE: DELAY QUANTILES

V. CONCLUSION

We have studied contract composition for Web services

orchestrations. Our study has revealed a number of prob-

lems when relying on conventional contracts based on hard

bounds—even if the latter are used in combination with

percentages of contract violation. We have advocated the use

of soft contracts instead. And we have proposed probabilistic

contracts as a natural way to implement soft contracts.

Probabilistic soft contracts have a number of advantages.

First, they compose easily, as shown by our Monte-Carlo

based dimensioning tool TOrQuE. Second, they provide

opportunity for well sound overbooking, thus avoiding pes-

simistic contracts. Third, they allow handling timers as

part of the orchestration, a frequent and desirable practice.

We stress that our TOrQuE tool can indeed be used for

the dimensioning of realistic orchestrations, as the cost of

running Monte-Carlo simulation for design space exploration

is acceptable.

Future work to consider includes probabilistic soft con-

tract monitoring, i.e., the detection, by the orchestration,

of the violation of a site contract. Again, our approach

opens avenues for this. If p is the response time distri-

bution promised by a site as part of its contract with the

orchestration, then monitoring for contract violation can be

performed as follows. Let p̂ be the empirical distribution of

the considered site, as measured on-line by the orchestration.

Then, we need to design statistical tests to decide whether or

not p̂ % p holds, where % is the stochastic ordering between

distributions [1]: for two random variables X and Y , X % Y
means that, for every x, the probability that X exceeds x
is less than the probability that Y exceeds the same value.

In [1], statistical procedures are provided to this end.
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