
The presented results have been funded by the French national RNRT Magda2 project on fault manage-
ment.

UML Specification of a Generic Model

for Fault Diagnosis of Telecommunication Networks

Armen Aghasaryan1, Claude Jard2, and Julien Thomas3

1 Alcatel Research & Innovation, Route de Nozay, 91461 Marcoussis, France
Armen.Aghasaryan@alcatel.fr

2 IRISA/ENS Cachan, Campus de Ker-Lann, 35170 Bruz, France
Claude.Jard@irisa.fr

3 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes, France

Abstract. This document presents a generic model capturing the essential

structural and behavioral characteristics of network components in the light of
fault management. The generic model is described by means of UML notations,

and can be compiled to obtain rules for a Viterbi distributed diagnoser.

1 Introduction

This paper presents the results of the continued efforts on generic modeling initiated
within the Magda projects [1] and [2]. The generic model captures the essential

structural (generic components and their relations) and behavioral (interactions bet-

ween the generic components) characteristics of telecommunications network compo-
nents in the light of their utilization in fault management tools. The generic model co-

vers both circuit-based and packet-based networks, despite of divergent approaches
adopted by the respective standardization bodies. The generic model is described by

means of UML notations, namely, class diagrams, sequence diagrams and instance
diagrams. These diagrams are intended to be used in 1/ derivation of the technology-

specific models and 2/ generation of rules on generic component instances. Although
the targeted management applications work with the derived specific models, but in

certain cases they can directly apply the rules defined on generic components. Thus,
the effort necessary for deriving a specific model is significantly reduced. For the dia-

gnosis application we have considered, we proved that the generic model can be com-

piled to obtain generic rules.

2 Basic Concepts

2.1 Structure

The basic concepts of our generic model are guided by the ITU-T standard Generic
Functional Architecture of Transport Networks [6]. The layering concept in this ar-

chitecture introduces client-server relations between the adjacent layer networks,
while the partitioning concept allows the decomposition of a layer network into sub-

networks and links. The end-to-end connectivity in the server layer, network connec-
tion, is obtained by concatenation of link connections. A trail in the server layer pro-

vides the communication service between two neighboring nodes of the client layer
network, see Fig. 1a. In the case of multiplexing, it carries several link connections of

a client network in the server network; we speak also of a containment relation be-

tween the respective Connection Termination Point (CTP) and Trail Termination

Point (TTP) managed entities of the neighboring network layers. The CTP/TTP enti-
ties of the same network layer are connected, as shown in the figure, through matrices

and subnetworks.

Link Connection (client layer)

Trail (server layer)

Network Connection (server layer)
C

T
P

S
in

k

Link Connection Link Connection
MatrixMatrix Sub-

Network

Adaptation
function

Trail Termination
function

Management
Entities

C
T

P
S

o
u

r
c
e

T
T

P
S

o
u

r
c
e

T
T

P
S

in
k

CTPSo
CTPSoCTPSi

CTPSi

NE NE

Fig. 1. a. Generic functions and managed entities. .b. Generic Components.

These concepts are largely adopted in circuit-based technologies and they are repre-

sented in object-oriented management information models [5]. In packet-based tech-

nologies however these generic concepts are not explicitly expressed and the infor-
mation models are often based on SNMP table structures. Nevertheless, it can be

shown that these concepts remain pertinent also for packet-based connection-oriented
networks, and the respective objects can be extracted from table-based information

models. In MPLS [8], the FEC (Forwarding Equivalence Class) aggregation approxi-
mates the termination function and can be seen as a TTP, while the label assignment

is related to the adaptation function and can be represented by a CTP.

2.2 Fault Behavior

Due to their physical nature and the associated monitoring mechanisms, the main role
in fault propagation across the network is played by transmission failures. A transmis-

sion failure is physically propagated through the network: horizontally, along a net-

work connection at a given layer network, and vertically, through the higher layer
networks. In addition, the detected faults can be propagated via monitoring signals.

So, once a failure/degradation is detected at a TTPSink, failure indications are sent to
the corresponding CTPSink objects on the client layer. Further, this information can

be forwarded downstream along the network connection in the client layer until the
respective TTPSink is reached (Forward Defect Indication). Note that the propagation

can be interrupted whenever one of the objects on the propagation path is in a “non-
communicating” (e.g. Disabled) state (alarm masking).

3 Structural relations

3.1 Generic Components package

We use an abstract notion of GenericComponent to represent any network component

that can be faulty and/or can participate in a fault propagation, see Fig.1b. The generic

components are interrelated by means of peering and containment relations. In order

to allow working with a programming language (e.g. Java) which does not support
multiple inheritance, all the generic components are declared as Interfaces. However,

the state variables can not be declared as attributes of an Interface, this is why we de-

fine them in an additional class GenericComponentClass and impose (informally) that
in a specific model any class implementing a generic component must inherit from

this class to obtain the uniform definition of state variables. We identify 4 main clas-
ses of generic components : NetworkElement represents a physical network element

(device); Matrix represents a logical or physical component that regroups a set of
cross-connections (matrix connections); TerminationPoint represents a logical or

physical component used in transmission; DirectConnector represents a matrix
connection and physical link components, the latter is a trail at the lowest layer net-

work.

3.2 Layer Network (partitioning) package

Fig. 2. Peering relations : layer network (horizontal) partitioning.

The diagram of Fig. 2. defines the horizontal (or peering) relations between the gene-

ric components. MatrixConnection class represents a cross-connection between two

termination points on the same network element. LinkConnection class represents a
logical (indirect) connection between two CTP objects on two neighboring network

elements. Link class represents a list of link connections grouped together for usage in
routing algorithms. Trail class represents a logical (indirect) connection between two

TTP objects on two distant network elements, it symbolizes a transport service provi-
ded by a given layer network to its client layer network. The Client-Server Relations

package! is used to define the client-server (vertical) layering as containment rela-
tions between CTPSource and TTPSource (source aggregation), and between

CTPSink and TTPSink. The Physical Location package!introduces another type of
containment relations: containment by physical location. A network element contains

a matrix, and a number of physical ports. The NE view package is aimed at presenting

a local view of the network hierarchy. It proposes a structure of recursively embedded

Layers where each layer assembles the local termination points belonging to the given

layer network. This view is important if one aims at automatic model discovery from
the information available in the network devices. In that case, a complete model ins-

tance is constructed having as an input the entities and dependencies described in this

package.

4 Fault Dynamics

In order to describe the fault-related behavior of model components the notion of tile

was introduced in [4]. The tiles are composed of a pre-condition part - conditions on
attribute values and reception of messages; an action part - sending of messages, pos-

sibly under some conditions, and a post-condition part - new attribute values. The tiles
can be easily described with a rule script and can be directly called in fault manage-

ment applications that make use of a rule engine. We introduce an equivalent UML
compliant description mechanism which allows to associate fault-related behaviors

with the generic components and to transform them into a rule script.

4.1 Rule description with UML diagrams: the concept

The main idea is to describe a rule by means of one sequence diagram and one ins-
tance diagram. The sequence diagram represents the message exchange between the

class instances and defines the conditions on attributes in the associated comment

blocks. On the other hand, the instance diagram specifies the structural relations bet-
ween the class instances. The instance diagram will therefore introduce new condi-

tions to be verified in the rule. Fig. 3 shows such a pair of sequence and instance dia-
grams. The corresponding rule script (in Ilog JRules syntax) generated with default

conventions is shown on the right.

currentObject :

GenericComponent

otherObject :

GenericComponent

precond:

SomePrecondition
Message

someAssociation

when {
?currentObject : GenericComponent
?otherObject : GenericComponent
evaluate (?currentObject.is_associated(SomeAssociation, ?otherObject))
evaluate (SomePrecondition) }

then {
?otherObject.receive(new Message()) }

Fig. 3. A sequence diagram with an instance diagram describes a rule.

We use this mechanism for defining generic tiles, i.e. behaviors associated with gene-
ric components such that the corresponding rule script is readily applicable, by inhe-

ritance, to the respective components in a specific model. Of course, the same mecha-
nism can be applied during the definition of the specific model in order to describe

supplementary specific fault behaviors.

4.2 Horizontal and vertical propagation

Propagations between the components of the same network layer can be in forward or

backward directions. In either direction, they can follow direct connections (matrix
connections) or indirect connections (link connections, trails). For the sake of brief-

ness, we chose to present the case FDI-1 of direct connections.

currentObject :

LayeredGenericComponent

otherObject :

 LayeredGenericComponent

FDI

precond:

operational_state =

Disabled

TTPSo

TTPSo

CTPSo

LC

CTPSi CTPSo CTPSi

CTPSi

TTPSi
MC

CTPSo

ph_trail TTPSi TTPSo

1

2 3

4 5

X X X

CTPSo CTPSi

SoAgg

SoAgg SiSeg

Fig. 4. Forward Propagation via a direct connection.

The sequence diagram of Fig. 4 defines a behavior where a generic component with
operational_state = Disabled communicates a message FDI to another generic com-

ponent. The right part summarizes the 5 cases where such a behavior can happen: via
matrix connections or physical trails. The concerned objects are outlined with blue

rectangles, the associations between them are indicated with red lines, the curren-

tObject is indicated with a circle where an arrow originates. Propagation and/or
Masking is a behavior inherent to all the layered generic components and can be eas-

ily modeled by pre-conditioning the forwarding of messages from an upstream object
to an downstream object, by the test of the operational_state of the intermediate ob-

ject. Vertical propagation is modeled as a message exchange between two generic
components with a precondition on the operational state of the object sending the

message. The idea behind it is that any generic component in a faulty state will auto-
matically propagate its state to all the components it contains. So, this behavior is es-

sentially based on the containment relation.

5 Model Compiler

Using the class and deployment diagrams, our tool builds the actual objects and their
associated links, in order to obtain the model instance of the specific network to be

supervised. These objects will be used by the diagnosis application. On the other
hand, the sequence diagrams are compiled to produce the rules (expressed in Jrules)

needed by the diagnoser. The OSCAR prototype has been connected to the Objectee-

ring case tool using the XMI interface. Precisely, OSCAR takes in input a UML mo-
del and produces a set of Java classes, a set of rules (an XML file describing a set of

condition/action) and a configuration file, as illustrated in Fig. 5. Another step of fa-
cilitation of the modeling task consists in the discovery of network topology and the

respective instantiation of the correlation model used by diagnosis modules. The au-
tomatic instantiation can be applied to the structural part of the model by inspecting

the supervised network elements and by extracting the connectivity information
contained in the SNMP MIB tables. This information then is mapped onto an object

structure of a specific model for MPLS networks derived from our generic model
which in its turn is compliant with ITU-T G.805 Recommendations. As a result of this

mapping one generates a set of XML files representing the logical and physical topo-

logy of the supervised network in the terms comprehensible for diagnoser modules.
The same schema can be used in order to take into account the network re-

configurations that may happen after the initial model instance was communicated to
diagnoser modules. This functionality is integrated within a generic Topology Mana-

ger tool developed in Alcatel R&I Lab. In our experiment, the distributed alarm cor-

relation task is performed by a collection of Viterbi Diagnoser (VD) modules. Each of

these modules is in charge of a limited part of the network, typically one network
element . The task of a VD is to collect alarms produced by the region it supervises,

and to recover all behaviors of the supervised region that could explain these alarms

[3]. The whole chain of our model-based approach to diagnosis have been demons-
trated on the Alcatel management platform ALMAP.

Topology:

UML deployment

diagram

Generic objects:

UML class

diagram

Elementary tiles:

UML sequence

diagrams

.java files

.xmi files

Objecteering Java module

Diagnosis-oriented

transformation

Objecteering XMI module

.xrl files

Dictionnary

Configuration

file

Topology files

(model instance)

Viterbi

Diagnoser

.class files

Javac

Objects

Rules

Fig. 5. The functional view of the OSCAR model-compiler

References

[1] MAGDA2-GMPLS Architecture, A. Aghasaryan, F. Touré, A. Benveniste, S. Haar, E.
Fabre, F. Krief, Magda2 project deliverable MAGDA2/HET/LIV/1, November 30, 2002.

[2] Modeling Fault Propagation in Telecommunications Networks for Diagnosis Purposes,
A. Aghasaryan, C. Dousson, E. Fabre, A. Osmani, and Y. Pencolé, XVIII World Tele-

communications Congress, Paris, 22-27 September 2002.
[3] Algorithms for Distributed Fault Management in Telecommunications Networks, E.

Fabre, A. Benveniste, S. Haar, C. Jard, A. Aghasaryan, This conference.

[4] Fault detection and diagnosis in distributed systems : an approach by partially stochastic
Petri nets, A. Aghasaryan, E. Fabre, A. Benveniste, R. Boubour, and C. Jard, Journal of

Discrete Event Dynamic Systems, Kluwer Academic Publishers, Boston, Vol.8, no.2,
June 1998.

[5] Generalized Multiprotocol Label Switching: An Overview of Signaling Enhancements

and Recovery Techniques, Ayan Banerjee, John Drake, Jonathan Lang, Daniel Awduche,
Lou Berger, Kireeti Kompella, and Yakov Rekhter, IEEE Communications Magazine,

July 2001.
[6] ITU-T G.805 Generic Functional Architecture of Transport Networks, March 2000.
[7] ITU-T G.782 Types and general characteristics of synchronous digital hierarchy (SDH)

equipment, 1994.
[8] Multiprotocol Label Switching (MPLS) FEC-To-NHLFE (FTN) Management Informa-

tion Base, Internet Draft, draft-ietf-mpls-ftn-mib-09.txt, October 2003.

