
Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Stefan Haar1 Claude Jard2 Guy-Vincent Jourdan3

1IRISA, INRIA
Rennes, France

Stefan.Haar@irisa.fr

2IRISA, ENS Cachan Bretagne
Rennes, France

Claude.Jard@bretagne.ens-cachan.fr

3University of Ottawa, SITE
Ottawa, Canada

gvj@site.uottawa.ca

TestCom-FATES 2007

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Outline

1 Introduction

2 The model

3 Testing IOPOAs

4 Other testing questions

5 Further Research

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

General problem

The specification

We consider that a formal specification of the system is
provided

The specification is given via an automata

We are provided with an implementation of the
specification, which may or may not be correct

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

General problem

The test
The implementation is a black box with which we can
interact
We want to automatically generate test sequences to prove
properties such as:

The conformance of the implementation to the specification
Homing and synchronizing sequences
State identification and State Verification

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Sequential Systems

Definition

A deterministic FSM M is defined by a tuple (S, s1, X , Y , δ, λ)

S is a finite set of states

s1 ∈ S is the initial state

X is the finite input alphabet

Y is the finite output alphabet

δ : S × X → S is the next state function

λ : S × X → Y is the output function

In the following, we assume that our FSMs are deterministic,
complete and minimized.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Sequential Systems

s1s2

s3 s4 s5

b/0

b/1

b/0

b/0

a/0

a/0
b/0

a/1

a/1 a/0

Figure: The FSM M0

In M0

S = {s1, s2, s3, s4, s5}

X = {a, b}

Y = {0, 1}

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Concurrent multi-port machines

Definition

A p-multiport deterministic FSM M is defined by a tuple
(S, s1, p, X1, X2, . . . , Xp, δ, Y1, Y2, . . . , Yp, λ1, λ2, . . . , λp)

S is a finite set of n states

s1 ∈ S is the initial state

Xi is the set of input symbols on port i such that for
j ∈ [1 . . . p] and j 6= i , Xi ∩ Xj = ∅.

Yi is the set of output symbols on port i such that for
i , j ∈ [p] if i 6= j then Yi ∩ Yj = {−}, where − is null output.

δ : S × X → S is the next state function.

λi : S × X → Yi is the output function on port i .

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Concurrent multi-port machines

s1s2

s3 s4 s5

b/(1, 2,−)

b/(−, 2,−)

b/(−, 2,−)

b/(1,−,−)

a/(1,−,−)

a/(1, 2,−)

c/(1,−,−)

a/(1, 2,−)

a/(−, 2,−) a/(−, 2,−)

Figure: The multiports FSM M0

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Concurrent multi-port machines

In M0

S = {s1, s2, s3, s4, s5}

X1 = {a}, X2 = {b}, X3 = {c}

Y1 = {1}, Y2 = {2}, Y3 = {3}

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Concurrent multi-port machines

Limitations with multi-port machines

One problem with p-multiport I/O Automata is that despite the
fact that they are meant to specify distributed systems, they do
it in a sequential way, one input at the time. This leads to a
model that is

Inefficient : every possible combination of concurrent
inputs must be specified in the model

Unclear : the causal relationships between inputs and
outputs is not explicitly described

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Concurrent multi-port machines

Si

S1

�����������
S2

����������
S3

�	�������	�
S6

�����������
S4

����������
S5

�	�������	�
Sf

�	�������	� ����������������������	��������	� �����������������������
Figure: (Partial) Multiports Deterministic FSM.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IO-PO-automata

A new model

We need a model that allows specifications to relax
synchronization constraints: equipping partial order automata
with input/output capabilities. We define a class of
IO-PO-automata (IOPOA) in which

inputs can arrive asynchronously, and

transitions may occur partially, and in several steps,
reacting to inputs as they arrive and producing outputs as
soon as they are ready, without dedicated synchronization.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IO-PO-automata

S i

S f

�
�

�� �� �

Figure: The IOPOA corresponding to the multiports deterministic
FSM M0.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IO-PO-automata

Definition

An Input/Output Partial Order Automaton is a tuple
M = (S, sin, Chn, I,O, δ, λ, ω), where

S is a finite set of states and s1 = sin ∈ S is the initial state;

Chn = π1, . . . , πp is the set of I/O channels (ports),

I is the common input alphabet, and O the common output
alphabet for all channels.

δ : S ×X → S is a (partial) next state function

λ : S ×X → Y is the output function

. . .

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IO-PO-automata

Definition

An Input/Output Partial Order Automaton is a tuple
M = (S, sin, Chn, I,O, δ, λ, ω), where

. . .
ω is a PO transition label function: For any (s, x) ∈ S ×X
such that δ(s, x) = s′ and λ(s, x) = y ∈ Y,
ω(s, x) ⊆ ({x1, . . . , xp} × {y1, . . . , yp}) is a partial order
that satisfies

xi < yi for all i ∈ {1, . . . , p} such that xi 6= ⊥ and yi 6= ⊥,
and
if xi = ⊥, then xi 6≤ yj for all j ∈ Chn.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IO-PO-automata

Strengths of the model

IOPOA do provide, as a model, a great improvement over
p-multiport IO Automata in terms of

Size: a single transition (a single order) can express a
large number of transitions in the multiport model

Clarity: causal relationships between input and outputs are
explicitly described and do not have to be “guessed” by the
implementer

But. . .

What about testing? Are we “paying back” the efficiency of the
model when generating test cases, with test sequences that are
(exponentially) longer that the ones produced with multiport I/O
automata?

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IOPOA Distinguishing Sequence

Definition (Distinguishing Sequence)

An IOPOA M admits an adaptive distinguishing sequence if
there is a set of n input sequences {ξ1, . . . , ξn}, one per state of
S, such that for all i , j ∈ [1, . . . , n], i 6= j , ξi and ξj have a
non-empty common prefix ξijand λ(si , ξij) 6= λ(sj , ξij) or
ω(si , ξij) 6= ω(sj , ξij).

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

IOPOA Checking Sequence

Definition (Checking Sequence)

Let M1 = (S1, sin
1 , Chn, I,O, δ1, λ1, ω1) be an IOPOA. A

checking sequence of M1 is an input sequence I which
distinguishes M1 from any IOPOA
M2 = (S2, sin

2 , I,O, Chn, δ2, λ2, ω2) in C(M1) that does not
conform to M1, i.e. such that ∀s ∈ S2, λ1(sin

1 , I) 6= λ2(s, I) or
ω1(sin

1 , I) 6= ω2(s, I).

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Sequential Input Automata Testing

States verification

Assuming that the machine starts in its initial state sin = s1, the
following test sequence checks that the implementation has n
states, each of which reacts correctly when input the
distinguishing sequence for that state:

ξ1◦τ(δ(s1, ξ1), s2)◦ξ2◦τ(δ(s2, ξ2), s3)◦. . .◦ξn◦τ(δ(sn, ξn), s1)◦ξ1

Transitions verification

Testing a transition a/b going from si to sj , assuming the
implementation is in a state sk :

τ(sk , si−1) ◦ ξi−1 ◦ τ(δ(si−1, ξi−1), si) ◦ a ◦ ξj

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

�� �� ���� �� ��
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

�� �� ���� �� ��
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

�� �� ���� �� ��
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

�� � �!"� " "!
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

#$ #% #&'$ '% '&
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

() (*+) +*, +-
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

./ .0 .12/ 20 21
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

34 35 3674 75 76
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

89 8: 8;<9 <: <;
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

=> =? =@A> A? A@
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

BC BD BEFC FD FE
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

GH GIJH JIK JL
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

MN MO MPQN QO QP
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

RS RT RUVS VT VU
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

WX WY WZ[X [Y [Z
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

\] \^ _`] `^
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

ab ac adeb ec
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

The “classical” approach to testing automata does not work
with IPPOA because the causal relationships are not observed.

S i

S f

fg fhig ih j
Solution

Delay input on one port

Observe outputs

Send last input

Observe outputs

repeat

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Testing IOPOA

Delayed input testing

We define input vector x̌i as

x̌i
j ,

{

⊥ : i = j
xj : i 6= j ,

x̂i
j ,

{

xi : i = j
⊥ : i 6= j .

On a sequence α = α1 . . . αn

∆i(α) , α̌i
1α̂

i
1α̌

i
2α̂

i
2 . . . α̌i

nα̂
i
n

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

State verification

Theorem

An implementation of an IOPOA, assumed to be in a state sk

for which ξk is a distinguishing sequence, can be verified to
have implemented sk with the following test sequence:

Γ(sk) =
[

∆1 (ξk) ◦ τ ξk
sk

]n
◦

[

∆2 (ξk) ◦ τ ξk
sk

]n
◦ . . . ◦

[

∆p (ξk) ◦ τ ξk
sk

]n

where [I]n stands for the application of input sequence I n times.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Checking Sequence construction

Checking all states

Γ(s1) ◦ τ(s1, s2) ◦ Γ(s2) ◦ τ(s2, s3) ◦ . . . ◦ Γ(sn) ◦ τ(sn, s1) ◦ Γ(s1)

Checking transitions

Γ(si)◦x ◦Γ(sj)◦τx
si
◦Γ(si)◦∆1 (x)◦τx

si
◦∆2 (x)◦τx

si
◦. . .◦∆p (x)◦τx

si

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Checking Sequence construction

Theorem

Given an IOPOA of n states and t transitions having an
adaptive checking sequence, assuming that the implementation
is in the initial state, the following test sequence is a checking
sequence of size O(tpn3 + pn4)

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

State identification and State Verification

k lm ln lo
lp

qr s k qr s
k qr s k qr s

tu v wx y
Figure: An IOPOA for which states can neither be identified nor
verified.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Homing and Synchronizing sequencesz{| {}
{~{�

�� �z �� � z �� �z �� �
Figure: Homing sequences can be found for IOPOA.

Introduction
The model

Testing IOPOAs
Other testing questions

Further Research

Further research directions

Checking sequences for IOPOA without distinguishing
sequences

IOPOA with arbitrary partial order

Petri Nets

Sufficient conditions for weak synchronization at states

On-going implementation

	Introduction
	The model
	Testing IOPOAs
	Other testing questions
	Further Research

