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Abstract In this paper we give a symbolic concurrent semantics for network of
timed automata (NTA) in terms afxtended symbolic netExtended symbolic
nets are standard occurrence nets extended i@l arcsand symbolic con-
straintson places and transitions. We prove that there ¢ermaplete finite prefix
for any NTA that contains at least the information of the simulation graghef
NTA but keep explicit the notions of concurrency and causality of the oitw

1 Introduction

Concurrent Semantics for Finite State Systemghe analysis oflistributedor concur-
rent finite state systems has been dramatically improved thangartial-order meth-
ods (see e.g. [21]) that take advantage of ittdependencdetween actions, and to
the unfoldingbased methods [11,16] that improve the partial order metigdaking
advantage of thiocality of actions.

Timed Systems.The main models that include timing information and are used
specify distributed timed systems are networks of timedmata (NTA) [1], and time
Petri nets (TPN) [17]. There are a number of theoreticallteabbout NTA and TPN and
efficient tools to analyze them have been developed. Nesledh the analysis of these
models is always based on the exploration of a graph whiclsiisgle large automaton
that produces the same behaviours as the NTA or the TPNnithiees an exponential
blow up in the size of the system to be analysed.

Related Work. In [13,18], the authors define an alternative semantics fbk Nased
on local time elapsing. The efficiency of this method dependsvo opposite factors:
local time semantics generate more states but the indepesadelation restricts the
exploration. In [15] (a generalization of [22]), the indepence between transitions
in a TA is exploited in a different way: the key observatiorthat the occurrences of
two independent transitions do no need to be ordered andqoastly nor do the oc-
currences of the clock resets. The relative drawback of tethad is that, before their
exploration, the symbolic states include more variablas the clock variables. Partial
order methods for TPNs are studied in [20], where the authengralize the concept
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of stubborn seto time Petri nets, calling it eeady setThey apply it to thestate class
graph construction of [5]. The efficiency of the method depends drether the (dy-
namical) timing coupling between transitions is weak or. ibtfortunately the urgent
semantics of this model entails a strong timing couplinge Pheviouspartial order
methods only take advantage of the independence of actimhs@t of any locality
property. We are interested in a true concurrent semardic8!TA and this has not
been developed in the aforementioned work.
Process semantidsr time Petri nets which is a generalization of the unfoidéeman-
tics for time Petri nets has been developed by differentarebers. From a semantical
point of view, Aura and Lilius have studied in [19] thealizability problemof a non
branching process in a TPN. They build an unfolding of thénuedtl Petri net under-
lying a safe TPN, and add constraints on the dates of ocaerehthe events. It is
then possible to check that a timed configuration is valid ar n [12] the authors
consider bounded TPN and a discrete time domain: the eps$ione time unit is a
special transition of the net. Thus the global synchromnatelated to this transition
heavily decreases the locality property of the unfoldingrtitermore, when the inter-
vals associated with the transitions involve large integttis method suffers the usual
combinatorial explosion related to the discrete time appino

Section 3 of this paper can be viewed as the counterpart ofitik of Aura and
Lilius [19] in the framework of NTA: we define similar notiorfier NTA and build a
symbolic unfoldingvhich is asymbolic netWe have to extend the results of Aura and
Lilius because there is no urgency for firing a transitioma NTA. As stated in [19]
those unfoldings are satisfactory foee choice neta/hich are a strict subclass of TPN.
Our NTA are not free choice nets and in section 4 we refine ambsyic unfolding to
obtain anextended symbolic unfoldinghich is a symbolic net withead arcs

Following our recent approach [9] using the notion of syndohfolding to capture
the partial order behaviors of TPN, we propose in this papméar notion for NTA,
but we cannot directly apply the framework of [9]. Indeed TAdarPN have different
expressive powers [4,8] and as stated earlier NTA do not theveiceurgencyfeatures
that TPN have.

Up to our knowledge, this is the first attempt to equip NTA watltoncurrent se-
mantics, which can be finitely represented by a prefix of anoldirg. In this paper we
answer the following questions:

1. What can be a good model forcancurrent semanticef NTA? The result is an
extension of the model of symbolic nets we have proposed]in [9

2. How to define aoncurrent semanticr NTA, i.e. how to define asymbolic un-
folding that captures the essential properties of a NTA while pu@sgrconcur-
rency information? This is achieved in two steps: first bailslymbolic unfolding
and use this object to build a propextended symbolic unfoldirgf the NTA. By
properunfolding, we mean a symbolic Petri net on which we can chieakalocal
configurationis valid using only theextended causadast of an event.

3. Is there a&omplete finite prefifor NTA? This result is rather easy to obtain on the
symbolic unfolding object and carries over to the extengedimlic unfolding.

! invariantsandguardscan be independent and a transition is not bound to fire before its dead-
line given by theguard



About point 3 above, we are not addressing the problem oflimgjlsuch a prefix
efficiently but our work is concerned with identifying theykissues in the construction
of a prefix for NTA. The solution proposed in [9] builds a coetgl finite prefix for
safe TPNs, but with no guarantee that this prefix is one of thallest, which is a
very difficult problem to solve. Based on this work, we addresre basic questions
about NTA, which are in a sense easier to study than safe TBt#Ibe the concurrent
structure is explicit.

Key Issues.In this section we present informally the problem and theiksyes raised
by the three previous questions. In the case of networks ¢ fautomatafinite com-
plete prefixegxist. For example, for the netwdrkf Fig. 1(a), a finite complete prefix
is given on Fig. 1(b). Finite complete prefixes contain fofbrmation about the reach-
able states of the network and about the set of events th&asiblein the network.
A set of events (labels) is feasible iff it is a word that cargkeeerated by the network.
For example{t, } is not a feasible set of events in the netwdrk, because; must be

(a) The NTAN; (b) Symbolic unfolding for the network/;

Figure 1. A NTA and its Symbolic Unfolding

preceded by,. And this appears in the unfolding as evept(labelled byt;) must be
preceded by, (labelled byts). In an unfolding, a set of evenfs is aconfigurationif
there is a reachable marking obtained by firing each eveht.iffor example{ L, e; }

is a configuration{_L, e;,e2} as well, but{ L, e3} is not ase3 must be preceded ha
before it occurs. The minimal set of events necessary fowante to occur is called
the causal past(or local configuration of e. Note that by definition a configuration
contains the causal past of each of its eventofpleteprefix is an unfolding that sat-
isfies property( P): a set of events is feasible in the NTA iff it is a configuratimfithe

2 The automata synchronize on common labels. Labels of the events amd pépresent the
corresponding location and transition in the network of automata. Theraorts appearing
near each node are explained later and can be ignored at this stage.



unfolding’. This property of unfoldings is the key point in the untimede and allows
one to do model-checking on the complete finite prefix. Thislaing can also be used
for fault diagnosigpurposes which is a very important application area.

In the case of networks of timed automata, we deal witied eventsvhich are
pairs (e, §) whered € Rx(. A set of timed eventsy is feasible iff there is a run in
the NTA that generates a timed word that contains all thedimeents inE. To de-
cide whether a set of timed events is feasible in a networkmé#d automata, we can
build asymbolic unfoldingFor this, we add a symbolic timing constrayit) to each

event of the previous unfolding. For example, withwe can associate the constraint

g(er) gef de, — 01 < 5, whered, is the variable that represents the date of occur-

rence ofe. A set of timed eventg(ey,dy), -, (ex,d)} is atimed configuratiorif
{e1,e2,--- ,er} is a configuration and the constraifite;) A --- A g(eg) is satisfied
when replacing each., by d;. For example{(L,0), (e1,4)} is a timed configura-

tion with g(L) def 01 = 0. Thus the property we would like to have for symbolic
unfoldings is P’): {(e1,d1), -, (er,dx)} is a timed configuration iff there is a run
(eray,dyay), -+, (epry» drery) In the NTA with f a one-to-one mapping from.k

to 1..k. In the untimed case, one can check that an event is firealtteeinnfolding
using only the causal past of the event. We want this progertyold for the timed
unfoldings as well and then a formula associated with antevshould only involve
variables that are associated with events in the causabpagthe local configuration
of €). Now assume we want to decide whetH€d, 0), (e1,dy), (e2,d2)} is a timed
configuration. It is actually ifl; — do < 2. But this cannot be captured by any conjunc-
tion g(L) A g(e1) A g(e2) because; is not in the causal past ef, andey not in the
causal past of;. A symbolic unfolding built by associating constraintsinéach event
e, with the property that each constraifft) uses only variables in the causal past of
does not always contain enough information for propéR$) to hold. In this paper we
show 1) how to build an unfolding that contains enough infation so that P’) holds;

2) how to build a finite and complete prefix of the unfoldingsgtng (P’).

Organization of the Paper.The paper is organized as follows. Section 2 presents the
model of NTA and its usual sequential semantics. Sectiow&sga concurrent seman-
tics for NTA in terms ofsymbolic branching processéSBP) and proves the existence
of complete finite prefixes. The SBP is a first step towards gpbete finite prefix hav-

ing property(P’). In section 4, we show how to build axtendeSBP, usingead-arcs
which is a complete finite prefix satisfying prope(t#’). Section 5 gives a summary

of the paper and directions for future work. The proofs ofttrenrems are omitted and
can be found in the extended version of the paper [7].

2 Networks of timed automata

Notations . Given a setB we useB¢ for the setB U {¢} (assumings ¢ B). Let
X = {1, ,z,} be afinite set otlockvariables. Avaluationv is a mapping from
X toR>¢. Let X’ C X. The valuatiorv[X'] is defined byv[X'](z) = 0if z € X’

3 Actually we should write “it is a labeling” of a configuration of the unfolding.



andv[X'](z) = v(x) otherwise.v|x is the restriction (projection) of to X' and is
defined by x/(z) = v(z) for z € X'. We denote the valuation defined b§(z) = 0
for eachz € X. Ford € R, v + ¢ is the valuation defined b + 0)(z) = v(z) + 4.
C(X) is defined to be the set of conjunctions of terms of the forma’ < corz ¢
for z,2’ € X andc € Nand<e {<,<,=,>,>}. C(X) is called the set ofliagonal
constraintsover X. The set ofrectangularconstraintsC,.(X) is the subset of (X)
where only constraints of the form < ¢ appear. Given a formul@ € C(X) and a
valuationv € R, we usep|z/v(x)] for ¢ wherex is replaced by (z). we denote
o(v) € {tt,ff} the truth value ofp[z/v(x)]. We let[y] = {v € Rxq|p(v) = tt}. A
subsetZ of R, is a zone ifZ = [y ] for somey, € C(X). Note that the intersection
of two zones is a zone. Two operators are defined on zonesntasuccessavperator,
77 ={v+6|v € Z,6 € R>o} and theR-resetoperatorZ[R] = {v| I’ € Z s.t.v =
v'[R]}. BothZ~" andZ[R] are zones ifZ is a zone.

Timed Automata. Timed automatavere introduced in [1] to model systems which
combinediscreteandcontinuousevolutions.

Definition 1. Atimed automato is a tuple(L, ¢y, X, X, T, Inv) where: L is a finite
set of locations ¢ is theinitial location; X' is a finite set ofdiscreteactions; X =
{1, -,z } is afinite set of (positive real-valuedjocks 7" C L x C.(X) x X x
2X x L is a finite set oftransitions (¢, g,a, R,¢') € T represents a transition from
the location/ to ¢, labeled bya, with the guardg and the reset sek C X; we write
SRA(t) = ¢, TGT(t) = ¢/, G(t) = g, A\(t) = aandR(¢) = R. Inv € C,.(X)L assigns
aninvariantto any location. We require thav be a conjunction of terms of the form
x > cwithae {<, <} andc € N.

A stateof a timed automaton is a pdif, v) € L x RX,. A timed automaton isounded
if there exists a constaite N s.t. foreactd € L, Inv({) C [0 <2y <kA---A0 <
x, < k]. Examples of timed automata are given in Fig. 1(a). In theiskee require
that for any valuation and any transition = (¢, g,a, R, ¢'), g(v) = Inv(¢')(v[R)]).

Definition 2. The semantics of a timed automatdn= (L, ¢y, X', X, T, Inv) is a la-
beled timed transition system (TTS) = (Q, go, TUR>q, —) WithQ = L x (R<o)¥,
qo = ({0, 0) is the initial state and— consists of the discrete and continuous transition

relations: i) the discrete transition relation is defined &l ¢ € T by: (¢,v) BN (v
<~ dt=(4g,a,R, ') € Tstg(v) =ttv =v[R — 0]; i) the continuous tran-
sition relation is defined for ald € R>¢ by: (¢, v) 2, Wooyiff L =200 =v44§
andV0 < ¢’ < 4, Inv(f)(v+ ¢") = tt. Arunof a timed automatod is a path inS 4
starting ingo where continuous and discrete transitions alterriaféhe set of runs aofl
is denoted by.4]. A stateg is reachablén A if there is a run fromy to g. REACH(A)
is the set of reachable states.df A timed wordw € (T' x R>()* is acceptedy A if
there is a rurp € [A] s.t. the trace op is w.

The analysis of timed automata is based on the exploratien(fifite) graph, the
simulation graphwhere the nodes asymbolic statesA symbolic state is a pair, Z)
where/ is a location andZ azoneover the seR%,.

% In our definition runs are labeled by transitions.



Definition 3. Thesimulation grapt5G(.A) of a timed automator is given by: i) the
set of states is the set of symbolic states of the fdir#d) whereZ is a zone; ii) the
initial state is (¢, Zo) with Zy = 07 N [Inv(¢y)]; iii) (¢,2) = (¢,Z') if there is

a transition (¢,g,a, R,¢') in A s.t. Z N [g] # 0 (this ensuresZ’ is not empty) and
Z' = ((Zn[gDIR)” N V().

We assume that the timed automata are bouridedn each location?, Inv(¢) is
bounded. In this case the number of zones of the simulation graphiie fih4,6].

Network of Timed Automata. We use the classical composition notion based on
a synchronization functianLet A,, ..., A, be n timed automata with4; =
(Li, li0, Xiy X4, Ty, Inv;). We assume that for each j, L;NL; = andX;NX; =0
(clocks are not shared). gynchronization constraint is a subset o’ x X5 .- x
22\ (g, -+ ,€). The (synchronization) vectors of a synchronization a@nst! indicate
which actions synchronize. Fety,--- ,t,) € Tf x --- TS we write \(t1,- -+ ,t,) =
(A1(t1), -+, An(tn)) wWith X\;(e) = e. A™1(I) C T§ x ---T¢ indicates how the tran-
sitions synchronize. Far € \~1(I), we let: sSrRc*(t) = {I € srRAt[i])|t[i] # €},
TGT*(t) = {l € TGT(t[d])|t[i] # €}, R(t) = {z|x € R(¢[i]) and t[i] # e},
G(t) = Aufie G(2[1]).

Definition 4. The network of timed automata (NTAM|...|A,) is the timed au-
tomaton3 = (L, lp, 2, X, T, |nV) defined byL =Lyx---xLy,lg= (6170, s 7€n,0):

Y= xx X, X =UX;; Lg,a,RV) € Tiff 3t € A1) s.t.: (1) if

t[i] # e thenl; = srRQ(t[i]) and otherwisd’; = TGT(t[i]), (2)a = A(t), g = G(¢) and

R =R(t)andInv(l) = A Inv;(4;) if 1 = (€1, -+, £y).

This definition implies that if each4; is bounded (resp. simple) then the NTA is
bounded (resp. simple).

3 Symbolic Unfolding for Network of Timed Automata

In this section we define the symbolic semantics of a NTA im&ofsymbolic branch-
ing processesThose processes contain timing constraints both on pkcésvents.
We do not recall the definitions afccurrence netsdbranching processes (BRyr un-
timed network of automata. The reader is referred to [10hfdetailed presentation of
these notions.

Let (A;]...|A,)r be a synchronous product of TA. In a first step, we build the
untimed branching processé@sBPs) of (A, |...|A,);. For each timed automatos;
we let UNTIME(A;) be the automaton obtained by removing all the timing comgsa
and clocks inA4;. An UBP of a NTA is a BP of the network of untimed automata
(UNTIME(A1)] ... JUNTIME(A,))r in the sense of [10]. The set of UBPs is defined
inductively over two set§ andP by: i) L € &,ii)if e € £ ands € L then(e,s) € P,
iii) if S C Pandt € A\~1(I) then(S,t) € £. On those two sets we define the mappings

*0.0%

5 Any timed automaton can be transformed into an equivalent (behayibamded automa-
ton [2].



—for&,*L =0,andife = (S,t), *e = S; ande® = {s| (e, s) € P};
— for P: *(e,s) = eand(e, s)* = {e|®ens # 0}.

By definition of E and P a SBP is completely determined Wy ans P as*() and
()* are implicitly defined. Letr,y be two nodes (place or transitions).af€ *y or

y € z* there is amarc fromz to y and we writex — y. This enables us to refer to
the directed graph of a netvhich is simply the grapiF U P, —). The reflexive and
transitive closure of- is denoted<. x, y arecausally relatedf eitherz < y ory < z.

x is in the (strict)causal pasbf y if x < y andx # y, i.e.x < y. x,y are inconflict,
notedx+#ty, if there is a place € P such thatp — w < z andp — u < y with

u # w. z andy areconcurrentif = andy are neither causally related nor in conflict.
If Jis a set of events thet J =( Uccs €*)\( Uecs ®¢). Foraset) C EU P
[J] ={e’ €e EUP|e¢ < eforsomee € J}. A set of events] is causally closedf
[J] = J. A configurationof a BP is a set of event&” C FE which is causally closed
and conflict-free. A setl is aco-setiff A C 7K whereK is a configuration. Acut
S C P is a set of places which is a maximal co-set. To each configur&f, we can
associate a unique cytK which is denoted GT(K). A placep = (e,s) € Pisa
i-place ifs € L;. We can define the union of two branching proceddes P;) and
(E,, P,) component-wise on events and places. BPs are closed unaeabte union
and theunfoldingof (UNTIME(A;)] ... |UNTIME(A,)); is be the maximal branching
process. The next two properties are taken from [10]:

Proposition 1. Twoi-places of a UBP are either causally related or in conflict.
Proposition 2. LetC be a cut of a UBRC' contains one-place for eachl <i < n.

Thus given a configuratioR’, CUT(K ) corresponds to a unique state of the product of
untimed automata.

The symbolicbranching processes of a NTA are built from the UBP. The fiatui
is that we associate with places and events a time variabtearievent, the variable
d. stands for the (global) time at which evenfired. For a place, §, stands for the
most recent (global) time for which a token waspinWe defined(E U P) to be the
set of variableqd, |x € E U P}. A symbolic branching process (SB&¥, P, ) of
(Aq]...]An)r is a UBP(E, P) of (UNTIME(A;)]...|UNTIME(A,)); with~y : EU
P — C(6(E U P)) a mapping that associates to each node a timing constrdiat. T
constraint on a node should only refer to variables ifx].

The constrainty(x) is computed by rewriting the timing constraints of the NTA
in terms of the variable§, for y € [z]. For the eventL we just sety, = 0 stating
that the system started at tifie On the example of Fig. 1(b), to compute the timing
constrainty(U) we just rewrite the invariany < 3 in terms of the firing times of
the events in the past of plaéé& if the current (global) time at which a token is in
U is 6y we must haver = 6y — 6, < 3i.e.dy < 3. For eventes, we must have
z < 2 and the value of: is given byd., — d., which yieldsd., — é., < 2. The
result for the NTA of Fig. 1(a) is depicted on Fig. 1(b). Thepiontant point is that each
constrainty(z) is entirely determined by. Hence to each UBPE, P) we can associate
a unique SBRE, P,v). We can thus define theymbolic unfoldingrBP( A, | ... |A)r
of (A4,]...|A,)r to be the symbolic branching process associated with thelding
of (UNTIME(Ay)] ... |UNTIME(A,));.



To define cuts for SBP we need to take into account the timimsteaints: for
instance in Fig. 1(b),0, A, U) is a cutiff §o = 4 = dy < 3 meaning that the global
time in each place is the same and the constraints on thespdaeesatisfied. For an
event the same strategy applies. We can define a formulahthetaterizes all the timed
cuts of a SBP:

Definition 5. (M, @) is asymbolic co-sebf (E, P,~) if: 1) M is a co-set of £, P),
2)@ = él(M) A @2(M) AN @3(M) A @4(M) with:

o (M) =\ ~() L e(M)= N\ (8p<5) @)
z€[M] pEM

¢2(M> = /\ (/\P€°€6P = 56) (2) ¢4<]V[) = ( /\ 517 = 517’) 4)
ee[MNE p,p' €M

If M is acutof(E, P), (M,®) is a symbolic cut. The meaning of formula (2) is that
the last date, at which a token was ip is the time at which an event removed a token
in p. (3) imposes that if a token is mandp is in a co-set, the current time jnwhich

is d,, is larger than the date of occurrence of the event that putentmyp. Finally (4)
requires that all the places in the co-set have reached the global time. The reason
why we need to use variables associated with places is betaeie is no urgency in
NTA. Notice that the formul& of a symbolic co-set is entirely determined by the co-set
M and unique; we denote it kil,,. Moreover the form of the constraints 60F U P)

in the SBP is such thak,, is a zone for each symbolic ciM':

Theorem 1. For each symbolic cutM, ®,,) ¢y, is a zone.

Given a SBP(E, P,v), a setM C P, and a mapping® : §([M]) — Ryq that
associates with each node a ddte, ©) is atimed cutiff (M, $p,) is a symbolic cut
and® € [2,,]. Given a timed cutM, ©) we can associate a unique state of the NTA
GS(M, ©): it suffices to compute the values of each clock variableXifrom the
values of the nodes variables in the SBP. Conversely, giwtate(1, v) of the product,
we can associate a timed cut(lov) as stated by Theorem 3 below.

Theorem 2. If K is a configuration offBP(A|...[A,); andO € [Pcyr (k)] then a)
GS(CUT(K),©) = (1,v) for someg(l, v) reachable in( A, | ... |A,)r, and b) if K U{e}
is a configuration an® < [Pcyr(x)Av(e) /\(/\pe.eép = 66)]] then(l, v) e, (I',v")
with GS(K U {e},0’) = (I',+') and @"CUT(K) = © and©'(xz) = O(p) for some
p € CuT(K) otherwise.

The formula®cyr (k) A v(e) A(Apeeedp = dc) asserts that the global time is the same
in every automata which is also equal to the firing time: @ind that the guard of the
transitiont holds.

Theorem 3. Let (1, v) be a reachable state i(4,]...|.4,);. There is a configuration
K of TBP(A4]...|An)r and © € [Pcyr(xy] st.: @) GS(CUT(K),0) = (1,v), and

b) if (1,v) — (I',v’) there is a configuratiods U {e} s.t.\(¢) = ¢ and a valuation
O e [[@CUT(KU{e})]] StGS(K U {6},9/) = (l’,v’).



If a TBP 7 satisfies the conditions of Theorem 3, we say thas complete The-
orem 2, corresponds tocarrectnesproperty. For network of finite untimed automata,
complete and correct finite branching processes exist, emdaledcomplete finite
prefixes[16,10]. In the case of network of timed automata we can caosa finite
complete prefix that preserves the reachability infornme¢ibthe simulation graph.

Theorems 3 and 2 have two consequences. They follow fromattettiat each
Pcur(x) IS a zone for a configuratioR . This means that the set of valuations reachable
by all the linearizations of the events i defines a zone as well. In the symbolic
unfolding we construct, we obtain one zone for all the linesions of the events in
K whereas inSG((A4]| ... |A,)r) they could be two distinct states for two different
linearizations. The first consequence is that the union®ftines reachable by all the
linearization inSG((A4]...|A,)r) is azone. Indeed computing global states preserves
zones. This result was obtained recently by Ramzi Ben SMahiys Bozga and Oded
Maler in [3] and has useful consequences. Our frameworlsgivealternative proof of
this result and accounts for it in terms of partial order. $heond consequence is that
finite complete prefixes exist for NTA.

Assume the two configuration&’; and K, lead to the same symbolic state
GS(CUT(K1), Peur(ky)) = GS(CUT(K2), Peur(k,)), then they have the same fu-
ture. Thus we can discard the events that extend one of themin$tance the
smallest w.r.t. the ordex defined asiK, < K iff GS(CUT(K1), Pour(ky)) =
GS(CUT(K2), Pcyr(k,)) N |K1| < |Ka|. As the simulation graph contains a finite
number of (union of) zones and because edgl k) is a union of zones, we can not
have an infinite number of different symbolic states. Thigved us to construct a com-
plete finite prefix by keeping only the evertsuch that there exists a configuratifin
that enableg and is minimal w.r.t<. We let RREF((A4]| ... |A,)) be the complete
symbolic finite prefix obtained fromA, | ...|Ay)r. So far we are able to answer the
question whether a set of timed events is a timed configuragiiven the set of events
K and the valuatio® we can check whethe® < [Pcyr(x)]. What we would like to
do is to check whether a set of everifscan be extended to a configuratioa if 1(K)
is a co-set. We cannot do this directly with the SBP we havesttoated so far. In the
next section we refine our unfolding so that we do not needdak & the global state of
the system to decide whether a set of events can be extendddhted configuration.

4 Extended Finite Complete Prefixes

In the case of finite automata, any cut containing a co-setehables an event, still
enables the same event. This is not the case for network efltemtomata as can be
seen on the example of Fig. 1(b).df has not firede; can fire because nothing can
prevent it from doing so« is not enabled). The fact that has not fired can be inferred
from the fact that either placé or U contains a token. But this implies that the date
at whiche; fires satisfies., < 3. If e5 has fired ab.,, e; ande; are in conflict. Thus
e; can only occur at a date when a token can bB,ne. to fire we must havép = 6.,
and the constraint on the date at which a token can E&which isdg — 6., < 2. This
impliesd., — d., < 2. Thus the timing constraints associated withare not the same
in the cuts(0, A, U) and(0, B, V') although they are both cuts that contain.



To encode this timing dependency structurally we can usdslimoccurrence nets
with read arcs For instance the symbolic net of Fig. 1(b) can be “transtmiirinto the
symbolic extended net of Fig. 2 (a read arc is a dash line)dRezs enable us to point
to the missing timing information in the net that is needednsure an event can fire.
This also means that we duplicate the eveninto e; ande) because the constraints
are different depending on whethgrhas occurred or not. Read arcs enlargectgsal
pastof the events. In the extended occurrence net, the conshaiween the dates of
occurrence ok; ande, can be inferred from the past ef: indeed, to fire, we must
haved., = dp and thus., — d., < 2. Read arcs enable us to differentiate the two cuts
(0, A,U) and(0, B, V) that generate different timing constraintsnandes.

Extended Branching ProcessesAn extended netV is a tuple(E, P,*(),()*,°())
where(E, P,*(),()*) is a net, and() : E — 2F.If °c = () for eache € E then
N is a net. The sete represents the input places of an event that are to be readutit
removing a token. Th&xtendedsymbolic branching processes (ESBP) of a network
are defined as in section 3: the only change we need to do iditedbe set of events
so that it includes theead-onlyplaces of an event denotéd. To this end, ifS, S’ C P
andt € T, (S,5',t)isin€ and ife = (S, 5,t),°e = 5.

The causality relation is now defined hy:— y if x € *yU°yory € z°*. <is
the reflexive and transitive closure of. Theweakcausality relation--» is given by:
x --» yifeitherz — yor°znN®y # O (if  needs a token in one of the input placeyof
this implies a causality relation, evenifis not in the past of in the sense of>.). We
let < the reflexive and transitive closure ofs. Two nodes: andy areweakly causally
relatedif eitherz < y ory < x. x andy are in conflict,z#y, if there is a place s.t.
there existv andu, w # u, p € *uN *w andw < z andu < y. x andy are concurrent
if they are not weakly causally related nor in conflict. FoE E U P, the definitions of
1J and[J] are unchanged (we use the nef: A set of events is now causally closed
if [J] = J. Co-sets, configurations and cuts are defined as before.

Safe Co-sets.Let ENABLE(e) denote theenabling cutsof e # L in a finite sym-
bolic branching process/: ENABLE(e) = {C'| *e C C andCisacutof\V}. As a
running example we take the prefi% built in Fig. 1(b) and’, is always replaced by
(zero). For this example the enabling cuts areAELE(e;) = {(0, A4,U), (0, B,V)},
ENABLE(e2) = {(0,A4,0),(1,A,U)}, ENABLE(e3) = {(0, B,V)}.

Now assume an eveats in conflict with another event in the symbolic unfolding.
As we pointed out at the end of section 3, the timing condisagiven by[®¢] on the
firing time of e do not always contain enough information to ensure evegan fire:
evente; in N can fire if a)e; has not fired (this must be at tinde< 3), or b) e; has
fired, and the time elapsed since it has occurred is less thiameunits {.e. at timed
with § — d., < 2), or c) ey has been disabled by another event in conflict with it and
cannot occur in the future. To enswean fire, we should add to the conditions®in
some information about the events in conflict witiThis is the purpose dfafe co-sets
They extend the co-sets of the symbolic unfolding with sonfermation about the
conflicting events. In terms of occurrence nets, a safe téssan event will be the
set of placese, extended with a seti@ad onlyplaces,’e. The information contained
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Figure 2. Extended symbolic unfolding for the example of Fig. 1(a)

in a safe co-set should be such that, if the timing conssaibtained byb.. .. are
satisfied, then there isa citD ®e U °e s.t. & is satisfied.

For any cutC, the formula®@¢ (Def. 5, equations (1)—(4)) is a formula ow#iC' U
([C] N E)). Indeed all the intermediate placgsnot in the cut, are constrained by a
formula of the formé. = 4, because of equation 2 of Def. 5. For instadgg 5 ) =
537562 §2/\0§6€2 <3AdB 2562/\50 =g = Oy.

Because of the terdy, if we use an extra variabteand the formuldé = 6,) AP
for any? p € C, we obtain a formula ove¥([C] N E) U {§}: § stands for the current
global time (since the system started) and the constraintion?- defines the set of
instants for which the cuf’ is reachable i.ethere are tokens in each plages C. We
write 2, for the projection or([ 1N E)U{d} of the formuladc A (6 = 6,). In our
exampledi(oAU) =4 <3, @1AU) =0 <3N0, <0< 3and@OBV) =
0—0ey <2A0<de, <3A0 > 6e,. This last example is interesting because it shows
that the set of dates s.t. atokenign B, V') depends on the time at whieh occurred.
Finally we letO(e) = {®%, | C' € ENABLE(e)} and in the previous example, we obtain:
Ofer) = {Qj?o,A,U)v@?o,B,V)}’ O(e2) = {@?O,A,U)vqj?l,A,U)}’ O(es) = {45?0,3,\/)}
O(e) represents the set of different constraints that can bergikeby all the enabling
cuts of event.

Definition 6. A set of placesS is a safe representativef a pair (e, C) wheree € F
andC € ENABLE(e) if 1) *e € S C C'and 2) forallv : §([CTNE)U {6} —
RZO if V|s([STnE)u{s} € [[@gﬂ and Vis([C\SInE)u{s} € [[4560\5]] thenv € [[QS%]] Sis
a safe representative efif .S is a safe representative of each pair, C') with C' €
ENABLE(e).

If S is a safe representative ¢f, C'), then if v(e) holds together withbg, e can be
added to the unfolding. For exampl@), A) is not a safe representative @f, A, U)

5 As equation (4) already imposés = &, for p,p’ € C we can add = 4, for anypin C.
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becauseb(, ,) = § > 0 and®(, , ;,, = & < 3. (0,U) is a safe representative of
(0,A,U) as well as(0, A,U) itself. (0, B) is a safe representative ¢§, B, V). As
each cutC' € ENABLE(e) is a safe representative of itself, there is always one safe
representatives for ang’ which is ENABLE(e). We can state a theorem which is a
variant of Theorem 2 using only safe representatives of antgitemb) of the theorem

is altered):

Theorem 4. If K is a configuration ofrBP(A;|...|A,)r and© € [Pcyr(k)] then
a) GS(CuT(K),0) = (L,v) for some(l,v) reachable in(A4]...|A,);, and b) if
K U {e} is a configuration and is a safe representative @fuT(K) and© € [$g A

¥(e) A(Apesedy = 8.)] then (L, v) 22 (1, o) with GS(K U {e}, @) = (I, /) and

Olcur(x) = © andO’(z) = O(p) for somep € CuT(K) otherwise.

This theorem is a direct consequence of Theorem 2 and Def.sBates that a safe
representative fog contains enough information to decide whether eveargn be fired
or not. As a consequence, if whenever we add a new evénta (finite) extended
symbolic branching process of a NTA, | ... |4, ), we use a safe representative=
*eU’e and addead-arcsto the places ofe, then[e] (including [ S1) gives the accurate
constraints on the date at whiche can fire.

To build an extended complete finite prefix for a NTA we can pestas follows:
1) build the symbolic net defined in section 3; this enable®ubtain the safe co-sets
for each event; 2) build an extended net by adding an evehetanfolding using safe
co-sets instead of simple co-sets. On the example of FigsIgites the unfolding of
Fig. 2:

1. start with place$, A, U and eventL;

2. to add an event labelleg use a safe co-set: we choogeU) and add event
with a read arc t@/;

3. adde; andes;

4. now a new safe co-set has appeafédB); we can add an eveni labelled byt
with a read arc from placg.

This construction can be formally defined (see [7]). Theltésa finite extended sym-
bolic complete prefix EREF((A;] ... |Ay) ) that satisfies property?’). Formally, we
definesymbolic configurationsAssume EREF((A,|...|A,)r) = (E, P, 7).

Definition 7. (K, %) is asymbolic configurationf (E, P,~) if: 1) K is a configuration
of (E, P), and 2)¥ = ¥, (K) A ¥,(K) where®;(M),1 < i < 2 are defined by:

!pl(K) = /\ ’7(6) (5) and II/Q(K) = /\ (/\pe‘euoe(sp = 56) (6)

ec[K] ecK

Notice that¥ uses only information in the past & and is uniquely determined thus
we can write itV Letr : K — Rx¢. (K, v) is atimed configurationf v € [¥x].

Theorem 5. If (K',¥’) is a symbolic configuration cEPREF((A,]...|A,)r) and
©’ € [¥’] then: there exists a symbolic configuratioR, ¥) with K O K’ and® €
[¥] s.t. 1)GS(CUT(K),O0) = (1,v) for some(l, v) reachable in(A,]|...|A,), and
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(a) Two Independent Automata (b) The Unfolding

Figure 3. A Network of two Independent Timed Automata

2)if (K’ U{e},¥") is a symbolic configuration anfZ"’] # () then(L, v) X, (U, v")

andGS(CuT(K' U {e}),0") = (I',v’) for some®’ € [¥"].

On the example of Fig. 1(a),(L,0), (e1,de, ), (e2,0¢,)} is @ timed configuration iff
0ey — 0e, < 2andé,, < 3.

Minimality for Safe Co-sets.The purpose of unfoldings is to keep explicit the concur-
rency of events. In the case of untimed network of autontatés sufficient to ensure

e can fire. For NTA, we have to use read arcs, but we should beecoad about the
number of the new dependencies: for instance, if we usesEE (¢) as the set of safe
representatives for eaehwe require that the global state of the network is known each
time we want to firee. This means we do not keep explicit any concurrency in the un-
folding. It is thus important to try and reduce the numberaafd arcs from each event.
To this extent we define a notion ofinimalityfor safe representatives.

We can define a partial ord€r on co-sets.e. sets of places using the cardinality
of the sets:C; C C; iff |Cy] < |Cq|. For eachC € ENABLE(e) we can take one
minimal element in the set of safe representativeS .dbivene € E, SAFE(e) denotes
a set of minimal safe representatives, one for eéch ENABLE(e). In the example
for A7 we can take the sets:ABE(e;) = {(0,U), (0, B)}, SAFE(e2) = {(A,U)},
Sare(ez) = {(0, B)}. For the independent automata of Fig. 3(a), we obtainahat
a safe representative of (in Fig. 3(b)): indeed) is a safe representative @f, A) and
a safe representative ¢f, B) which belongs to EABLE(e;). For the NTA given by
Fig. 3(a) we obtain the unfolding of Fig. 3(b).

The minimality criterion we have defined does not give a uaigat of safe represen-
tatives. A consequence is that there is no smallest comfiétie prefix for a NTA but
rather a set of set of minimal complete finite prefixes. Moeg@s we take at least one
safe representative for each p@irC) the branching process we build is still complete.

Checking Validity of Timed Configuration.To complete the construction and provide
a solution to the problem of checking whether a timed conéition is valid, we can
define the constrainf'(e) associated with an eventby: I'(e) = ¥([e])|fejnp- This
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Figure 4. Reduced Extended symbolic unfolding for the example of Fig. 1(a)

constraint gathers the constraints of all the past evehis bfanching process obtained
this way is aeducedbranching process with only constraints on events. Forg¢heark

of timed automata of Fig. 1(a), the reduced branching pocegiven on Fig. 4. It
enables us to decide whether a closed set of evérgsa prefix of an extended symbolic
branching process.

5 Conclusion

In this paper we have defined a modelfended symbolic branching processdefine
the concurrent semantics of timed systems. We have alseg@tbat each NTA admits

afinite complete prefixvhich is a symbolic extended branching process, and we have

given an algorithm to compute such a prefix. Other intergstasults are: 1) there is
no unigue complete finite prefix for a NTA but rather a set of ptate finite prefixes;
2) building asmall (optimal) complete finite prefix is very expensive as it regsithe
computation of information spread across the network; gneieShave pointed out the
difficulties arising in the construction of such a prefix, redyrthe need fosafe co-sets
Our future work will consist in: a) define heuristics to detére when an event can
be added to a prefix of an unfolding; this means having an efffiavay of computing
safe representatives, which are no more guaranteed to bmahjrb) when step 1 is
developed, we can define algorithms to check propertiesedfifA using the unfolding
and assess the efficiency of these algorithms.
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