Stefan Haar! Claude Jard> Guy-Vincent Jourdan®

LIRISA, INRIA
Rennes, France
Stefan.Haar@irisa.fr

2|RISA, ENS Cachan Bretagne
Rennes, France
Claude.Jard@bretagne.ens-cachan.fr

SUniversity of Ottawa, SITE
Ottawa, Canada
gvj@site.uottawa.ca

TestCom-FATES 2007
D

Outline

Q Introduction

e The model

© Testing IOPOAS

@ Other testing questions

e Further Research

Introduction

General problem

The specification

@ We consider that a formal specification of the system is
provided

@ The specification is given via an automata

@ We are provided with an implementation of the
specification, which may or may not be correct

Introduction

General problem

The test

@ The implementation is a black box with which we can
interact

@ We want to automatically generate test sequences to prove
properties such as:

@ The conformance of the implementation to the specification
@ Homing and synchronizing sequences
@ State identification and State Verification

The model

Sequential Systems

A deterministic FSM M is defined by a tuple (S,s1,X,Y,d,)
@ S is a finite set of states
@ s; € S is the initial state
@ X is the finite input alphabet
@ Y is the finite output alphabet
@ 0:S x X — S is the next state function

@)\:S x X — Y is the output function

In the following, we assume that our FSMs are deterministic,
complete and minimized.

The model

Sequential Systems

® S = {s1,52,83,54,Ss5}
o X ={a,b}
oY =1{0,1}

Figure: The FSM Mg

The model

Concurrent multi-port machines

A p-multiport deterministic FSM M is defined by a tuple
(S,81,P, X1, X2, ..., Xp, 0, Y1, Y2, ..., Yp, A1, A2, ..., Ap)
@ S is a finite set of n states
@ s; € S is the initial state
@ X is the set of input symbols on port i such that for
jell...plandj #i, XinX; = 0.
@ Y is the set of output symbols on port i such that for
i,j €[p]ifi+#]jthenY;NY;={-} where — is null output.
@ §: S x X — S is the next state function.

@)i : S x X —Y; is the output function on porti.

The model

Concurrent multi-port machines

b/(1,2,—)

a/(1,2,-)
Figure: The multiports FSM Mg

The model

Concurrent multi-port machines

® S ={s1,52,53,54,S5}
9@ X; ={a}, Xo ={b}, Xz ={c}
o Yy ={1},Y,={2}, Y3 ={3}

The model

Concurrent multi-port machines

Limitations with multi-port machines

One problem with p-multiport I/O Automata is that despite the
fact that they are meant to specify distributed systems, they do
it in a sequential way, one input at the time. This leads to a
model that is

@ Inefficient : every possible combination of concurrent
inputs must be specified in the model

@ Unclear : the causal relationships between inputs and
outputs is not explicitly described

The model

Concurrent multi-port machines

13/<-,02,03> 1p/<-,02,> 11/<01,05,>

—

Figure: (Partial) Multiports Deterministic FSM.

The model

|O-PO-automata

A new model

We need a model that allows specifications to relax
synchronization constraints: equipping partial order automata
with input/output capabilities. We define a class of
I0-PO-automata (IOPOA) in which

@ inputs can arrive asynchronously, and

@ transitions may occur partially, and in several steps,
reacting to inputs as they arrive and producing outputs as
soon as they are ready, without dedicated synchronization.

The model

|O-PO-automata

Figure: The IOPOA corresponding to the multiports deterministic
FSM M.

The model

|O-PO-automata

An Input/Output Partial Order Automaton is a tuple

M= (S,s",Chn,Z, 0,0, \,w), where
@ S is a finite set of states and s; = s € S is the initial state;
@ Chn = 7q,...,mp is the set of I/O channels (ports),

@ 7 is the common input alphabet, and O the common output
alphabet for all channels.

@ §:S x X — Sis a (partial) next state function
@ \:S x X — Y is the output function
9 ...

The model

|O-PO-automata

An Input/Output Partial Order Automaton is a tuple
M= (S,s",Chn,Z, 0,0, \,w), where
9 ...

@ w is a PO transition label function: For any (s,x) € S x X
such that §(s,x) = s’ and A(s,x) =y €),
w(s,X) € ({X1,...,Xp} x {Y1,...,Yp}) is a partial order
that satisfies
o xj<yjforallie{1,...,p}suchthatx; # L andy; # L,
and
o ifxj = L, thenx; £y, forallj € Chn.

The model

|O-PO-automata

Strengths of the model

IOPOA do provide, as a model, a great improvement over
p-multiport IO Automata in terms of

@ Size: a single transition (a single order) can express a
large number of transitions in the multiport model

@ Clarity: causal relationships between input and outputs are
explicitly described and do not have to be “guessed” by the
implementer

v

What about testing? Are we “paying back” the efficiency of the
model when generating test cases, with test sequences that are
(exponentially) longer that the ones produced with multiport I/O

Testing IOPOAs

IOPOA Distinguishing Sequence

Definition (Distinguishing Sequence)

An IOPOA M admits an adaptive distinguishing sequence if
there is a set of n input sequences {¢1,...,&n}, One per state of
S,suchthatforalli,j € [1,...,n],i #], & and & have a
non-empty common prefix §and A(s;, &) # A(s;, &) or

w(si, &) # w(sp, &)

Testing IOPOAs

IOPOA Checking Sequence

Definition (Checking Sequence)

Let My = (Sy,s",Chn, Z, 0, 61, A1, w1) be an IOPOA. A
checking sequence of M; is an input sequence | which
distinguishes M; from any IOPOA

My = (Sz,s0,Z,0,Chn, 63, Az, wy) in C(Mj) that does not
conform to My, i.e. such that Vs € Sy, A1(si", 1) # Xa(s, 1) or
wi(sy, 1) # wa(s,1).

Testing IOPOAs

Sequential Input Automata Testing

States verification

Assuming that the machine starts in its initial state s™ = s, the
following test sequence checks that the implementation has n
states, each of which reacts correctly when input the
distinguishing sequence for that state:

§107(0(S1,£1),82)08207(0(S2,&2),83)0. . .0fnoT(0(Sn, &n), 51)051/

Transitions verification

Testing a transition a/b going from s; to s;, assuming the
implementation is in a state sy:

7(Sk, Si—1) 0 &i—1 0 T(d(Si-1,&-1),Si) c@o |

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' : @ Observe outputs
N/i @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' - @ Observe outputs
N/l @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' - @ Observe outputs
N/I @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' : @ Observe outputs
N/i @ Send last input
°
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

©

@ Delay input on one port

' ' @ Observe outputs
I\m @ Send last input
: °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

o @ Observe outputs
% i/i @ Send last input
: @ Observe outputs

e @ repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' : @ Observe outputs
N/i @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' - @ Observe outputs
N/l @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' - @ Observe outputs
I\E/I @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

©

@ Delay input on one port

! ' @ Observe outputs
m @ Send last input
: °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

®

@ Delay input on one port

LN @ Observe outputs
i\l/i @ Send last input
: °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

SSP- @ Observe outputs
M @ Send last input
: °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' : @ Observe outputs
N/i @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' : @ Observe outputs
N/i @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

&

@ Delay input on one port

' - @ Observe outputs
I\l/i @ Send last input
' °
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

@

@ Delay input on one port

i : @ Observe outputs
M @ Send last input
°
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

o

@ Delay input on one port

' : @ Observe outputs
i\i/l @ Send last input
°
°

Observe outputs
repeat

Testing IOPOAs

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

O

@ Delay input on one port
5 6 o @ Observe outputs
% @ Send last input
o o @ Observe outputs
a @ repeat

Testing IOPOA

Testing IOPOAs

input testing

We define input vector X' as

X!

A

L

X

On a sequence a = ay ...ap

i =]
7,

i £].

Testing IOPOAs

State verification

Theorem

An implementation of an IOPOA, assumed to be in a state sy
for which & is a distinguishing sequence, can be verified to
have implemented sy with the following test sequence:

(sk) = [B1 () 0rk] o [B2 (@) 07] 0 0 [Ap (&) 0 78]

where [I]" stands for the application of input sequence | n times.

ot

Testing IOPOAs

Checking Sequence construction

Checking all states

F(s1)o7(s1,82)ol(s2)o7(S2,S3)0...0l(Sp)o7(Sn,S1)ol(S1)

Checking transitions

r(Si)oXor(Sj)O'r;(i ol(sj)oA; (X)o*r;(i o/, (X)OTS)‘(i 0...0Ap (X)o7';(i

Testing IOPOAs

Checking Sequence construction

Given an IOPOA of n states and t transitions having an
adaptive checking sequence, assuming that the implementation
is in the initial state, the following test sequence is a checking
sequence of size O(tpn® 4 pn*)

Other testing questions

State identification and State Verification

Figure: An IOPOA for which states can neither be identified nor
verified.

Other testing questions

Homing and Synchronizing sequences

a b
a b a b

a b
c d i i c d
c d

S, j« Sa

Figure: Homing sequences can be found for IOPOA.

Further Research

Further research directions

@ Checking sequences for IOPOA without distinguishing
sequences

@ IOPOA with arbitrary partial order
@ Petri Nets
@ Sufficient conditions for weak synchronization at states

@ On-going implementation

	Introduction
	The model
	Testing IOPOAs
	Other testing questions
	Further Research

