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Abstract

Programming on the Web enlights some classical prob-
lems encountered on large distributed applications with a
particular emphasis on dynamic changes. In that context,
we are interested in the questions of supervision and diag-
nosis. Our approach is based on true-concurrency models
and consists in building an unfolding of a model of the su-
pervised system, that selects the histories that explain the
observed alarms. In this paper we extend the notion of un-
folding of high-level Petri nets to a model of dynamic sys-
tems that we define. This model is close to high-level Petri
nets and allows us to model dynamicity. Finally we explain
how to use unfoldings of dynamic nets for the diagnosis ap-
plication.

1. Introduction

Until now, the services provided on the Internet were
based on the interaction between a client (browser) and
a server through the HTTP protocol. More recently, the
need to provide services that are usable by programs has
launched the new model of Web services. A Web service isa
self-describing, self-contained modular application that can
be described, published, located, and invoked over a net-
work, e.g. the World Wide Web. A Web service performs an
encapsulated function ranging from a simple request-reply
to a full business process. It appears that the description of
Web services and their orchestration is very similar to the
description of distributed workflows in the context of busi-
ness processes. Figure 1 sketches the mapping between the
business terms and the Web service technologies. A refer-
ence in this domain is the language WS-BPEL [5] (Business
Process Language Language for Web Services).

In this document, we model services with high-level
Petri nets. We model the steps in the procedure as transi-
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Figure 1. Business processes and Web ser-
vices (left part) and an example of peer-to-
peer orchestration (right part).

tions and precedence as arcs in the net. We assume that the
reader has basic knowledge of Petri nets (see Figure 2 for
an example). Data are treated using the symbolic aspects of
high-level Petri nets. Those are also the basis for the rep-
resentation of dynamic changes. The use of such kind of
formal model has already been advocated in [6] and [9] in
the context of workflow specifications. The main originali-
ty here is to consider a very powerful version of high-level
Petri nets to deal with structural dynamic changes and to
define a notion of unfolding for these nets for the purpose
of on-line supervision. We have chosen to work in a Petri
nets framework because our approach is based on unfold-
ings, which have been mainly developped in this context.
Other formal models of concurrency could be used, like au-
tomata networks or process algebras, provided that they are
executable and give an explicit notion of concurrency.

We are concerned with dynamic changes in the struc-



ture of services; we are not concerned here with changes to
the value of an application data variable. Dynamic means
that we are required to make the change “on the fly” in the
midst of continuous execution of the changing procedure.
Web services must make structural changes such as adding
a new service, removing an old service, or changing a given
service behaviour depending on the current state of the sys-
tem (self-adaptation with respect to intermittent resources,
reconfiguration in case of QoS problem).

We have been developing for several years a diagnosis
approach for distributed systems [2], based on dynamic un-
foldings of Petri nets [7], which explicits causalities and
concurrencies linking the observed events (e.g. alarms) in
the explanations. But simple Petri nets are too limited to
deal with data aspects, even for very simple systems. High-
level Petri nets [8] provide an interesting extension. In [4],
we have defined and used the notion of symbolic unfolding
of high-level nets to supervise partially observable distribut-
ed systems.

This model is relevant for static systems, but must be ex-
tended to deal with dynamic systems whose the structure
evolves. The proposed extensions are in the same vein that
those described in [3]. In addition, they include “reading
arcs” [1] to model non-destructive accesses to data. They
also play a role to represent dynamicity. We propose a no-
tion of unfolding for this model. We show that the diagnosis
problem can be expressed as the computation of an unfold-
ing constrained by the observations, in order to retain only
trajectories that explain them.

The paper is organized as follows. We first present our
model of dynamic net, illustrated with a simple example of
Web service. We then define the notion of unfolding for
this type of net. The last section before conclusion presents
the way to use the unfolding in order to select the different
partial order trajectories that explain a given set of observa-
tions.

2. Dynamic nets

The system state is represented as a multiset of token-
s, called marking. Each token carries a value. Transitions
are used to change the current state. When it fires, a tran-
sition removes tokens from the current marking and create
new tokens. It is also possible to only test the presence of
tokens without consuming then by using read arcs. In s-
tandard high-level Petri nets, the set of transitions is static.
In contrast, in our dynamic model, transitions are particular
tokens included in the current marking. As any token, they
can be created or removed. This allows us to model dy-
namic systems, in which the set of system components can
evolve during execution. Furthermore, our dynamic model
does not use the notion of place: the presence of a token
of value ¢ in the place p in a standard high-level Petri net

can be simulated by the presence of a token of value (¢, p)
in the marking. This avoids the difficulty to consider the
dynamicity of places.

2.1. Definition

For a set X, we denote by 2% the set of subsets of X,
and by X ® the finite multisets on X . We write the multisets
between the separators { - [} and we denote by ¢ and & the
sum and difference between multisets.

A dynamic net (or net) is a tuple N £ (Tok, PAR, ¢, ),
where Tok is a set of tokens, PAR is a set of values used as
parameters and « and T/ are maps such that:

o 1 € Tok — (27 x Tok® x PAR) — bool
o W € Tok — (27 x Tok® x PAR — Tok)®

A marking is a multiset of tokens M € Tok®. A to-
ken t € Tok is called transition if it exists » € 27
c € Tok® and p € PAR, such that «(¢)(r,c,p). Further-
more, if ({t} Ur) @ c is included in M, then transition
t can fire with the parameter p, reading the tokens of r,
and consuming the tokens of ¢. We obtain a new mark-
ing M’ £ M & c® W(t)(r,c,p) (we write W (t)(r, c, p)
instead of {Jw(r,c,p) | w € W(t)]}.

We make the assumption that all transitions consume to-
kens. To start the execution of the dynamic net, we add an
initial transition, L, which does not read nor consume any
token. For simplicity we assume that L can fire only with
the value e as parameter. The initial transition is not consid-
ered as a token and never appears in the marking. The set
of transitions is denoted by 7.

2.2. Example of a Web services orchestration

We propose to illustrate our model and the diagnosis ap-
plication by a simple example. It is graphically drawn in
Figure 2. Its formal description is given under the figure.

For the graphical representation, we have split the set
of tokens in two categories: the transitions and the others.
Each square box represents a set of transitions and each cir-
cle represents a set of other tokens. Tokens currently present
in the net are figured inside the boxes and the circles. Ar-
rows figure consumption and creation of tokens by the tran-
sitions. An arrow is labelled by a star if it may represent
the consumption or creation of several tokens. An arrow,
linking a transition ¢ to a transition ¢’ can figure either the
consumption of ¢ by ¢/, or the creation of ¢’ by ¢. We remove
the ambiguity by drawing a fat empty arrow in the first case
and a full one in the second case.



Figure 2 shows a model for a distributed system where
a server selects the best price for a car rent from several
garages each time a client asks for it. There is initially one
garage, but new garages can be added dynamically at any
time. We detail this aspect later. For the moment consid-
er we are in a situation where there are n garages. When
a request arrives, the server sends a request to each of the
n garages. This action is represented by the transition rq,, .
Then all the garages are supposed to answer concurrently
and give their price. The answer of the i garage is repre-
sented by the transition a;, that creates a token p;. When
all the garages have answered, the server selects the best
price (transition min, that creates a token (bp, i) where i is
the number of one of the garages that gave the best price).
At any time a new garage may be added. The transition
add_garage models this: it creates a transition a, 1 that
represents the answer of the new garage (number (n + 1)).
Additionally, the transition rq,, is replaced by rg;,+1, SO
that the next time a client asks for the price of a car, all the
garages (including the new one) will be requested. Because
a garage can be added even while some garages are answer-
ing a request, the number of requested garages is stored (to-
ken (ng, n) in the model) when the requests are sent. Thus
before selecting the best price, the server can check that all
the requested garages have answered, and it will not wait
for answers of new garages.

In addition to the behaviour that was described, any two
garages, say the ;™ and the j™, may choose to agree on the
price. In this case they synchronize to give their answer
together. In our model, the synchronization is represented
by the transition fusion, which deletes the transitions a; and
a; and replaces them by a transition &; ; which gives the
two answers simultaneously with the same price. The read
arc from the idle token from the fusion transition models
the fact that the fusion cannot happen when the server is
waiting for answers from the garages. Figure 3 shows the
structure of the system with two garages in two different
situations where they have not or have respectively agreed
on the price.

3. Unfolding

Our approach of the supervision problem is to consid-
er that some events of the system are observed and corre-
spond to some transitions of the formal model. The problem
is to infer the causal dependencies between these observed
events. This is achieved by a kind of execution of the model,
guided by the observations, and theoretically based on what
is called a net unfolding, which we define formally in this
section. The unfolding of our example is shown in figure 4.
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(ng,n) | n € N} {add_garage}
) Elh ! add_garage

{rg, | n € N}
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Figure 2. A dynamic WS orchestration where
a server selects the best price for a car rent
from several garages.
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Figure 3. Two independent garages (left part) and two garages that have agreed on the price (right

part).

3.1. Events

For a given dynamic net N £ (Tok, PAR, ¢, W), we de-
fine inductively the set of events E by:

o the initial event e, € E. We denote 7(e,) = L
and ey = *ey = 0; forall w € W(L), we denote
val(e,w) Z w(0,0,e).

o letp e PARand b,71,...,74,c1,...,cn be pairs un-
der the form (f, w), where f € Eand w € W(7(f)).
If L(val(d))({val(ri),...,val(r,)},

{val(c1),...,val(en)[},

p)
then e = (b, {r1,....,mn},{c1,--

'7Cm}7p) € E

We denote 7(e) = val(b), e = {b,r1,...,r,} and
*¢ £ {c1,...,cm}. Forallw e W(val(b)), we denote
val(e,w) £ w({val(ry),...,val(r,)},
{val(c1),...,val(en)[
P)

A pair (e,w), with e € E and w € W(r(e)) is
called condition and codes the presence of a token of value
val(e, w) at a given time of the history (between its creation
and its consumption).

Each event e creates a set of conditions defined by
e* £ {(e,w) | we W(r(e)}. Anevente = (b, R,C,p)
codes the firing of transition val(b) with the parameter p,
reading the conditions of R and consuming the conditions

of C. Events are depicted by black rectangles. The input ar-
rows link the consumed conditions ®e, while the read condi-
tions e are linked with lines (without arrow). The conditions
created by the event ¢ are linked with the output arrows. In
Figure 3, the only initial event is depicted on the top. Its
output arrows point to conditions. Some of them are tran-
sitions: they are written inside white rectangles. The other
conditions are written within ellipses. For each condition
(e, w), the value val(e,w) is written in the corresponding
rectangle or ellipse.

3.2. Causality and conflict

Let us consider the relations —, ~~ and " on E, defined
as follows:

ec—eiffern(efU®e)#0D
ecweiffen®e 20V (e#e N®en®e #0)
ec Sciffe—=Te Vewe

We say that two events e and ¢’ are causally relat-
ed if e —* €/, where —* denotes the reflexive transi-
tive closure of —. For an event e € E, we define the
past of e: [e] Z{fe E|f—*e}and forall F C E,
[F]1 Z Userlf1.

Note that the unfolding contains all the possible histories
of the system. We say that a set of events are in conflict if
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Figure 4. A prefix of the unfolding of the model of Figure 2.

all of them cannot occur in the same history. The events of
the set F C E are in conflict if
Jeg,e1,...,en €[F| ey S er /... en /€
The unfolding of N is the set of events e such that {e} is
not in conflict.

3.3. Algorithm

The algorithm proceeds by non-deterministic iterations,
after the placement of the initial event e¢; . At each itera-
tion, it chooses a transition ¢ € 7', a condition b such that
val(b) = ¢, a parameter p and the sets of conditions that are
read (R) and consumed (C). Then it places an event e corre-
sponding to the firing of transition ¢, if {e} is not in conflict
and if the guard +(¢)({val(b) | b € R}, {val(b) | b € C[},p)
is satisfied.

Notice that in the application to supervision, the net we
try to unfold is constrained by the observations (see Sec-
tion 4). This implies that the unfolding is finite and ensures

the termination of the algorithm if the model does not con-
tain any loop of non-observable transitions.

3.4. Example

Figure 4 shows a prefix of the unfolding of the model of
Figure 2. The token idle, which indicates that no request is
en route, and the transitions rq;, a;, min, add_garage and
fusion are in the initial marking. In the unfolding, arrows
indicate that they are created by the initial event ¢ , repre-
sented in top of the figure. In the initial state, a client may
ask for the price of a car (event e;q,). The unique initial
garage is requested and answers (event e,, ). The system al-
so allows the addition of a new garage (event eadd_garage)- If
the event e;q, occurs in the same history, then it must occur
before eadd_garage: The asymmetric conflict that appears in
the unfolding between erq, and eadd_garage forces this order-
ing.

After the occurrence of eadd_garages the transition rg;
does not exist any more but is replaced by the transition
rgs, which sends a request to two garages. Moreover, the



transition ay is added. If rq fires (event e,q,), it will send
a request to both the first and the second garage. They may
answer concurrently (this is not represented on Figure 3) or
answer simultaneously (event e,, ,) provided that they have
agreed about the price (event esygon)-

4. Diagnosis

The unfolding represents the different possible histories
of the system. For the purpose of diagnosis, we want to s-
elect only the histories that explain the set of observations.
This can be achieved by synchronizing the different obser-
vations with the corresponding transitions of the model (see
[4]). The alarms become new tokens. The unfolding of the
constrained net can be computed by the algorithm of Sec-
tion 3.3.

In our example two sensors A and B record alarms in
the system. When the server sends requests to the garages
(transition rq,,, for any n), an alarm p is emitted. When a
garage answers a request (transition a;, for any ) or when
two garages answer synchronously (transition a; ;, for any
i, 7), an alarm « is emitted. When the server selects the best
price (transition min), it emits an alarm . All these alarms
are observed by sensor A. Only the addition of a new garage
(transition add_gar age) emits an alarm ~ which is observed
by sensor B. The fact that two garages agree about the price
(transition fusion) is not observable.

Consider that sensor A has observed the alarms p, o, i
and that sensor B has observed one alarm ~. There are two
explanations to these observations. Both appear in Figure 3:
possibly the new garage was added after the request was
sent to the first garage. Then the answer comes from the
first garage. Otherwise the new garage was added earlier
and the requests were sent to both garages. In this case they
must have agreed about the prices, as a single answer has
been observed. The garage that is selected as the best can be
either the first or the second. Both appear in the unfolding.

5. Conclusion

We have considered the new context of orchestrations of
Web services. In that context, dynamic changes in Web ser-
vices become an important aspect. We have presented an
approach for a possible supervision and diagnosis of such
systems. It is based on the use of unfoldings of dynamic
Petri nets. The unfolding, guided by a finite set of obser-
vations allows the diagnoser to select the different possible
explanations, knowing that not all the events are observable.

In the example given in this article, the alarms give quite
few information on the system. Thus there are multiple ex-
planations even for short observations. This allows us to
illustrate the method with a small unfolding. But it would

also be possible to supervise systems in which the alarm-
s give much richer information. For example in realistic
systems, the structural changes are often observable. As a
result there are few explanations even for long observations.

In this paper we have used a notion of unfolding where
we create a distinct event for each possible value for the
parameter of a transition. This is possible only when each
transition can fire with a finite (and preferably small) num-
ber of parameters. The reverse would force us to use sym-
bolic unfoldings [4]. For simplicity we have not used them
in this article as they were not necessary. The algorithm
to compute the symbolic unfolding of a dynamic net has
to decide the satisfiability of predicates associated with the
events. This is possible if the transition guards and the val-
ues of the created tokens are described using a language of a
weak enough theoretical power. Several frameworks can be
envisioned. For instance, we can restrict to the Presburger
arithmetics (arithmetics without multiplication).

We are currently implementing the algorithms and we
plan to apply them on examples in the field of telecommu-
nications.
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