
Symbolic Unfoldings For Networks of
Timed Automata

Franck Cassez1⋆, Thomas Chatain2 and Claude Jard3

1 CNRS/IRCCyN, Nantes, France –franck.cassez@cnrs.irccyn.fr

2 IRISA/INRIA, Campus de Beaulieu, Rennes, France –Thomas.Chatain@irisa.fr

3 IRISA/ENS Cachan, Campus de Kerlann, Bruz, France –Claude.Jard@irisa.fr

Abstract In this paper we give a symbolic concurrent semantics for network of
timed automata (NTA) in terms ofextended symbolic nets. Extended symbolic
nets are standard occurrence nets extended withread arcsand symbolic con-
straintson places and transitions. We prove that there is acomplete finite prefix
for any NTA that contains at least the information of the simulation graph ofthe
NTA but keep explicit the notions of concurrency and causality of the network.

1 Introduction

Concurrent Semantics for Finite State Systems.The analysis ofdistributedor concur-
rent finite state systems has been dramatically improved thanks to partial-order meth-
ods (see e.g. [21]) that take advantage of theindependencebetween actions, and to
theunfoldingbased methods [11,16] that improve the partial order methods by taking
advantage of thelocality of actions.

Timed Systems.The main models that include timing information and are usedto
specify distributed timed systems are networks of timed automata (NTA) [1], and time
Petri nets (TPN) [17]. There are a number of theoretical results about NTA and TPN and
efficient tools to analyze them have been developed. Nevertheless the analysis of these
models is always based on the exploration of a graph which is asingle large automaton
that produces the same behaviours as the NTA or the TPN; this induces an exponential
blow up in the size of the system to be analysed.

Related Work. In [13,18], the authors define an alternative semantics for NTA based
on local time elapsing. The efficiency of this method dependson two opposite factors:
local time semantics generate more states but the independence relation restricts the
exploration. In [15] (a generalization of [22]), the independence between transitions
in a TA is exploited in a different way: the key observation isthat the occurrences of
two independent transitions do no need to be ordered and consequently nor do the oc-
currences of the clock resets. The relative drawback of the method is that, before their
exploration, the symbolic states include more variables than the clock variables. Partial
order methods for TPNs are studied in [20], where the authorsgeneralize the concept

⋆ Work supported by the project CORTOS, a program of the French government.

of stubborn setto time Petri nets, calling it aready set. They apply it to thestate class
graph construction of [5]. The efficiency of the method depends on whether the (dy-
namical) timing coupling between transitions is weak or not. Unfortunately the urgent
semantics of this model entails a strong timing coupling. The previouspartial order
methods only take advantage of the independence of actions and not of any locality
property. We are interested in a true concurrent semantics for NTA and this has not
been developed in the aforementioned work.
Process semanticsfor time Petri nets which is a generalization of the unfolding seman-
tics for time Petri nets has been developed by different researchers. From a semantical
point of view, Aura and Lilius have studied in [19] therealizability problemof a non
branching process in a TPN. They build an unfolding of the untimed Petri net under-
lying a safe TPN, and add constraints on the dates of occurrence of the events. It is
then possible to check that a timed configuration is valid or not. In [12] the authors
consider bounded TPN and a discrete time domain: the elapsing of one time unit is a
special transition of the net. Thus the global synchronization related to this transition
heavily decreases the locality property of the unfolding. Furthermore, when the inter-
vals associated with the transitions involve large integers, this method suffers the usual
combinatorial explosion related to the discrete time approach.

Section 3 of this paper can be viewed as the counterpart of thework of Aura and
Lilius [19] in the framework of NTA: we define similar notionsfor NTA and build a
symbolic unfoldingwhich is asymbolic net. We have to extend the results of Aura and
Lilius because there is no urgency for firing a transition1 in a NTA. As stated in [19]
those unfoldings are satisfactory forfree choice netswhich are a strict subclass of TPN.
Our NTA are not free choice nets and in section 4 we refine our symbolic unfolding to
obtain anextended symbolic unfoldingwhich is a symbolic net withread arcs.

Following our recent approach [9] using the notion of symbolic unfolding to capture
the partial order behaviors of TPN, we propose in this paper asimilar notion for NTA,
but we cannot directly apply the framework of [9]. Indeed TA and TPN have different
expressive powers [4,8] and as stated earlier NTA do not havethe niceurgencyfeatures
that TPN have.

Up to our knowledge, this is the first attempt to equip NTA witha concurrent se-
mantics, which can be finitely represented by a prefix of an unfolding. In this paper we
answer the following questions:

1. What can be a good model for aconcurrent semanticsof NTA? The result is an
extension of the model of symbolic nets we have proposed in [9];

2. How to define aconcurrent semanticsfor NTA, i.e. how to define asymbolic un-
folding that captures the essential properties of a NTA while preserving concur-
rency information? This is achieved in two steps: first builda symbolic unfolding
and use this object to build a properextended symbolic unfoldingof the NTA. By
properunfolding, we mean a symbolic Petri net on which we can check that alocal
configurationis valid using only theextended causalpast of an event.

3. Is there acomplete finite prefixfor NTA? This result is rather easy to obtain on the
symbolic unfolding object and carries over to the extended symbolic unfolding.

1 invariantsandguardscan be independent and a transition is not bound to fire before its dead-
line given by theguard.

2

About point 3 above, we are not addressing the problem of building such a prefix
efficiently but our work is concerned with identifying the key issues in the construction
of a prefix for NTA. The solution proposed in [9] builds a complete finite prefix for
safe TPNs, but with no guarantee that this prefix is one of the smallest, which is a
very difficult problem to solve. Based on this work, we address more basic questions
about NTA, which are in a sense easier to study than safe TPNs because the concurrent
structure is explicit.

Key Issues.In this section we present informally the problem and the keyissues raised
by the three previous questions. In the case of networks of finite automata,finite com-
plete prefixesexist. For example, for the network2 of Fig. 1(a), a finite complete prefix
is given on Fig. 1(b). Finite complete prefixes contain full information about the reach-
able states of the network and about the set of events that arefeasiblein the network.
A set of events (labels) is feasible iff it is a word that can begenerated by the network.
For example,{t1} is not a feasible set of events in the networkN1, becauset1 must be

0

1

2

t0

t1

A

x ≤ 10

B
x ≤ 2

C

t2; x := 0

t1; x ≤ 2

U

y ≤ 3

V
t2; y ≤ 3

(a) The NTAN1

⊥ δ⊥ = 0

0 A U

δU ≤ 3

e2 t2, δe2
≤ 3

B

δB − δe2
≤ 2

V

e3 t1, δe3
− δe2

≤ 2

2 C

e1

t0
δe1

− δ⊥ ≤ 5

1

(b) Symbolic unfolding for the networkN1

Figure 1. A NTA and its Symbolic Unfolding

preceded byt2. And this appears in the unfolding as evente3 (labelled byt1) must be
preceded bye2 (labelled byt2). In an unfolding, a set of eventsK is aconfigurationif
there is a reachable marking obtained by firing each event inK. For example{⊥, e1}
is a configuration,{⊥, e1, e2} as well, but{⊥, e3} is not ase3 must be preceded bye2

before it occurs. The minimal set of events necessary for an evente to occur is called
the causal past(or local configuration) of e. Note that by definition a configuration
contains the causal past of each of its event. Acompleteprefix is an unfolding that sat-
isfies property(P): a set of events is feasible in the NTA iff it is a configurationof the

2 The automata synchronize on common labels. Labels of the events and places represent the
corresponding location and transition in the network of automata. The constraints appearing
near each node are explained later and can be ignored at this stage.

3

unfolding3. This property of unfoldings is the key point in the untimed case and allows
one to do model-checking on the complete finite prefix. This unfolding can also be used
for fault diagnosispurposes which is a very important application area.

In the case of networks of timed automata, we deal withtimed eventswhich are
pairs (e, δ) whereδ ∈ R≥0. A set of timed eventsE is feasible iff there is a run in
the NTA that generates a timed word that contains all the timed events inE. To de-
cide whether a set of timed events is feasible in a network of timed automata, we can
build asymbolic unfolding. For this, we add a symbolic timing constraintg(e) to each
event of the previous unfolding. For example, withe1 we can associate the constraint

g(e1)
def
= δe1

− δ⊥ ≤ 5, whereδe is the variable that represents the date of occur-
rence ofe. A set of timed events{(e1, d1), · · · , (ek, dk)} is a timed configurationif
{e1, e2, · · · , ek} is a configuration and the constraintg(e1) ∧ · · · ∧ g(ek) is satisfied
when replacing eachδei

by di. For example{(⊥, 0), (e1, 4)} is a timed configura-

tion with g(⊥)
def
= δ⊥ = 0. Thus the property we would like to have for symbolic

unfoldings is (P ′): {(e1, d1), · · · , (ek, dk)} is a timed configuration iff there is a run
(ef(1), df(1)), · · · , (ef(k), df(k)) in the NTA with f a one-to-one mapping from1..k
to 1..k. In the untimed case, one can check that an event is fireable inthe unfolding
using only the causal past of the event. We want this propertyto hold for the timed
unfoldings as well and then a formula associated with an event e should only involve
variables that are associated with events in the causal pastof e (the local configuration
of e). Now assume we want to decide whether{(⊥, 0), (e1, d1), (e2, d2)} is a timed
configuration. It is actually ifd1 − d2 ≤ 2. But this cannot be captured by any conjunc-
tion g(⊥) ∧ g(e1) ∧ g(e2) becausee1 is not in the causal past ofe2 ande2 not in the
causal past ofe1. A symbolic unfolding built by associating constraints with each event
e, with the property that each constraintg(e) uses only variables in the causal past ofe,
does not always contain enough information for property(P ′) to hold. In this paper we
show 1) how to build an unfolding that contains enough information so that(P ′) holds;
2) how to build a finite and complete prefix of the unfolding satisfying (P ′).

Organization of the Paper.The paper is organized as follows. Section 2 presents the
model of NTA and its usual sequential semantics. Section 3 gives a concurrent seman-
tics for NTA in terms ofsymbolic branching processes(SBP) and proves the existence
of complete finite prefixes. The SBP is a first step towards a complete finite prefix hav-
ing property(P ′). In section 4, we show how to build anextendedSBP, usingread-arcs,
which is a complete finite prefix satisfying property(P ′). Section 5 gives a summary
of the paper and directions for future work. The proofs of thetheorems are omitted and
can be found in the extended version of the paper [7].

2 Networks of timed automata

Notations . Given a setB we useBε for the setB ∪ {ε} (assumingε 6∈ B). Let
X = {x1, · · · , xn} be a finite set ofclockvariables. Avaluationν is a mapping from
X to R≥0. Let X ′ ⊆ X. The valuationν[X ′] is defined by:ν[X ′](x) = 0 if x ∈ X ′

3 Actually we should write “it is a labeling” of a configuration of the unfolding.

4

andν[X ′](x) = ν(x) otherwise.ν|X′ is the restriction (projection) ofν to X ′ and is
defined byν|X′(x) = ν(x) for x ∈ X ′. We denote0 the valuation defined by0(x) = 0
for eachx ∈ X. For δ ∈ R, ν + δ is the valuation defined by(ν + δ)(x) = ν(x) + δ.
C(X) is defined to be the set of conjunctions of terms of the formx − x′ ⊲⊳ c or x ⊲⊳ c
for x, x′ ∈ X andc ∈ N and⊲⊳∈ {<,≤,=,≥, >}. C(X) is called the set ofdiagonal
constraintsover X. The set ofrectangularconstraints,Cr(X) is the subset ofC(X)
where only constraints of the formx ⊲⊳ c appear. Given a formulaϕ ∈ C(X) and a
valuationν ∈ R

X
≥0, we useϕ[x/ν(x)] for ϕ wherex is replaced byν(x). we denote

ϕ(ν) ∈ {tt, ff} the truth value ofϕ[x/ν(x)]. We let [[ϕ]] = {ν ∈ R≥0 |ϕ(ν) = tt}. A
subsetZ of R

X
≥0 is a zone ifZ = [[ϕZ]] for someϕZ ∈ C(X). Note that the intersection

of two zones is a zone. Two operators are defined on zones: thetime successoroperator,
Zր = {v+δ | v ∈ Z, δ ∈ R≥0} and theR-resetoperator,Z[R] = {v | ∃v′ ∈ Z s.t.v =
v′[R]}. BothZր andZ[R] are zones ifZ is a zone.

Timed Automata. Timed automatawere introduced in [1] to model systems which
combinediscreteandcontinuousevolutions.

Definition 1. A timed automatonA is a tuple(L, ℓ0, Σ,X, T, Inv) where:L is a finite
set of locations; ℓ0 is the initial location; Σ is a finite set ofdiscreteactions;X =
{x1, · · · , xn} is a finite set of (positive real-valued)clocks; T ⊆ L × Cr(X) × Σ ×
2X × L is a finite set oftransitions: (ℓ, g, a,R, ℓ′) ∈ T represents a transition from
the locationℓ to ℓ′, labeled bya, with the guardg and the reset setR ⊆ X; we write
SRC(t) = ℓ, TGT(t) = ℓ′, G(t) = g, λ(t) = a and R(t) = R. Inv ∈ Cr(X)L assigns
an invariantto any location. We require thatInv be a conjunction of terms of the form
x ⊲⊳ c with ⊲⊳∈ {<,≤} andc ∈ N.

A stateof a timed automaton is a pair(ℓ, v) ∈ L×R
X
≥0. A timed automaton isbounded

if there exists a constantk ∈ N s.t. for eachℓ ∈ L, Inv(ℓ) ⊆ [[0 ≤ x1 ≤ k ∧ · · · ∧ 0 ≤
xn ≤ k]]. Examples of timed automata are given in Fig. 1(a). In the sequel we require
that for any valuationv and any transitiont = (ℓ, g, a,R, ℓ′), g(v) =⇒ Inv(ℓ′)(v[R]).

Definition 2. The semantics of a timed automatonA = (L, ℓ0, Σ,X, T, Inv) is a la-
beled timed transition system (TTS)SA = (Q, q0, T ∪R≥0,→) with Q = L×(R≤0)

X ,
q0 = (ℓ0,0) is the initial state and→ consists of the discrete and continuous transition

relations: i) the discrete transition relation is defined for all t ∈ T by: (ℓ, v)
t
−→ (ℓ′, v′)

⇐⇒ ∃t = (ℓ, g, a,R, ℓ′) ∈ T s.t.g(v) = tt, v′ = v[R 7→ 0]; ii) the continuous tran-

sition relation is defined for allδ ∈ R≥0 by: (ℓ, v)
δ
−→ (ℓ′, v′) iff ℓ = ℓ′, v′ = v + δ

and∀0 ≤ δ′ ≤ δ, Inv(ℓ)(v + δ′) = tt. A run of a timed automatonA is a path inSA

starting inq0 where continuous and discrete transitions alternate4. The set of runs ofA
is denoted by[[A]]. A stateq is reachablein A if there is a run fromq0 to q. REACH(A)
is the set of reachable states ofA. A timed wordw ∈ (T × R≥0)

∗ is acceptedbyA if
there is a runρ ∈ [[A]] s.t. the trace ofρ is w.

The analysis of timed automata is based on the exploration ofa (finite) graph, the
simulation graph, where the nodes aresymbolic states. A symbolic state is a pair(ℓ, Z)
whereℓ is a location andZ azoneover the setRX

≥0.

4 In our definition runs are labeled by transitions.

5

Definition 3. Thesimulation graphSG(A) of a timed automatonA is given by: i) the
set of states is the set of symbolic states of the form(ℓ, Z) whereZ is a zone; ii) the
initial state is(ℓ0, Z0) with Z0 = 0

ր ∩ [[Inv(ℓ0)]]; iii) (ℓ, Z)
a
−→ (ℓ′, Z ′) if there is

a transition (ℓ, g, a,R, ℓ′) in A s.t. Z ∩ [[g]] 6= ∅ (this ensuresZ ′ is not empty) and

Z ′ =
(

(Z ∩ [[g]])[R]
)ր

∩ [[Inv(ℓ′)]].

We assume that the timed automata are boundedi.e. in each locationℓ, Inv(ℓ) is
bounded5. In this case the number of zones of the simulation graph is finite [14,6].

Network of Timed Automata. We use the classical composition notion based on
a synchronization function. Let A1, . . . , An be n timed automata withAi =
(Li, li,0, Σi,Xi, Ti, Invi). We assume that for eachi 6= j, Li∩Lj = ∅ andXi∩Xj = ∅
(clocks are not shared). Asynchronization constraintI is a subset ofΣε

1 × Σε
2 · · · ×

Σε
n\(ε, · · · , ε). The (synchronization) vectors of a synchronization constraintI indicate

which actions synchronize. For(t1, · · · , tn) ∈ T ε
1 × · · ·T ε

n we writeλ(t1, · · · , tn) =
(λ1(t1), · · · , λn(tn)) with λi(ε) = ε. λ−1(I) ⊆ T ε

1 × · · ·T ε
n indicates how the tran-

sitions synchronize. Fort ∈ λ−1(I), we let: SRC∗(t) = {l ∈ SRC(t[i]) | t[i] 6= ε},
TGT∗(t) = {l ∈ TGT(t[i]) | t[i] 6= ε}, R(t) = {x |x ∈ R(t[i]) and t[i] 6= ε},
G(t) = ∧t[i] 6=εG(t[i]).

Definition 4. The network of timed automata (NTA)(A1| . . . |An)I is the timed au-
tomatonB = (L, l0, Σ,X, T, Inv) defined by:L = L1×· · ·×Ln, l0 = (ℓ1,0, · · · , ℓn,0),
Σ = Σ1 × · · · × Σn, X = ∪n

i=1Xi; (l, g, a,R, l′) ∈ T iff ∃t ∈ λ−1(I) s.t.: (1) if
t[i] 6= ε thenli = SRC(t[i]) and otherwisel′i = TGT(t[i]), (2) a = λ(t), g = G(t) and
R = R(t) andInv(l) = ∧n

i=1Invi(ℓi) if l = (ℓ1, · · · , ℓn).

This definition implies that if eachAi is bounded (resp. simple) then the NTA is
bounded (resp. simple).

3 Symbolic Unfolding for Network of Timed Automata

In this section we define the symbolic semantics of a NTA in terms ofsymbolic branch-
ing processes. Those processes contain timing constraints both on placesand events.
We do not recall the definitions ofoccurrence nets, branching processes (BP)for un-
timed network of automata. The reader is referred to [10] fora detailed presentation of
these notions.

Let (A1| . . . |An)I be a synchronous product of TA. In a first step, we build the
untimed branching processes(UBPs) of(A1| . . . |An)I . For each timed automatonAi

we let UNTIME(Ai) be the automaton obtained by removing all the timing constraints
and clocks inAi. An UBP of a NTA is a BP of the network of untimed automata
(UNTIME(A1)| . . . |UNTIME(An))I in the sense of [10]. The set of UBPs is defined
inductively over two setsE andP by: i) ⊥ ∈ E , ii) if e ∈ E ands ∈ L then(e, s) ∈ P,
iii) if S ⊆ P andt ∈ λ−1(I) then(S, t) ∈ E . On those two sets we define the mappings
•(), ()

•:

5 Any timed automaton can be transformed into an equivalent (behaviours) bounded automa-
ton [2].

6

– for E , •⊥ = ∅, and ife = (S, t), •e = S; ande• = {s | (e, s) ∈ P};
– for P: •(e, s) = e and(e, s)

•
= {e | •e ∩ s 6= ∅}.

By definition of E and P a SBP is completely determined byE ansP as •() and
()

• are implicitly defined. Letx, y be two nodes (place or transitions). Ifx ∈ •y or
y ∈ x• there is anarc from x to y and we writex → y. This enables us to refer to
the directed graph of a netwhich is simply the graph(E ∪ P,→). The reflexive and
transitive closure of→ is denoted�. x, y arecausally relatedif eitherx � y or y � x.
x is in the (strict)causal pastof y if x � y andx 6= y, i.e. x ≺ y. x, y are inconflict,
notedx#y, if there is a placep ∈ P such thatp → w � x andp → u � y with
u 6= w. x andy areconcurrentif x andy are neither causally related nor in conflict.
If J is a set of events then↑ J =

(

∪e∈J e•
)

\
(

∪e∈J
•e

)

. For a setJ ⊆ E ∪ P
⌈J⌉ = {e′ ∈ E ∪ P | e′ � e for somee ∈ J}. A set of eventsJ is causally closedif
⌈J⌉ = J . A configurationof a BP is a set of eventsK ⊆ E which is causally closed
and conflict-free. A setA is a co-setiff A ⊆↑K whereK is a configuration. Acut
S ⊆ P is a set of places which is a maximal co-set. To each configuration K, we can
associate a unique cut↑K which is denoted CUT(K). A placep = (e, s) ∈ P is a
i-place if s ∈ Li. We can define the union of two branching processes(E1, P1) and
(E2, P2) component-wise on events and places. BPs are closed under countable union
and theunfoldingof (UNTIME(A1)| . . . |UNTIME(An))I is be the maximal branching
process. The next two properties are taken from [10]:

Proposition 1. Twoi-places of a UBP are either causally related or in conflict.

Proposition 2. LetC be a cut of a UBP.C contains onei-place for each1 ≤ i ≤ n.

Thus given a configurationK, CUT(K) corresponds to a unique state of the product of
untimed automata.

Thesymbolicbranching processes of a NTA are built from the UBP. The intuition
is that we associate with places and events a time variable. For an evente, the variable
δe stands for the (global) time at which evente fired. For a placep, δp stands for the
most recent (global) time for which a token was inp. We defineδ(E ∪ P) to be the
set of variables{δx |x ∈ E ∪ P}. A symbolic branching process (SBP)(E,P, γ) of
(A1| . . . |An)I is a UBP(E,P) of (UNTIME(A1)| . . . |UNTIME(An))I with γ : E ∪
P → C(δ(E ∪ P)) a mapping that associates to each node a timing constraint. The
constraint on a nodex should only refer to variables in⌈x⌉.

The constraintγ(x) is computed by rewriting the timing constraints of the NTA
in terms of the variablesδy for y ∈ ⌈x⌉. For the event⊥ we just setδ⊥ = 0 stating
that the system started at time0. On the example of Fig. 1(b), to compute the timing
constraintγ(U) we just rewrite the invarianty ≤ 3 in terms of the firing times of
the events in the past of placeU : if the current (global) time at which a token is in
U is δU we must havex = δU − δ⊥ ≤ 3 i.e. δU ≤ 3. For evente3, we must have
x ≤ 2 and the value ofx is given byδe3

− δe2
which yieldsδe3

− δe2
≤ 2. The

result for the NTA of Fig. 1(a) is depicted on Fig. 1(b). The important point is that each
constraintγ(x) is entirely determined byx. Hence to each UBP(E,P) we can associate
a unique SBP(E,P, γ). We can thus define thesymbolic unfoldingTBP(A1| . . . |An)I

of (A1| . . . |An)I to be the symbolic branching process associated with the unfolding
of (UNTIME(A1)| . . . |UNTIME(An))I .

7

To define cuts for SBP we need to take into account the timing constraints: for
instance in Fig. 1(b),(0, A, U) is a cut iff δ0 = δA = δU ≤ 3 meaning that the global
time in each place is the same and the constraints on the places are satisfied. For an
event the same strategy applies. We can define a formula that characterizes all the timed
cuts of a SBP:

Definition 5. (M,Φ) is a symbolic co-setof (E,P, γ) if: 1) M is a co-set of(E,P),
2) Φ = Φ1(M) ∧ Φ2(M) ∧ Φ3(M) ∧ Φ4(M) with:

Φ1(M) =
∧

x∈⌈M⌉

γ(x) (1)

Φ2(M) =
∧

e∈⌈M⌉∩E

(

∧p∈•eδp = δe

)

(2)

Φ3(M) =
∧

p∈M

(

δ•p ≤ δp

)

(3)

Φ4(M) =
(

∧

p,p′∈M

δp = δp′

)

(4)

If M is a cut of(E,P), (M,Φ) is a symbolic cut. The meaning of formula (2) is that
the last dateδp at which a token was inp is the time at which an event removed a token
in p. (3) imposes that if a token is inp andp is in a co-set, the current time inp which
is δp is larger than the date of occurrence of the event that put a token inp. Finally (4)
requires that all the places in the co-set have reached the same global time. The reason
why we need to use variables associated with places is because there is no urgency in
NTA. Notice that the formulaΦ of a symbolic co-set is entirely determined by the co-set
M and unique; we denote it byΦM . Moreover the form of the constraints onδ(E ∪ P)
in the SBP is such thatΦM is a zone for each symbolic cutM :

Theorem 1. For each symbolic cut(M,ΦM) ΦM is a zone.

Given a SBP(E,P, γ), a setM ⊆ P , and a mappingΘ : δ(⌈M⌉) → R≥0 that
associates with each node a date,(M,Θ) is a timed cutiff (M,ΦM) is a symbolic cut
andΘ ∈ [[ΦM]]. Given a timed cut(M,Θ) we can associate a unique state of the NTA
GS(M,Θ): it suffices to compute the values of each clock variables inX from the
values of the nodes variables in the SBP. Conversely, given astate(l, v) of the product,
we can associate a timed cut to(l, v) as stated by Theorem 3 below.

Theorem 2. If K is a configuration ofTBP(A1| . . . |An)I andΘ ∈ [[ΦCUT(K)]] then a)
GS(CUT(K), Θ) = (l, v) for some(l, v) reachable in(A1| . . . |An)I , and b) ifK∪{e}

is a configuration andΘ ∈ [[ΦCUT(K)∧γ(e)
∧

(

∧p∈•eδp = δe

)

]] then(l, v)
λ(e)
−−−→ (l′, v′)

with GS(K ∪ {e}, Θ′) = (l′, v′) and Θ′
|CUT(K) = Θ and Θ′(x) = Θ(p) for some

p ∈ CUT(K) otherwise.

The formulaΦCUT(K) ∧ γ(e)
∧

(

∧p∈•eδp = δe

)

asserts that the global time is the same
in every automata which is also equal to the firing time ofe and that the guard of the
transitiont holds.

Theorem 3. Let (l, v) be a reachable state in(A1| . . . |An)I . There is a configuration
K of TBP(A1| . . . |An)I and Θ ∈ [[ΦCUT(K)]] s.t.: a) GS(CUT(K), Θ) = (l, v), and

b) if (l, v)
t
−→ (l′, v′) there is a configurationK ∪ {e} s.t.λ(e) = t and a valuation

Θ′ ∈ [[ΦCUT(K∪{e})]] s.t.GS(K ∪ {e}, θ′) = (l′, v′).

8

If a TBP T satisfies the conditions of Theorem 3, we say thatT is complete. The-
orem 2, corresponds to acorrectnessproperty. For network of finite untimed automata,
complete and correct finite branching processes exist, and are calledcomplete finite
prefixes[16,10]. In the case of network of timed automata we can construct a finite
complete prefix that preserves the reachability information of the simulation graph.

Theorems 3 and 2 have two consequences. They follow from the fact that each
ΦCUT(K) is a zone for a configurationK. This means that the set of valuations reachable
by all the linearizations of the events inK defines a zone as well. In the symbolic
unfolding we construct, we obtain one zone for all the linearizations of the events in
K whereas inSG((A1| . . . |An)I) they could be two distinct states for two different
linearizations. The first consequence is that the union of the zones reachable by all the
linearization inSG((A1| . . . |An)I) is a zone. Indeed computing global states preserves
zones. This result was obtained recently by Ramzi Ben Salah,Marius Bozga and Oded
Maler in [3] and has useful consequences. Our framework gives an alternative proof of
this result and accounts for it in terms of partial order. Thesecond consequence is that
finite complete prefixes exist for NTA.

Assume the two configurationsK1 and K2 lead to the same symbolic state
GS(CUT(K1), ΦCUT(K1)) = GS(CUT(K2), ΦCUT(K2)), then they have the same fu-
ture. Thus we can discard the events that extend one of them, for instance the
smallest w.r.t. the order≪ defined as:K1 ≪ K2 iff GS(CUT(K1), ΦCUT(K1)) =
GS(CUT(K2), ΦCUT(K2)) ∧ |K1| < |K2|. As the simulation graph contains a finite
number of (union of) zones and because eachΦCUT(K) is a union of zones, we can not
have an infinite number of different symbolic states. This allows us to construct a com-
plete finite prefix by keeping only the eventse such that there exists a configurationK
that enablese and is minimal w.r.t.≪. We let PREF((A1| . . . |An)I) be the complete
symbolic finite prefix obtained from(A1| . . . |An)I . So far we are able to answer the
question whether a set of timed events is a timed configuration: given the set of events
K and the valuationΘ we can check whetherΘ ∈ [[ΦCUT(K)]]. What we would like to
do is to check whether a set of eventsK can be extended to a configurationi.e. if ↑(K)
is a co-set. We cannot do this directly with the SBP we have constructed so far. In the
next section we refine our unfolding so that we do not need to look at the global state of
the system to decide whether a set of events can be extended toa timed configuration.

4 Extended Finite Complete Prefixes

In the case of finite automata, any cut containing a co-set that enables an event, still
enables the same event. This is not the case for network of timed automata as can be
seen on the example of Fig. 1(b). Ife2 has not fired,e1 can fire because nothing can
prevent it from doing so (e3 is not enabled). The fact thate2 has not fired can be inferred
from the fact that either placeA or U contains a token. But this implies that the dateδe1

at whiche1 fires satisfiesδe1
≤ 3. If e2 has fired atδe2

, e3 ande1 are in conflict. Thus
e1 can only occur at a date when a token can be inB, i.e. to fire we must haveδB = δe1

and the constraint on the date at which a token can be inB which isδB − δe2
≤ 2. This

impliesδe1
− δe2

≤ 2. Thus the timing constraints associated withe1 are not the same
in the cuts(0, A, U) and(0, B, V) although they are both cuts that contain•e1.

9

To encode this timing dependency structurally we can use symbolic occurrence nets
with read arcs. For instance the symbolic net of Fig. 1(b) can be “transformed” into the
symbolic extended net of Fig. 2 (a read arc is a dash line). Read arcs enable us to point
to the missing timing information in the net that is needed toensure an event can fire.
This also means that we duplicate the evente1 into e1 ande′1 because the constraints
are different depending on whethere2 has occurred or not. Read arcs enlarge thecausal
pastof the events. In the extended occurrence net, the constraint between the dates of
occurrence ofe1 ande2 can be inferred from the past ofe1: indeed, to fire, we must
haveδe1

= δB and thusδe1
− δe2

≤ 2. Read arcs enable us to differentiate the two cuts
(0, A, U) and(0, B, V) that generate different timing constraints one1 ande2.

Extended Branching Processes.An extended netN is a tuple(E,P, •(), ()
•
, ◦())

where(E,P, •(), ()
•
) is a net, and◦() : E → 2P . If ◦e = ∅ for eache ∈ E then

N is a net. The set◦e represents the input places of an event that are to be read without
removing a token. TheExtendedsymbolic branching processes (ESBP) of a network
are defined as in section 3: the only change we need to do is to define the set of events
so that it includes theread-onlyplaces of an event denoted◦e. To this end, ifS, S′ ⊆ P
andt ∈ T , (S, S′, t) is in E and ife = (S, S′, t), ◦e = S′.

The causality relation is now defined by:x → y if x ∈ •y ∪ ◦y or y ∈ x•. � is
the reflexive and transitive closure of→. Theweakcausality relation99K is given by:
x 99K y if eitherx → y or ◦x∩ •y 6= ∅ (if x needs a token in one of the input place ofy
this implies a causality relation, even ifx is not in the past ofy in the sense of→.). We
let E the reflexive and transitive closure of99K. Two nodesx andy areweakly causally
related if either x E y or y E x. x andy are in conflict,x#y, if there is a placep s.t.
there existw andu, w 6= u, p ∈ •u∩ •w andw E x andu E y. x andy are concurrent
if they are not weakly causally related nor in conflict. ForJ ⊆ E ∪P , the definitions of
↑J and⌈J⌉ are unchanged (we use the new�). A set of events is now causally closed
if ⌈J⌉ = J . Co-sets, configurations and cuts are defined as before.

Safe Co-sets.Let ENABLE(e) denote theenabling cutsof e 6= ⊥ in a finite sym-
bolic branching processN : ENABLE(e) = {C | •e ⊆ C andC is a cut ofN}. As a
running example we take the prefixN1 built in Fig. 1(b) andδ⊥ is always replaced by0
(zero). For this example the enabling cuts are: ENABLE(e1) = {(0, A, U), (0, B, V)},
ENABLE(e2) = {(0, A, U), (1, A, U)}, ENABLE(e3) = {(0, B, V)}.

Now assume an evente is in conflict with another evente′ in the symbolic unfolding.
As we pointed out at the end of section 3, the timing constraints given by⌈•e⌉ on the
firing time of e do not always contain enough information to ensure evente can fire:
evente1 in N1 can fire if a)e2 has not fired (this must be at timeδ ≤ 3), or b) e2 has
fired, and the time elapsed since it has occurred is less than 2time units (i.e. at timeδ
with δ − δe2

≤ 2), or c) e2 has been disabled by another event in conflict with it and
cannot occur in the future. To ensuree can fire, we should add to the conditions in•e
some information about the events in conflict withe. This is the purpose ofsafe co-sets.
They extend the co-sets of the symbolic unfolding with some information about the
conflicting events. In terms of occurrence nets, a safe co-set for an evente will be the
set of places•e, extended with a set aread onlyplaces,◦e. The information contained

10

⊥ δ⊥ = 0

0
A

U

δU ≤ 3

e2 t2, δe2
≤ 3

B

δB − δe2
≤ 2

V

e3 t1, δe3
− δe2

≤ 2

2 C

e1

t0
δe1

≥ 0

e′1
t0
δe′

1
≥ 0

11

Figure 2. Extended symbolic unfolding for the example of Fig. 1(a)

in a safe co-set should be such that, if the timing constraints obtained byΦ•e∪◦e are
satisfied, then there is a cutC ⊇ •e ∪ ◦e s.t.ΦC is satisfied.

For any cutC, the formulaΦC (Def. 5, equations (1)–(4)) is a formula overδ(C ∪
(⌈C⌉ ∩ E)). Indeed all the intermediate placesp, not in the cut, are constrained by a
formula of the formδe = δp because of equation 2 of Def. 5. For instanceΦ(0,B,V) =
δB − δe2

≤ 2 ∧ 0 ≤ δe2
≤ 3 ∧ δB ≥ δe2

∧ δ0 = δB = δV .
Because of the termΦ4, if we use an extra variableδ and the formula(δ = δp)∧ΦC

for any6 p ∈ C, we obtain a formula overδ(⌈C⌉ ∩ E) ∪ {δ}: δ stands for the current
global time (since the system started) and the constraint onδ in ΦC defines the set of
instants for which the cutC is reachable i.e.there are tokens in each placep ∈ C. We
write Φδ

C for the projection on(⌈C⌉ ∩ E) ∪ {δ} of the formulaΦC ∧ (δ = δp). In our
example,Φδ

(0,A,U) = δ ≤ 3, Φδ
(1,A,U) = δe1

≤ 3 ∧ δe1
≤ δ ≤ 3 andΦδ

(0,B,V) =
δ − δe2

≤ 2∧ 0 ≤ δe2
≤ 3∧ δ ≥ δe2

. This last example is interesting because it shows
that the set of dates s.t. a token is in(0, B, V) depends on the time at whiche2 occurred.
Finally we letΘ(e) = {Φδ

C |C ∈ ENABLE(e)} and in the previous example, we obtain:
Θ(e1) = {Φδ

(0,A,U), Φ
δ
(0,B,V)}, Θ(e2) = {Φδ

(0,A,U), Φ
δ
(1,A,U)}, Θ(e3) = {Φδ

(0,B,V)}

Θ(e) represents the set of different constraints that can be generated by all the enabling
cuts of evente.

Definition 6. A set of placesS is a safe representativeof a pair (e, C) wheree ∈ E
and C ∈ ENABLE(e) if 1) •e ⊆ S ⊆ C and 2) for all ν : δ(⌈C⌉ ∩ E) ∪ {δ} →
R≥0 if ν|δ(⌈S⌉∩E)∪{δ} ∈ [[Φδ

S]] andν|δ(⌈C\S⌉∩E)∪{δ} ∈ [[Φδ
C\S

]] thenν ∈ [[Φδ
C]]. S is

a safe representative ofe if S is a safe representative of each pair(e, C) with C ∈
ENABLE(e).

If S is a safe representative of(e, C), then if γ(e) holds together withΦS , e can be
added to the unfolding. For example,(0, A) is not a safe representative of(0, A, U)

6 As equation (4) already imposesδp′ = δp for p, p′ ∈ C we can addδ = δp for anyp in C.

11

becauseΦδ
(0,A) = δ ≥ 0 andΦδ

(0,A,U) = δ ≤ 3. (0, U) is a safe representative of
(0, A, U) as well as(0, A, U) itself. (0, B) is a safe representative of(0, B, V). As
each cutC ∈ ENABLE(e) is a safe representative of itself, there is always one safe
representatives for anyC which is ENABLE(e). We can state a theorem which is a
variant of Theorem 2 using only safe representatives of an event (itemb) of the theorem
is altered):

Theorem 4. If K is a configuration ofTBP(A1| . . . |An)I and Θ ∈ [[ΦCUT(K)]] then
a) GS(CUT(K), Θ) = (l, v) for some(l, v) reachable in(A1| . . . |An)I , and b) if
K ∪ {e} is a configuration andS is a safe representative ofCUT(K) andΘ ∈ [[ΦS ∧

γ(e)
∧

(

∧p∈•eδp = δe

)

]] then(l, v)
λ(e)
−−−→ (l′, v′) with GS(K ∪ {e}, Θ′) = (l′, v′) and

Θ′
|CUT(K) = Θ andΘ′(x) = Θ(p) for somep ∈ CUT(K) otherwise.

This theorem is a direct consequence of Theorem 2 and Def. 6. It states that a safe
representative fore contains enough information to decide whether evente can be fired
or not. As a consequence, if whenever we add a new evente to a (finite) extended
symbolic branching process of a NTA(A1| . . . |An)I , we use a safe representativeS =
•e∪◦e and addread-arcsto the places of◦e, then⌈e⌉ (including⌈S⌉) gives the accurate
constraints on the dateδe at whiche can fire.

To build an extended complete finite prefix for a NTA we can proceed as follows:
1) build the symbolic net defined in section 3; this enables usto obtain the safe co-sets
for each event; 2) build an extended net by adding an event to the unfolding using safe
co-sets instead of simple co-sets. On the example of Fig. 1 this gives the unfolding of
Fig. 2:

1. start with places0, A, U and event⊥;
2. to add an event labelledt0 use a safe co-set: we choose(0, U) and add evente′1

with a read arc toU ;
3. adde2 ande3;
4. now a new safe co-set has appeared:(0, B); we can add an evente1 labelled byt0

with a read arc from placeB.

This construction can be formally defined (see [7]). The result is a finite extended sym-
bolic complete prefix EPREF((A1| . . . |An)I) that satisfies property(P ′). Formally, we
definesymbolic configurations. Assume EPREF((A1| . . . |An)I) = (E,P, γ).

Definition 7. (K,Ψ) is asymbolic configurationof (E,P, γ) if: 1) K is a configuration
of (E,P), and 2)Ψ = Ψ1(K) ∧ Ψ2(K) whereΦi(M), 1 ≤ i ≤ 2 are defined by:

Ψ1(K) =
∧

e∈⌈K⌉

γ(e) (5) and Ψ2(K) =
∧

e∈K

(

∧p∈•e∪◦eδp = δe

)

(6)

Notice thatΨ uses only information in the past ofK and is uniquely determined thus
we can write itΨK . Let ν : K → R≥0. (K, ν) is a timed configurationif ν ∈ [[ΨK]].

Theorem 5. If (K ′, Ψ ′) is a symbolic configuration ofEPREF((A1| . . . |An)I) and
Θ′ ∈ [[Ψ ′]] then: there exists a symbolic configuration(K,Ψ) with K ⊇ K ′ andΘ ∈
[[Ψ]] s.t. 1)GS(CUT(K), Θ) = (l, v) for some(l, v) reachable in(A1| . . . |An)I , and

12

0
x ≤ 3

1

a; x ≤ 3

A
y ≤ 2

B

b; y ≤ 2

(a) Two Independent Automata

⊥ δ⊥ = 0

0 A

e2

b

δe2
≤ 2

B

e1

a

δe1
≤ 3

1

(b) The Unfolding

Figure 3. A Network of two Independent Timed Automata

2) if (K ′ ∪ {e}, Ψ ′′) is a symbolic configuration and[[Ψ ′′]] 6= ∅ then(l, v)
λ(e)
−−−→ (l′, v′)

andGS(CUT(K ′ ∪ {e}), Θ′) = (l′, v′) for someΘ′ ∈ [[Ψ ′′]].

On the example of Fig. 1(a),{(⊥, 0), (e1, δe1
), (e2, δe2

)} is a timed configuration iff
δe1

− δe2
≤ 2 andδe2

≤ 3.

Minimality for Safe Co-sets.The purpose of unfoldings is to keep explicit the concur-
rency of events. In the case of untimed network of automata,•e is sufficient to ensure
e can fire. For NTA, we have to use read arcs, but we should be concerned about the
number of the new dependencies: for instance, if we use ENABLE(e) as the set of safe
representatives for eache, we require that the global state of the network is known each
time we want to firee. This means we do not keep explicit any concurrency in the un-
folding. It is thus important to try and reduce the number of read arcs from each event.
To this extent we define a notion ofminimality for safe representatives.

We can define a partial order⊑ on co-setsi.e. sets of places using the cardinality
of the sets:C1 ⊑ C2 iff |C1| ≤ |C2|. For eachC ∈ ENABLE(e) we can take one
minimal element in the set of safe representatives ofC. Givene ∈ E, SAFE(e) denotes
a set of minimal safe representatives, one for eachC ∈ ENABLE(e). In the example
for N1 we can take the sets: SAFE(e1) = {(0, U), (0, B)}, SAFE(e2) = {(A,U)},
SAFE(e3) = {(0, B)}. For the independent automata of Fig. 3(a), we obtain that0 is
a safe representative ofe1 (in Fig. 3(b)): indeed0 is a safe representative of(0, A) and
a safe representative of(0, B) which belongs to ENABLE(e1). For the NTA given by
Fig. 3(a) we obtain the unfolding of Fig. 3(b).
The minimality criterion we have defined does not give a unique set of safe represen-
tatives. A consequence is that there is no smallest completefinite prefix for a NTA but
rather a set of set of minimal complete finite prefixes. Moreover as we take at least one
safe representative for each pair(e, C) the branching process we build is still complete.

Checking Validity of Timed Configuration.To complete the construction and provide
a solution to the problem of checking whether a timed configuration is valid, we can
define the constraintΓ (e) associated with an evente by: Γ (e) = Ψ(⌈e⌉)|⌈e⌉∩E . This

13

⊥ δ⊥ = 0

0
A

U

e2 t2, δe2
≤ 3

B V

e3 t1, δe3
− δe2

≤ 2

2 C

e1

t0
δe1

− δe2
≤ 2

e′1
t0
δe′

1
≤ 3

11

Figure 4. Reduced Extended symbolic unfolding for the example of Fig. 1(a)

constraint gathers the constraints of all the past events. The branching process obtained
this way is areducedbranching process with only constraints on events. For the network
of timed automata of Fig. 1(a), the reduced branching process is given on Fig. 4. It
enables us to decide whether a closed set of eventsK is a prefix of an extended symbolic
branching process.

5 Conclusion

In this paper we have defined a model,extended symbolic branching process, to define
the concurrent semantics of timed systems. We have also proved that each NTA admits
a finite complete prefixwhich is a symbolic extended branching process, and we have
given an algorithm to compute such a prefix. Other interesting results are: 1) there is
no unique complete finite prefix for a NTA but rather a set of complete finite prefixes;
2) building asmall (optimal) complete finite prefix is very expensive as it requires the
computation of information spread across the network; and 3) we have pointed out the
difficulties arising in the construction of such a prefix, namely the need forsafe co-sets.
Our future work will consist in: a) define heuristics to determine when an event can
be added to a prefix of an unfolding; this means having an efficient way of computing
safe representatives, which are no more guaranteed to be minimal; b) when step 1 is
developed, we can define algorithms to check properties of the NTA using the unfolding
and assess the efficiency of these algorithms.

References

1. Rajeev Alur and David Dill. A theory of timed automata.Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

2. Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timedautomata. In

14

Proc. 4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01),
volume 2034 ofLecture Notes in Computer Science, pages 147–161. Springer, 2001.

3. Ramzi Ben Salah, Marius Bozga, and Oded Maler. On interleaving in timed automata. In
Proceedings of the17th International Conference on Concurrency Theory (CONCUR’06),
LNCS, aug 2006. To appear.

4. Béatrice B́erard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime. Compar-
ison of the Expressiveness of Timed Automata and Time Petri Nets. In Paul Pettersson and
Wang Yi, editors,Proceedings of the third International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS’05), volume 3829 ofLecture Notes in Computer
Science, pages 211–225, Uppsala, Sweden, September 2005. Springer.

5. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent systems
using time Petri nets.IEEE Trans. Software Eng., 17(3):259–273, 1991.

6. Patricia Bouyer. Forward analysis of updatable timed automata.Formal Methods in System
Design, 24(3):281–320, 2004.

7. Franck Cassez, Thomas Chatain, and Claude Jard. Symbolic Unfoldings for Networks of
Timed Automata. Technical Report RI-2006-4, IRCCyN/CNRS, Nantes, May 2006.

8. Franck Cassez and Olivier H. Roux. Structural translation from time petri nets to timed
automata.Journal of Systems and Software, 2006. forthcoming.

9. Thomas Chatain and Claude Jard. Complete finite prefixes of symbolic unfoldings of safe
time Petri nets. InICATPN, volume 4024 ofLNCS, pages 125–145, june 2006.

10. Javier Esparza and Stefan Römer. An unfolding algorithm for synchronous products of
transition systems. InCONCUR, volume 1664 ofLNCS, pages 2–20. Springer, 1999.

11. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s unfolding
algorithm.Formal Methods in System Design, 20(3):285–310, 2002.

12. Hans Fleischhack and Christian Stehno. Computing a finite prefix of a time Petri net. In
ICATPN, pages 163–181, 2002.

13. J. Bengtsson, B. Jonsson, J. Lilius, W. Yi. Partial order reductions for timed systems. In
CONCUR 99, volume 1466 ofLNCS, pages 485–500, 1999.

14. Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Efficient verification of real-
time systems: Compact data structure and state-space reduction. InProc. 18th IEEE Real-
Time Systems Symposium (RTSS’97), pages 14–24. IEEE Computer Society Press, 1997.

15. Denis Lugiez, Peter Niebert, and Sarah Zennou. A partial order semantics approach to the
clock explosion problem of timed automata. InProc. 10th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’2004), volume 2988
of Lecture Notes in Computer Science, pages 296–311. Springer, 2004.

16. Kenneth L. McMillan. A technique of state space search based on unfolding. Formal Meth-
ods in System Design, 6(1):45–65, 1995.

17. P.M. Merlin and D.J. Farber. Recoverability of communication protocols – implications of a
theorical study.IEEE Transactions on Communications, 24, 1976.

18. M. Minea. Partial order reduction for model checking of timed automata. InCONCUR 99,
volume 1664 ofLNCS, pages 431–446, 1999.

19. T. Aura and J. Lilius. A causal semantics for time petri nets.Theoretical Computer Science,
1–2(243):409–447, 2000.

20. T. Yoneda, B-H. Schlingloff. Efficient verification of parallel real-time systems.Formal
Methods in System Design, 2(11):187–215, 1997.

21. A. Valmari. Stubborn sets for reduced state space generation. InApplications and Theory of
Petri Nets, volume 483 ofLNCS, pages 491–515, 1989.

22. W. Belluomini, C. J. Myers. Verification of timed systems using posets.In CAV 98, volume
1427 ofLNCS, pages 403–415, 1998.

15

