Stefan Haar¹ Claude Jard² Guy-Vincent Jourdan³

¹IRISA, INRIA Rennes, France Stefan.Haar@irisa.fr

²IRISA, ENS Cachan Bretagne Rennes, France Claude.Jard@bretagne.ens-cachan.fr

> ³University of Ottawa, SITE Ottawa, Canada gvj@site.uottawa.ca

TestCom-FATES 2007

A B > A
 B > A
 B
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C >

ъ

General problem

The specification

 We consider that a formal specification of the system is provided

< ロ > < 同 > < 回 >

- The specification is given via an automata
- We are provided with an implementation of the specification, which may or may not be correct

General problem

The test

- The implementation is a black box with which we can interact
- We want to automatically generate test sequences to prove properties such as:
 - The conformance of the implementation to the specification

ヘロト ヘアト ヘヨト

- Homing and synchronizing sequences
- State identification and State Verification

Sequential Systems

Definition

A deterministic FSM *M* is defined by a tuple $(S, s_1, X, Y, \delta, \lambda)$

- S is a finite set of states
- $s_1 \in S$ is the *initial state*
- X is the finite input alphabet
- Y is the finite output alphabet
- $\delta : S \times X \to S$ is the *next state function*
- $\lambda : S \times X \rightarrow Y$ is the *output function*

In the following, we assume that our FSMs are deterministic, complete and minimized.

・ロト ・回 ト ・ ヨト ・

Sequential Systems

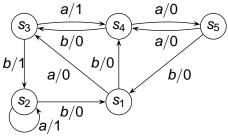


Figure: The FSM M₀

In <i>M</i> ₀	
• $S = \{s_1, s_2, s_3, s_4, s_5\}$	1
• X = {a, b}	I
• $Y = \{0, 1\}$	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Concurrent multi-port machines

Definition

A *p*-multiport deterministic FSM *M* is defined by a tuple $(S, s_1, p, X_1, X_2, ..., X_p, \delta, Y_1, Y_2, ..., Y_p, \lambda_1, \lambda_2, ..., \lambda_p)$

- S is a finite set of n states
- $s_1 \in S$ is the *initial state*
- X_i is the set of input symbols on port *i* such that for $j \in [1 \dots p]$ and $j \neq i, X_i \cap X_j = \emptyset$.
- Y_i is the set of output symbols on port i such that for
 i, j ∈ [p] if i ≠ j then Y_i ∩ Y_j = {−}, where − is null output.
- δ : $S \times X \rightarrow S$ is the *next state function*.
- $\lambda_i : S \times X \to Y_i$ is the output function on port *i*.

Concurrent multi-port machines

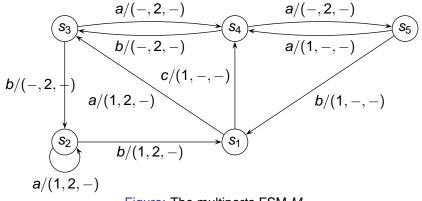


Figure: The multiports FSM M_0

イロト 不得下 イヨト イヨト

Concurrent multi-port machines

In M_0

•
$$S = \{s_1, s_2, s_3, s_4, s_5\}$$

•
$$X_1 = \{a\}, X_2 = \{b\}, X_3 = \{c\}$$

•
$$Y_1 = \{1\}, Y_2 = \{2\}, Y_3 = \{3\}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��

Concurrent multi-port machines

Limitations with multi-port machines

One problem with p-multiport I/O Automata is that despite the fact that they are meant to specify distributed systems, they do it in a sequential way, one input at the time. This leads to a model that is

- Inefficient : every possible combination of concurrent inputs must be specified in the model
- Unclear : the causal relationships between inputs and outputs is not explicitly described

Concurrent multi-port machines

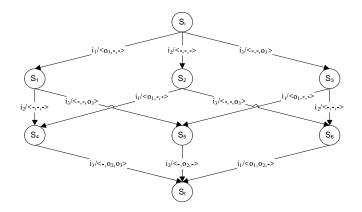


Figure: (Partial) Multiports Deterministic FSM.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

IO-PO-automata

A new model

We need a model that allows specifications to relax synchronization constraints: equipping partial order automata with input/output capabilities. We define a class of IO-PO-automata (IOPOA) in which

- inputs can arrive asynchronously, and
- transitions may occur partially, and in several steps, reacting to inputs as they arrive and producing outputs as soon as they are ready, without dedicated synchronization.

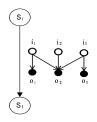


Figure: The IOPOA corresponding to the multiports deterministic FSM M_0 .

イロト イ理ト イヨト イヨト

æ

IO-PO-automata

Definition

• . . .

An *Input/Output Partial Order Automaton* is a tuple $\mathcal{M} = (S, \mathbf{s^{in}}, Chn, \mathcal{I}, \mathcal{O}, \delta, \lambda, \omega)$, where

- S is a finite set of *states* and $s_1 = s^{in} \in S$ is the *initial state*;
- $Chn = \pi_1, \ldots, \pi_p$ is the set of *I*/O channels (ports),
- I is the common *input alphabet*, and O the common *output alphabet* for all channels.

イロト イポト イヨト イヨト

- $\delta : S \times X \to S$ is a (partial) next state function
- $\lambda : S \times X \to Y$ is the output function

IO-PO-automata

Definition

An *Input/Output Partial Order Automaton* is a tuple $\mathcal{M} = (S, \mathbf{s^{in}}, Chn, \mathcal{I}, \mathcal{O}, \delta, \lambda, \omega)$, where

• ...

- ω is a PO transition label function: For any (s, x) ∈ S × X such that δ(s, x) = s' and λ(s, x) = y ∈ Y, ω(s, x) ⊆ ({x₁,...,x_p} × {y₁,...,y_p}) is a partial order that satisfies
 - $\mathbf{x}_i < \mathbf{y}_i$ for all $i \in \{1, \dots, p\}$ such that $\mathbf{x}_i \neq \bot$ and $\mathbf{y}_i \neq \bot$, and
 - if $\mathbf{x}_i = \bot$, then $\mathbf{x}_i \not\leq \mathbf{y}_j$ for all $j \in Chn$.

IO-PO-automata

Strengths of the model

IOPOA do provide, as a model, a great improvement over p-multiport IO Automata in terms of

- Size: a single transition (a single order) can express a large number of transitions in the multiport model
- Clarity: causal relationships between input and outputs are explicitly described and do not have to be "guessed" by the implementer

But...

What about testing? Are we "paying back" the efficiency of the model when generating test cases, with test sequences that are (exponentially) longer that the ones produced with multiport I/O

IOPOA Distinguishing Sequence

Definition (Distinguishing Sequence)

An IOPOA \mathcal{M} admits an adaptive distinguishing sequence if there is a set of *n* input sequences $\{\xi_1, \ldots, \xi_n\}$, one per state of *S*, such that for all $i, j \in [1, \ldots, n], i \neq j, \xi_i$ and ξ_j have a non-empty common prefix ξ_{ij} and $\lambda(s_i, \xi_{ij}) \neq \lambda(s_j, \xi_{ij})$ or $\omega(s_i, \xi_{ij}) \neq \omega(s_j, \xi_{ij})$.

・ロト・日本・日本・日本・日本・今日・

IOPOA Checking Sequence

Definition (Checking Sequence)

Let $\mathcal{M}_1 = (S_1, \mathbf{s}_1^{\text{in}}, Chn, \mathcal{I}, \mathcal{O}, \delta_1, \lambda_1, \omega_1)$ be an IOPOA. A checking sequence of \mathcal{M}_1 is an input sequence *I* which distinguishes \mathcal{M}_1 from any IOPOA $\mathcal{M}_2 = (S_2, \mathbf{s}_2^{\text{in}}, \mathcal{I}, \mathcal{O}, Chn, \delta_2, \lambda_2, \omega_2)$ in $C(\mathcal{M}_1)$ that does not conform to \mathcal{M}_1 , i.e. such that $\forall \mathbf{s} \in S_2, \overline{\lambda_1}(\mathbf{s}_1^{\text{in}}, I) \neq \overline{\lambda_2}(\mathbf{s}, I)$ or $\overline{\omega_1}(\mathbf{s}_1^{\text{in}}, I) \neq \overline{\omega_2}(\mathbf{s}, I)$.

Sequential Input Automata Testing

States verification

Assuming that the machine starts in its initial state $s^{in} = s_1$, the following test sequence checks that the implementation has *n* states, each of which reacts correctly when input the distinguishing sequence for that state:

$$\xi_1 \circ \tau(\delta(\mathbf{s}_1, \xi_1), \mathbf{s}_2) \circ \xi_2 \circ \tau(\delta(\mathbf{s}_2, \xi_2), \mathbf{s}_3) \circ \ldots \circ \xi_n \circ \tau(\delta(\mathbf{s}_n, \xi_n), \mathbf{s}_1) \circ \xi_1$$

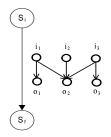
Transitions verification

Testing a transition a/b going from \mathbf{s}_i to \mathbf{s}_j , assuming the implementation is in a state \mathbf{s}_k :

$$\tau(\mathbf{s}_k, \mathbf{s}_{i-1}) \circ \xi_{i-1} \circ \tau(\delta(\mathbf{s}_{i-1}, \xi_{i-1}), \mathbf{s}_i) \circ \mathbf{a} \circ \xi_j$$

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



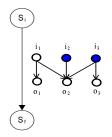
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



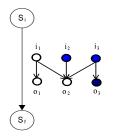
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



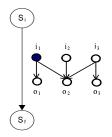
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



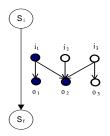
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



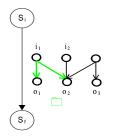
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



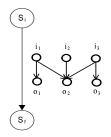
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



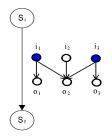
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



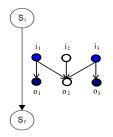
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



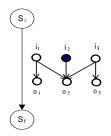
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



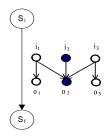
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



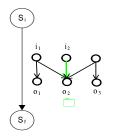
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



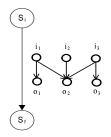
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



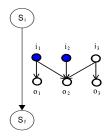
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



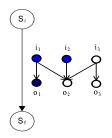
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



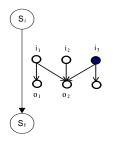
Solution

Delay input on one port

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



Solution

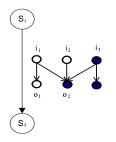
Delay input on one port

ヘロト ヘアト ヘヨト

- Observe outputs
- Send last input
- Observe outputs
- repeat

Testing IOPOA

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



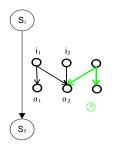
Solution

Delay input on one port

ヘロト ヘアト ヘヨト

- Observe outputs
- Send last input
- Observe outputs
- repeat

The "classical" approach to testing automata does not work with IPPOA because the causal relationships are not observed.



Solution

Delay input on one port

<<p>(日)

- Observe outputs
- Send last input
- Observe outputs

repeat

Testing IOPOA

Delayed input testing

We define input vector $\check{\mathbf{x}}^i$ as

$$\check{\mathbf{x}}_{j}^{i} \triangleq \left\{ egin{array}{ccc} \bot & : & i = j \ \mathbf{x}_{j} & : & i
eq j \ \mathbf{x}_{j} & : & i
eq j \ \bot & : & i
eq j \ \bot & : & i
eq j \ \end{bmatrix}
ight.$$

On a sequence $\alpha = \alpha_1 \dots \alpha_n$

$$\Delta_i(\alpha) \triangleq \check{\alpha}_1^i \hat{\alpha}_1^i \check{\alpha}_2^j \hat{\alpha}_2^j \dots \check{\alpha}_n^j \hat{\alpha}_n^j$$

イロト 不得 とくほ とくほう

State verification

Theorem

An implementation of an IOPOA, assumed to be in a state \mathbf{s}_k for which ξ_k is a distinguishing sequence, can be verified to have implemented \mathbf{s}_k with the following test sequence:

$$\Gamma(\mathbf{s}_{k}) = \left[\Delta_{1}\left(\xi_{k}\right) \circ \tau_{\mathbf{s}_{k}}^{\xi_{k}}\right]^{n} \circ \left[\Delta_{2}\left(\xi_{k}\right) \circ \tau_{\mathbf{s}_{k}}^{\xi_{k}}\right]^{n} \circ \ldots \circ \left[\Delta_{p}\left(\xi_{k}\right) \circ \tau_{\mathbf{s}_{k}}^{\xi_{k}}\right]^{n}$$

where $[I]^n$ stands for the application of input sequence I n times.

Checking Sequence construction

Checking all states

$$\Gamma(\mathbf{s}_1) \circ \tau(\mathbf{s}_1, \mathbf{s}_2) \circ \Gamma(\mathbf{s}_2) \circ \tau(\mathbf{s}_2, \mathbf{s}_3) \circ \ldots \circ \Gamma(\mathbf{s}_n) \circ \tau(\mathbf{s}_n, \mathbf{s}_1) \circ \Gamma(\mathbf{s}_1)$$

Checking transitions

$$\Gamma(\mathbf{s}_{i}) \circ \mathbf{x} \circ \Gamma(\mathbf{s}_{j}) \circ \tau_{\mathbf{s}_{i}}^{\mathbf{x}} \circ \Gamma(\mathbf{s}_{i}) \circ \Delta_{1}(\mathbf{x}) \circ \tau_{\mathbf{s}_{i}}^{\mathbf{x}} \circ \Delta_{2}(\mathbf{x}) \circ \tau_{\mathbf{s}_{i}}^{\mathbf{x}} \circ \ldots \circ \Delta_{p}(\mathbf{x}) \circ \tau_{\mathbf{s}_{i}}^{\mathbf{x}}$$

<ロト < 回 > < 臣 > < 臣 > < 臣 < 臣 < 臣 < の < ご</p>

Checking Sequence construction

Theorem

Given an IOPOA of n states and t transitions having an adaptive checking sequence, assuming that the implementation is in the initial state, the following test sequence is a checking sequence of size $O(tpn^3 + pn^4)$

イロト イポト イヨト イヨト

State identification and State Verification

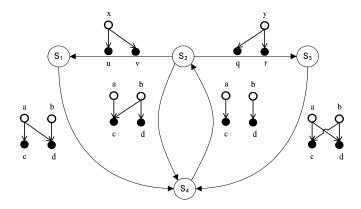


Figure: An IOPOA for which states can neither be identified nor verified.

Homing and Synchronizing sequences

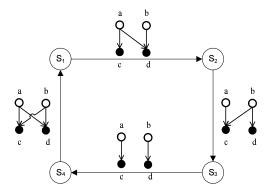


Figure: Homing sequences can be found for IOPOA.

▲□▶▲□▶▲□▶▲□▶ = つへで

Further research directions

- Checking sequences for IOPOA without distinguishing sequences
- IOPOA with arbitrary partial order
- Petri Nets
- Sufficient conditions for weak synchronization at states

・ロト ・四ト ・ヨト ・ヨト

On-going implementation