Symbolic Diagnosis of Partially Observable
Concurrent Systems *

Thomas Chatain Claude Jardf

IRISA/ENS Cachan-Bretagne,
Campus de Beaulieu, F-35042 Rennes cedex, France
{Thomas.Chatain, Claude.Jard}Qirisa.fr

Abstract

Monitoring large distributed concurrent systems is a challenging task.
In this paper we formulate (model-based) diagnosis by means of hidden
state history reconstruction, from event (e.g. alarm) observations. We
follow a so-called true concurrency approach: the model defines explicitly
the causal and concurrency relations between the observable events, pro-
duced by the system under supervision on different points of observation.
The problem is to compute on-the-fly the different partial order histories,
which are the possible explanations of the observable events. In this pa-
per we extend our first method based on Petri nets unfolding to high-level
parameterized Petri nets, allowing the designer to model data aspects,
even on infinite domains, and to parameter the system state. Using this
latter feature, one can consider for instance an incomplete model starting
in an unknown parameterized initial state. This could be used to start
monitoring on a system already in use. This supposes that the possible
values for the parameters are symbolically computed and refined during
supervision.

*This work was supported by the french RNRT project SWAN, funded by the Ministére
de la Recherche ; partners of the project are Inria, France Telecom R&D, Alcatel, QosMetrics,
and Paris-Nord University.

fCorresponding author

1 Introduction

Concurrent and distributed systems have been at the heart of computer sci-
ence and engineering for decades. Formal models and mathematical theories of
concurrent systems have been essential to the development of languages, for-
malisms, and validation techniques that are needed for a correct design of large
distributed applications.

In this paper, we consider another instance of the use of formal models
to master the complexity of distributed applications, namely the problem of
inferring, from measurements, the hidden internal state of a distributed and
asynchronous system. An important application is distributed alarm correlation
and fault diagnosis in telecommunications networks, which motivated this work.

The problem of recovering state histories from observations is pervasive
throughout the general area of information technologies. For instance, estimat-
ing the state trajectory from noisy measurements is central in control engineer-
ing, with the Kalman filter as its most popular instance [8]; the same problem
is considered in the area of pattern recognition, for stochastic finite state au-
tomata, in the theory of Hidden Markov Models [13]. For both cases, however,
no extension exists to handle distributed systems. Finally, fault diagnosis in
discrete event systems (e.g., automata) has been extensively studied [2, 15], but
the problem of dealing with concurrent model is just starting.

We follow a so-called true concurrency approach: the model defines explicitly
the causal and concurrency relations between the observable events, produced by
the system under supervision on different points of observation. The problem is
to compute on-the-fly the different partial order histories, which are the possible
explanations of the observable events. A natural candidate to formalize the
approach are 1-safe Petri nets with branching processes and unfoldings. The
previous work of our group used this framework to define the histories and a
distributed algorithm to build them as a collection of consistent local views [1].

In this paper we extend our method to high-level parameterized Petri nets,
allowing the designer to model data aspects, even on infinite domains, and to
parameter the system state. Using this latter feature, one can consider for in-
stance an incomplete model starting in an unknown parameterized initial state.
This could be used to start monitoring on a system already in use. This sup-
poses that the possible values for the parameters are symbolically computed
and refined during supervision. We think this symbolic approach will be able
to deal with more complex distributed systems. At the heart of our scientific
contribution is the definition of a symbolic unfolding for high-level Petri nets,
which combines the traditional unfolding [10, 11] with a kind of a-conversion
(A-calculus) to deal with parameters. Up to our knowledge, this is original. The
idea of using an unknown symbolic initial marking has already been addressed
in [16], but restricted to the framework of simple Petri nets and their marking
graphs.

This paper is organized as follows. We first begin in Section 2 by an informal
presentation of the problem on a toy example, illustrating the high-level Petri
net model we use, its unfolding and the trajectories we want to compute with
respect to a given partially ordered observation. The mathematical background
is recalled in Section 3, following the usual notation for Petri nets, as used for
instance in [10]. In Section 4, we present an original algorithm to compute a

symbolic unfolding. This allows us to formally express the diagnosis problem,
which is done in Section 5 using a composition between the observation and the
model, which can be then symbolically unfolded. We also show that unfolding
can be performed on-the-fly, observable event by observable event. We conclude
in Section 6 by presenting different perspectives on the use of the approach to
monitor real distributed systems.

2 An example of diagnosis under partial obser-
vation

2.1 The parameterized concurrent model

Component A

a, p, &

o Component B

L4

Figure 1: A concurrent machine with two components, which may fail with an
unknown severity level and can be repaired accordingly.

Our parameterized concurrent model is based on the standard high-level Petri
net introduced in [9] and augmented with free variables. It is exemplified in
Figure 1, which shows two interacting components, named A and B. Com-
ponent A may fail (observed as «) with a given non observable severity level
(parameter). To be completely repaired, component A must execute a local
action (observed as p, and possible only if the severity level is less than 10), and
wait for the completion of the recovery procedure of component B, which has
been informed of the failure. To recover from a failure of severity [, component
B must execute ! repairs, observed as y. But, at any time, component B may
also fail and stop (observed as (). The initial transition L starts the system
in feeding the places 1 and 2 with black tokens (transported by the local vari-

able m). Component A has two private states: safe, represented by place 1,
and faulty, represented by place 3. Upon entering its faulty state, component
A emits an alarm «. The failure of component A causes repairing actions in
component B. This causality is modeled by the shared place 4. The monitoring
system of component B (sensor B) only detects that component B provides an
elementary action of repairing (observed as 7). The last action recovers the fail
by putting the system again in state 2, shared with component A. This action
is not observable. All the observable events are also called alarms in the sequel,
and represented by a grek letter on the figures. The fact that a transition is not
observable is shown by writing € instead of an alarm. It is to be noticed that
the exact severity level of the fail [is not observable, and will be inferred during
supervision using a kind of symbolic execution of the model.

In order to define the dynamics of such network, we consider that each place
can be fed by a multiset of values (often called “colors”). These values are tested
and forwarded by the transitions. As we can see, each transition associates a
label (a, 3,7, p, €) and a predicate (printed near the transition in a curly brace,
as a conjunction of expressions), called the guard. Furthermore, each incident
edge is labeled by a local variable. The transition guard is composed with these
local free variables. Informally, a transition is fireable if its guard is satisfiable.
This means there exist some values to the variables for which the guard is true.
One can thus select an instance of these values, which are unified (matched) to
the variables. It is required that the values unified to the input arcs variables
are present in the input places. The firing of the transition removes these values
from the input places. The output places are then filled by the values unified to
the output arc variables. In our example, the firing of the transition L puts one
token in places 1 and 2. The transition labeled by « becomes fireable. When
it fires, it removes the tokens from 1 and 2 and puts a token in place 3 and an
arbitrary integer [(provided [> 0) in place 4. The dynamics is formally defined
in Section 3.

2.2 Supervision architecture

We consider the following setup for diagnosis, assuming that messages are not
lost. Each sensor records its local alarms in sequence, while respecting causal-
ity (i.e. the observed sequence cannot contradict the causalities defined in the
model). The different sensors perform independently and asynchronously, and a
single supervisor collects the records from the different sensors. Thus any inter-
leaving of the records from different sensors is possible, and causalities among
alarms from different sensors are lost. This architecture is illustrated in Figure 2.

For the development of the example, we consider that the system under
supervision produces the sequences apa on sensor A, and (3 on sensor B.

We think such an architecture is the first important step towards a dis-
tributed supervision, in which the monitoring is itself distributed, with different
supervisors cooperating asynchronously. Each supervisor is attached to a sen-
sor (i.e. a component of the model), records its local alarms in sequence, and
can exchange supervision messages with the other supervisors, asynchronously.
This aspect is deferred to a subsequent paper.

a, p, o

System under supervision

Figure 2: The considered supervision architecture, composed of several sensors that
report alarms asynchronously to a unique diagnoser.

2.3 Unfoldings: an efficient data structure to represent all
runs

The construction of the runs of the high-level parameterized Petri net of Figure 1
is illustrated in Figure 3.

The algorithm is to consider all the transitions of the original Petri net, and
to place them, one at a time, if they are possible. Let us start by placing the
initial transition L. Once placed, a transition becomes a unique event (denoted
by L, aj, e; etc.) in the graph. The local variables acquire then the status
of global variables and for this purpose are renamed (actually indexed by the
event name). An event e, instance of a transition ¢, is placed only if its preset
(the input places) is present in the graph and if the following enabling condition
is satisfiable. The enabling condition is formed by the conjunction of the local
conditions of the events located in the causal past of e (see below the definition
of causality) and of its local condition. The local condition is the guard of the
transition ¢ (in which the local variables have been renamed by their global
names), augmented with the constraint that the variables of the input arcs have
the same values that the variables of the output arcs of the input event of the
input places, in order to capture the causal relation. To keep track of this
condition, we associate a new predicate with the new event. In the graph of
Figure 3, the local condition of each event is printed in a curly brace. This graph
is usually infinite. We have drawn only a prefix of it. In the formal description
of Section 4, the local condition is the predicate loc_pred(e) and the enabling
condition is the predicate pred(e).

Two events linked by a path of the graph are causally related, since there
exists a flow of values between them. Two events are concurrent if they are
causally related and if they are not in conflict (i.e. cannot belong to a same
run). There are two causes of conflict. The first one, called structural conflict is
that they have been separated by a choice in the system, represented in the graph
by a branching from an ancestor place of these events. The second possibility
is specific to the parameterized model: two events are also in conflict (called
non-structural conflict) if their predicates are not simultaneously satisfiable. We
thus show that the symbolic unfolding is an interesting structure to represent

the different runs, in which causality and concurrency are explicitly given. The
different runs are superimposed in the graph and separated by the notion of
conflict. In Figure 3, the event r is a cause of event a%; the event e; is concurrent
with event r; event ag is structurally in conflict with event €}. A non-structural
conflict is also possible between the event r and an event labeled by ~ reachable
after more than 10 consecutive repairs on component B (not represented in the
prefix chosen in the figure).

(b')

{z,,, =l

Figure 3: Some runs of the example represented in a branching process.

2.4 Asynchronous diagnosis

The preceding figure showed different runs of the system, represented in a single
graph. The question now is to select the runs that are compatible with the
observations. In Figure 4, we have projected the graph of Figure 3 by considering
that some events are not compatible with the actual observation. This is the
case for instance for the first 4 transitions, which cannot be considered since v

lay >0
May =
ma2

Magy

(b')
{zb/ =l

Figure 4: The causal graph resulting of our diagnosis algorithm.

have to be explained before and that the occurrence of 8 stops the production
of v in the model. The resulting graph shows two possible explanations: the
first corresponds to the left part of the graph with the following partial order
a.(p || €).c.v.B; the second is the right part of the graph: a.(p || (v.€)).a.5. We
see that these two possible explanations share a same prefix a.p in the graph.
Another interesting fact is the refinement of constraints on variables during the
unfolding: for instance, at the end of the first explanation, we can infer that
the severity level of the first fail @ was 0, because of the conjunction of the
predicates of the events a1 and e;.

In practice, the desired projection is obtained by synchronizing the system
model with the observations. This augmented model is then unfolded. The last
phase is to keep only the system part of the unfolding to present the explanations
to the user. Figure 5 shows our original model, constrained with the considered
observations. The sequencing of local observations are represented as the linear

nets at the left and right parts of the figure. The observations constrain the
execution of the original model since the treatment of the next local observation
requires that a transition with the same label in the model has been fired. This
is the role of places A, B, and their complements A and B in the figure.

Component A

Component B

A =7 A =f
m=e m=e

Figure 5: The model of Figure 1, constrained by the observation.

The rest of the paper defines mathematically these different objects and
operations. The final contribution is an on-line algorithm, which builds the
different possible explanations in the form of an unfolding, increasing step by
step at each observation.

3 Mathematical background: high-level Petri
nets

Basic references are [2, 4, 14]. We use the standard notations, adopted from
[10].

3.1 Notations
We recall the notations:
e f: A+—— B denotes a mapping f from A to B;
e AW B denotes the disjoint union of the sets A and B;

e e[n «— n'] is the expression e in which all the occurrences of the name n
have been replaced by the expression n'.
eln «— f(n)lnen is the result of the parallel replacement of each name
n € N by the expression f(n).

A multiset over a set X is a mapping p : X —— N. We denote =z € p if
u(z) > 0. We define the empty multiset § as f(z) = 0 for all z € X. We define
the union of two multisets 1, and gy over X as (p 4 po)(z) = (@) + po(z)
for all x € X. For two multisets p and ' over X, we write p < p’ if for all
e X, p(z) < ().

A multiset p is finite if {z € X | x € p} is finite. In this case we can represent
it with {| ... [} delimiters. For example {|a, a, b]} will denote the multiset u defined
by p(a) = 2, u(d) = 1 and p(z) = 0 for all x € X \ {a,b}. For a mapping
h:X Y, we denote {h(x) | z € u[} or h(y) the multiset u’ over Y defined
by

ey py=E Y)

ze€XAh(z)=y

3.2 High-level Petri nets

In this section we present the formal model we use to represent the system we
work on and its behavior. The example of Figure 1 illustrates this model.

It is assumed that there exists a (finite or infinite) set Tok of elements (or
‘colors’) and a set VAR of variable names, such that Tok N VAR = .

def

A high-level Petri net is a quadruple N = (P, T, W,) such that:
e P and T are disjoint sets of places and transitions respectively;

e W is a multiset over (P x VAR x T) U (T x VAR x P) of arcs;

e . maps each t € T to a predicate «(t) on VAR(t), where VAR(t) = {v |
(p,v,t) € WV (t,v,p) € W}. For every t € T, 1(t) is called the guard of t.

For two nodes y, 3y’ € PUT, we denote y — g’ if there exists a variable v such that
(y,v,y’) € W. The reflexive and irreflexive transitive closures of — are denoted
respectively by < and <. For a transition t € T, let *t = {|(p,v) | (p,v,t) € W,
t* = {(p,v) | (t,0,p) € W}

In figures, places are usually represented by circles and transitions by
squares. Labeled arrows between places and transitions represent the arcs. The
guards of the transitions are printed in a curly brace.

A homomorphism from a high-level Petri net N = (P, T, W,) to a high-level
Petri net N' = (P, T, W',./) is a mapping h : PUT —— P’ UT’ such that:

o h(P)C P and h(T) C T";

*h(t) = {(h(p),v) | (p,v) € °t[}
o forallt €T, { h(t)* = {(h(p),v) | (p,v) € t*[}

U (h(t)) = ot)

A firing mode of a transition ¢ is a mapping o : VAR(t) — Tok such
that (t) evaluates to true under the substitution given by o. We denote

*(t,0) E{(p,o(v)) | (p,v) € *tf} and (t,0)* = {|(p, 0 (v)) | (p,v) € t°].

A marking of a net N is a multiset over P x Tok. A transition t is enabled
at marking M with firing mode o if *(¢,0) < M. Such a transition can fire,

leading to a new marking M’ = M — *(t,0) + (t,0)°.

A high-level Petri net system is a high-level Petri net T & (P, T,W, 1), which
has a unique initial transition called L such that *.L = (). In the sequel we
assume that ¢(L) is satisfiable, i.e. L has at least one firing mode. L fires only
once, at the empty marking, to start the system.

Remark: low-level Petri nets can be seen as particular high-level Petri nets,
in which all the arcs use the same variable m, and all the guards are (m = e).
The drawback with low-level Petri nets is the lack of manipulations of data.
In practice, the data aspects have to be enumerated, and thus explode and are
limited to finite domains for variables. This is why we consider the extension
to the so-called high-level Petri nets.

4 Symbolic unfolding

This section formally defines the structure we use to represent the different
runs of a system. Figure 3 shows a symbolic branching process of the system of
Figure 1. For each event e, the predicate loc_pred(e) is printed near the event.

4.1 High-level occurrence nets

def

The net N = (P, T,W,.) is called ordinary if for each pair y,y" of nodes of N,
there exists at most one arc connecting y and y" (3 ,cyar W((y,v,9')) < 1).
Two nodes (places or transitions), y and gy’, of an ordinary net N £
(P, T,W,.) are in structural conflict, denoted by y#y’, if there exist distinct
transitions ¢,#' € T and a place p € P such that p — ¢, p — ', t < y and

t' <vy'. A node y is in structural self-conflict if y#y.

10

def

A high-level occurrence net is an ordinary net system ON = (B, E,G,u),
where B is a set of conditions (places), E is a set of events (transitions) and G
is a flow relation, satisfying the following conditions:

e for every b € B, there exists a unique pair (e,v) called ®b such that

(e,v,b) € G
~(y#vy)
~(y <)
e for every y € BUE, L=y

there are finitely many y’ such that y" < y.

< is called the causality relation. We say that node y is causally related to
node ' if y < 3/'.
For all e € E we denote [e] = {f € E | f < e}. For all F C E we denote

[F1 = User[/1-

For a high-level occurrence net ON = (B, E,G,t) we define the mappings
loc_pred and pred which map each e € F to the predicates

def

loc_pred(e) = v(e)[v — ve]ye VAR(e)
A /\ (ve =0)) with *b = (¢/,v")
(byv)e®e
pred(e) = /\ loc_pred(f)
e

4.2 Symbolic branching processes
A symbolic branching process of T is a pair m = (ON, h) such that:

e ON is a high-level occurrence net such that for all e € E, pred(e) is
satisfiable;

e / is a homomorphism from ON to T;
e h(l)=1;
o foralle, f € E,if h(e) = h(f) and *e = *f, then e = f.

4.3 Non structural conflict, concurrency

In branching processes of high-level Petri nets, the causality relation is the same
as in branching processes of low-level Petri nets. But there are two different
causes of conflict. The structural conflict is the equivalent of the conflict relation
in branching processes of low-level Petri nets; and we define a non structural
conflict, that restricts the concurrency relation. This notion of non structural
conflict is due to the existence of symbolic parameters.

The events of the set F' C E are in non structural conflict if)\ ;g pred(f)
is not satisfiable. We note that for all F' in non structural conflict and F’ C E,
if [F] € [F’] then F’ is also in non structural conflict.

The events of F' are in minimal non structural conflict if there does not exist
any F’ C E such that [F’] C [F] and the events of F’ are in non structural
conflict.

11

The events of the set F' C F are concurrent if they are not in non structural
conflict, and for each e, e’ € F, neither e < €', nor ¢/ < e, nor e#e’ holds.
We extend the notion of concurrency to conditions: a set C' of conditions are
concurrent if the events of the set {e € E|3b € C e — b} are concurrent.

A co-set is a set of concurrent conditions. A configuration is a set of events
F C FE whose elements are not in non structural conflict, and which is conflict-
free (for all e, f € F, =(e#f)) and causally closed (for all f € F and e € E,
e < f implies e € F).

4.4 Symbolic unfolding

The set of all symbolic branching processes of a high-level Petri net system is
uniquely defined, up to an isomorphism (i.e. a renaming of the conditions and
events), and we shall not distinguish isomorphic branching processes. For m, 7/
two symbolic branching processes, ' is a prefix of 7, written 7’ C 7, if there
exists an injective homomorphism ¢ from #’ into 7, such that ¢(L) = L, and
the composition h o ¢ coincides with h’, where o denotes the composition of
maps.

Thus, the notion of unfolding of a Petri net as the unique maximum branch-
ing process up to isomorphism, proved in theorem 23 of [3], can be adapted
to symbolic branching processes of high-level Petri nets to define the symbolic
unfolding Uy of a high-level Petri net system Y.

Branching processes of a (high-level) Petri net represent the different runs.
The interest is that the causalities and the concurrency between the transitions
figuring in the run are explicitly represented in a graph. This is why, this kind
of behavioral semantics for Petri nets is called “true concurrency semantics”,
and fits particularly well with the kind of trajectories we want to produce as
the monitoring activity.

Some applications use the notion of finite complete prefix defined on low-
level Petri nets. We think that it would not be obvious to extend this notion to
symbolic unfoldings of high-level Petri nets.

4.5 Algorithm

We propose an algorithm to compute the symbolic unfolding of a high-level Petri
net. This algorithm needs to decide if the predicates pred(e) are satisfiable. This
is possible if the guards of the transitions are expressed in some weak enough
language. One possible framework is the use of Presburger arithmetics [12]
(arithmetics without multiplication).

The algorithm consists in a chaotic iteration, after the placement of the
initial event L. In each iteration we choose a transition ¢ and a co-set C' to
create a new event e. The predicate pred(e) is memorized for each event. The
minimal non structural conflicts are memorized in the variable conflict, which
is used to find the co-sets.

In the area of diagnosis, the net is constrained by the observation as we will
see in Section 5. Thus its unfolding is finite and the algorithm terminates, if
we except models that contain loops of non observable transitions. But in the
general case the unfolding may be infinite, and precautions have to be taken to
ensure that all the events of the unfolding are computed. One method is to use

12

the causal depth of the events defined as follows: the causal depth of an event
e € E is the number of events on the longest path from L to e. For all integer n,
the number of events at depth n is finite. If the algorithm is forced to compute
all the events at depth n before those at depth n + 1, then all the events will be
computed.

Initialization
1. initialize the sets B, E, G to 0, h and pred to the empty mapping and
conflict to 0;
2. add the event L to F, and update h with h(L) = L;

3. for each (p,v) € L*, add a new condition b to B, add (L, v,b) to G and
update h with h(b) = p;

4. extend pred with pred(L) = «(L)[v < v1]oevar(L);

Chaotic iteration
Repeat until no transition can be chosen,

1. choose nondeterministically a transition ¢t € T\ {L} such that there
exist a co-set C' and a bijection pin from *t to C, satisfying:

o for all (p,v) € *t, h(pin((p,v))) = p;
e the predicate pred_e = loc_pred Nocc pred(b) is satisfiable, where:
— pred(b) = pred(e’) with *b = (¢/,v")
— locpred = u(t)[v — velve varq
AN we=ul) with *pin((p.0) = (o)
(pv)ect
— e is a new event.
2. add the event e to F, and update h with h(e) = t;
3. for each (p,v) € *t, add (pin((p,v)),v,e) to G;

4. for each (p,v) € t*, add a new condition b to B, add (e, v,b) to G and
update h with h(b) = p;

5. extend pred with pred(e) = pred_e;

6. extend conflict with the newly created minimal non structural conflicts,
if any.

5 Symbolic diagnosis: formal problem setting

5.1 Observations

Observations and their impact on the original system model are represented by
adding new places and transitions in the high-level Petri net.

A sensor is a place s of a high-level Petri net that has no output arc and
at most one input arc from each transition t € T'. To simplify the notations,
we assume that the variable associated with this arc is always A;. When a
transition ¢ € T fires, the value taken by Ay is called the alarm.

13

A local observation sequence from the sensor s is a finite sequence of alarms
(As15-- 5 Asn.). A global observation from a set S of sensors is a mapping A
from sensors s € S to observation sequences (As1,...,Asn,). Consider two
observations A and A’, which associate with each sensor s € S, the observation
sequences (Ag1,...;Aspn,) and (N 1, .., Xs,n;) respectively. We say that A is a

prefiz of A’, written A < A’ if for all s € S, ny < n), and (As1,...,Asn,) =
(/s,l’ R)‘;,ns)'

5.2 Diagnosis net D(NN, A)

In this section we show how to build a net D(N, A) from a net N modeling a
system and an observation A of this system. The idea is to constrain the model
so that each transition of the model that sends an alarm to a sensor s is not
allowed to fire until all the previous alarms sent to s have been treated. To
achieve this we create a new place s, add an arc from s to each transition that
sends an alarm to s, and ensure that s contains a token if and only if all the
alarms sent to s have been treated. The treatment of the alarms received by
sensor s is modeled by a set of new transitions ¢s;, i = 1,...,ns (one for each
observation). Transition t,; guarantees that the it alarm received by s matches
the observation \s;. Once the alarm is treated, t,; puts a token in the place
5, which allows the transitions of the model to emit new alarms. The formal
definition of D(N, A) follows.

For a net N & (Py,Tn,Wn,tn) and an observation A from a set S of
def

sensors of N, we define the net D(N, A) = (P,T,W,.), called net N observed
as A, as follows (we assume that m is a fresh variable name):

e PEPyw{s|scStw{p.i|scS i=0,...,n:

def

° T:TNL‘H{ts7i|S€S, i=17...,ns}

def

o W=Wy+{(L,m,3),(L,mpso)]|seS[}
+{ (3 m,t) | s€ SA(tAs,s) € Wy
+{(8, s, ts.i), (tsiym,5) | s€ S, i =1,...,nsf}
+{(Psim1. M, tsi), (tsism,psi) | s€S, i=1,...,nsf}

def

e (t) = n{E)A(m =) ifteTn
t(tsi) S As=Xsi)AN(m=e) forallse S, i=1,...,n,

Figure 5 shows the net of Figure 3 observed as «, p,a from sensor A and
v, 8 from sensor B.

Remark For two observations A and A’ such that A < A’ D(N,A) is a
subnet of D(N, A’). Indeed D(N, A’) can be built from D(N, A) by adding the
places and transitions required by the new alarms, and arcs connecting the new
transitions. No new arc is added to the old transitions. That is why every
execution of the net D(N, A) is also a valid execution of D(N, A”).

5.3 Global diagnosis

We call diagnosis of observation A on net N the symbolic unfolding Up(n, 4y of
the net N observed as A. For each set F' C E of concurrent events such that the

14

restriction of h to F' is a bijection from F to {ts ., | s € S}, the configuration
[F'] explains the observation A.

We may want to get rid of the causalities due to the observation. For this
purpose, we remove all the events and conditions corresponding to the sensors
or to the observation. This operation, called projection on N removes the
causalities due to the observation. But we must keep the information of the
(structural and non structural) conflicts due to the observation, that do not
appear any more in the projected net.

Figure 4 shows all the possible explanations of the example of Figure 3.

On-the-fly computation The unfolding of D(N, A) can be computed by the
algorithm of Section 4.5. Moreover, we can adapt this algorithm in order to
compute on-the-fly the partial order histories that explain the observed alarms.
Indeed, if A and A’ are two observations such that A is a prefix of A’, then, con-
secutively to the final remark of Section 5.2, each branching process of D(N, A)
is also a branching process of D(N, A’). Then we can compute on-the-fly the
explanations by updating D(V, A) each time a new alarm is observed. After this
modification is done, the algorithm will continue and compute the explanations
of the new observation.

6 Conclusion

We have presented a possible approach to the supervision/diagnosis of dis-
tributed systems, in which the explanations are given by a family of partial
orders on the observable events, represented by an unfolding graph. The main
contribution of the paper is to consider parameters in the model. These param-
eters are used to model incomplete information on the system under supervision
(i.e. partially observed). We think it is an important aspect to deal with real
contexts. We have different perspectives. From the practical point of view, we
are starting the implementation of the algorithm. The main extension we plan
is to deal with a distributed supervision architecture; that is extend the ap-
proach presented in [7] to the symbolic framework we consider. An other work
in progress is to study time Petri nets as a particular case of our parameterized
model. The variables of the model are used to model the different instant of
transition firings. This will define a new notion of unfolding for time Petri nets,
which keeps concurrency. More generally, because of the “local” property of
the unfolding algorithm, we think our approach could be extended to deal with
dynamic systems, in which the model can evolve during observation.

References

[1] A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis of asyn-
chronous discrete event systems, a net unfolding approach. IEEE Trans.
on Automatic Control, 48(5), May 2003. Preliminary version available from
http://www.irisa.fr /sigma2/benveniste/pub/IEEE_TAC_AsDiag_2003.html.
See also the tutorial given during FORTE’2003 in Berlin.

[2] C. Cassandras and S. Lafortune. Introduction to discrete event systems.
Kluwer Academic Publishers, 1999.

15

3]

J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica 28, 1991,
pp 575-591.

J. Desel, and J. Esparza. Free Choice Petri Nets. Cambridge University
Press, 1995.

J. Esparza, S. Romer and W. Vogler. An Improvement of McMillan’s Un-
folding Algorithm. Proc. of International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’1996),
T. Margaria and B. Steffen (Eds.). Springer-Verlag, Lecture Notes in Com-
puter Science 1664 (1999) 2-20.

J. Esparza, S. Roémer. An unfolding algorithm for synchronous products
of transition systems. in proc. of CONCUR’99, LNCS Vol. 1664, Springer-
Verlag, 1999.

E. Fabre. Monitoring distributed systems with distributed algorithms. In
Proc of the 2002 IEEE Conf. on Decision and Control, 411-416, Dec. 2002,
Las Vegas, 2002.

G.C. Goodwin and K.S. Sin. Adaptive Filtering, Prediction, and Control.
Prentice-Hall, Upper Sadle River, N.J. 1984.

K. Jensen. Colored Petri nets. Basic concepts, Analysis Methods and Prac-
tical Use. EATCS Monographs on Theoretical Computer Science, Springer-
Verlag (1992).

V. Khomenko and M. Koutny. Branching Processes to High-Level Petri
Nets. Proc. of Intern. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’2003), H. Garavel and J. Hatcliff (Eds.),
Springer-Verlag. Lecture Notes in Computer Science.

V.E. Kozura. Unfolding of Coloured Petri Nets. Technical Report 80, A.P.
Ershov Institute of Informatics Systems (2000).

M. Presburger. Uber de vollstandigkeit eines gewissen systems der arith-
metik ganzer zahlen, in welchen, die addition als einzige operation hervor-
tritt. In Comptes Rendus du Premier Congres des Mathematiciens des
Pays Slaves, pages 92-101, 395, Warsaw, 1927.

L.R. Rabiner and B.H. Juang. An introduction to Hidden Markov Models.
IEEE ASSP magazine 3, 416, 1986.

W. Reisig. Petri nets. Springer Verlag, 1985.

M. Sampath, R. Sengupta, K. Sinnamohideen, S. Lafortune, and
D. Teneketzis. Failure diagnosis using discrete event models. IEEE Trans.
on Systems Technology, 4(2),105-124, March 1996.

I. Vernier. Symbolic Executions of Symmetrical Parallel Programs. Proc.
of 4th Euromicro Workshop on Parallel and Distributed Processing, Braga,
Portugal, Jan. 1996, pp. 327-334.

16

